首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signaling of plasma membrane receptors can be regulated by endocytosis at different levels, including receptor internalization, endocytic sorting towards degradation or recycling, and using endosomes as mobile signaling platforms. Increasing number of reports underscore the importance of endocytic mechanisms for signaling of cytokine receptors. In this short review we present both consistent and conflicting data regarding endocytosis and its role in signaling of receptors from the tumor necrosis factor receptor superfamily (TNFRSF) and those for interleukins (ILRs) and interferons (IFNRs). These receptors can be internalized through various endocytic routes and most of them are able to activate downstream pathways from endosomal compartments. Moreover, some of the cytokine receptors clearly require endocytosis for proper signal transduction. Still, the data describing internalization mechanisms and fate of cytokine receptors are often fragmentary and barely address the relation between their endocytosis and signaling. In the light of growing knowledge regarding different mechanisms of endocytosis, extending it to the regulation of cytokine receptor signaling may improve our understanding of the complex and pleiotropic functions of these molecules.  相似文献   

2.
Structural analysis of receptor tyrosine kinases   总被引:11,自引:0,他引:11  
Receptor tyrosine kinases (RTKs) are single-pass transmembrane receptors that possess intrinsic cytoplasmic enzymatic activity, catalyzing the transfer of the γ-phosphate of ATP to tyrosine residues in protein substrates. RTKs are essential components of signal transduction pathways that affect cell proliferation, differentiation, migration and metabolism. Included in this large protein family are the insulin receptor and the receptors for growth factors such as epidermal growth factor, fibroblast growth factor and vascular endothelial growth factor. Receptor activation occurs through ligand binding, which facilitates receptor dimerization and autophosphorylation of specific tyrosine residues in the cytoplasmic portion. The phosphotyrosine residues either enhance receptor catalytic activity or provide docking sites for downstream signaling proteins. Over the past several years, structural studies employing X-ray crystallography have advanced our understanding of the molecular mechanisms by which RTKs recognize their ligands and are activated by dimerization and tyrosine autophosphorylation. This review will highlight the key results that have emerged from these structural studies.  相似文献   

3.
Aromatase inhibitors are rapidly becoming the first choice for hormonal treatment of steroid receptor positive breast cancer in postmenopausal women. An understanding of the resistance mechanisms to these agents is, therefore, important for the appropriate delivery of treatment to responsive patients and the rational development of new agents targeted at the resistance pathways. De novo resistance appears to be a quantitative rather than qualitative phenomenon with virtually all oestrogen receptor positive tumours showing an anti-proliferative response to the aromatase inhibitor anastrozole. While the expression of type 1 growth factor receptors reduces response to tamoxifen this appears to have little detrimental effect on response to aromatase inhibitors. Studies of acquired resistance in vitro have indicated that acquisition of hypersensitivity to oestrogenic stimulation is a key mechanism that is dependent on enhanced cross-talk of growth factor and oestrogen signaling pathways. Collection of resistant biopsy tissues from patients is important to determine if this mechanism is clinically relevant.  相似文献   

4.
5.
Auxin action: the search for the receptor   总被引:2,自引:1,他引:1  
Abstract. The molecular specificity of the substances which have auxin activity implies the existence of specific receptors. There have been many efforts to identify and isolate these receptors on the assumption that they should bind auxins with affinities coordinate to their activities in bioassays. However, the known complexity of auxin uptake and metabolism make this assumption seriously deficient. Although several such binding sites have, in fact, been identified, proof of a connection between these sites and auxin action has been lacking. Definite proof would include a requirement that the site be reconstituted, together with the appropriate macro-molecular machinery, to construct a model of an auxin response. At the moment, our ignorance of the biochemistry and molecular biology of auxin growth responses makes such a proof difficult. However, two avenues of research promise to accelerate the rate of progress. The increasingly potent tools of molecular biology should soon allow the dissection of auxin-regulated gene expression, while improved knowledge of plasma membrane proton pumps and the mechanism of cell wall biosynthesis should produce, in parallel, an understanding of the auxin regulation of acid growth.  相似文献   

6.
Abstract: Interleukin (IL)-2, initially discovered for its mitogenic activity on T cells, also acts on monocytes, resulting in the activation of cytokine production, superoxide production, and tumoricidal activity. Because severe brain damage was observed in IL-2-transgenic mice, this cytokine may have some influence(s) on the cells of the CNS. We investigated IL-2 receptor-bearing cells in the CNS and found that activated microglia expressed α-chain mRNA and immunoreactive IL-2 receptor β-chain protein in culture. Although microglia did not express IL-2 receptors under normal culture conditions, they were induced to express these receptors by lipopolysaccharide (LPS) in a time-dependent manner. The IL-2 receptors were found to be functional because the viability and growth activity of LPS-treated microglia, but not untreated controls, increased in response to recombinant mouse IL-2 as determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay and bromodeoxyuridine uptake experiment, respectively. These effects of recombinant IL-2 were blocked by pretreatment with anti-mouse IL-2 receptor β-chain antibody. Our findings suggest that activated microglia in the CNS can respond to this T cell-derived factor regulating their growth, which may be an important mechanism of communication between nervous and immune systems in physiological and pathological conditions.  相似文献   

7.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates a wide array of biologic effects through its interaction with a family of five G protein-coupled receptors. Cytokines and growth factors interact with this signaling pathway in a variety of ways, including both activation and regulation of the expression of the enzymes that regulate synthesis and degradation of S1P. Not only do many growth factors and cytokines stimulate S1P production, leading to transactivation of S1P receptors, ligation of S1P receptors by S1P can also transactivate growth factor tyrosine kinase receptors and stimulate growth factor and cytokine signaling cascades. This review discusses the mechanisms involved in cross-talk between S1P, cytokines, and growth factors and the impact of that cross-talk on cell signaling and cell biology.  相似文献   

8.
Polyamines are essential metabolites found in all organisms. Intracellular polyamine levels are tightly maintained by biosynthesis, degradation, uptake and excretion processes that involve regulatory mechanisms – such as the antizyme inhibitory protein – that are conserved across the kingdoms of life, indicating that polyamine levels are critical to cell function. Nonetheless, the biochemical roles of polyamines and their involvement in numerous fundamental cellular processes including aging, cell cycle progression and growth only become apparent when polyamine homeostasis is perturbed. Thus, while polyamines are present in most cells and essential for cell growth, their biochemical functions are largely enigmatic. Studies in fungi have contributed to our basic understanding of polyamines, and might continue to bridge knowledge gaps regarding polyamine metabolism and cell function. Moreover, when considering the impact of fungi – directly or indirectly, for good or for ill – on human society, closing gaps in our understanding of polyamine functions in fungal physiology is an important goal in itself that might lead to the discovery of new targets for enhancing beneficial fungal interactions and diminishing those detrimental to crop and human health. To facilitate progress towards this prospect, here we appraise what is known about polyamine metabolism in fungi, how prevalent polyamines impact fungal physiology and metabolism, and how the levels of each polyamine are maintained in the fungal cell – thus pointing to how they might be perturbed.  相似文献   

9.
Receptor tyrosine kinases: mechanisms of activation and signaling   总被引:11,自引:0,他引:11  
Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication. These single-pass transmembrane receptors, which bind polypeptide ligands - mainly growth factors - play key roles in processes such as cellular growth, differentiation, metabolism and motility. Recent progress has been achieved towards an understanding of the precise (and varied) mechanisms by which RTKs are activated by ligand binding and by which signals are propagated from the activated receptors to downstream targets in the cell.  相似文献   

10.
A better understanding of how schistosomes exploit host nutrients, neuro-endocrine hormones and signalling pathways for growth, development and maturation may provide new insights for improved interventions in the control of schistosomiasis. This paper describes recent advances in the identification and characterisation of schistosome tyrosine kinase and signalling pathways. It discusses the potential intervention value of insulin signalling, which may play an important role in glucose uptake and carbohydrate metabolism in schistosomes, providing the nutrients essential for parasite growth, development and, notably, female fecundity. Significant progress has also been made in the characterisation of other schistosome growth factor receptors, such as transforming growth factor beta receptor and epidermal growth factor receptor, and in our understanding of their roles in the host-parasite molecular dialogue and parasite development. The use of parasite signal transduction components as novel vaccine or drug targets may prove invaluable in prevention, treatment and control strategies to combat schistosomiasis.  相似文献   

11.
12.
K63 polyubiquitin chains spatially and temporally link innate immune signaling effectors such that cytokine release can be coordinated. Crohn's disease is a prototypical inflammatory disorder in which this process may be faulty as the major Crohn's disease-associated protein, NOD2 (nucleotide oligomerization domain 2), regulates the formation of K63-linked polyubiquitin chains on the I kappa kinase (IKK) scaffolding protein, NEMO (NF-kappaB essential modifier). In this work, we study these K63-linked ubiquitin networks to begin to understand the biochemical basis for the signaling cross talk between extracellular pathogen Toll-like receptors (TLRs) and intracellular pathogen NOD receptors. This work shows that TLR signaling requires the same ubiquitination event on NEMO to properly signal through NF-kappaB. This ubiquitination is partially accomplished through the E3 ubiquitin ligase TRAF6. TRAF6 is activated by NOD2, and this activation is lost with a major Crohn's disease-associated NOD2 allele, L1007insC. We further show that TRAF6 and NOD2/RIP2 share the same biochemical machinery (transforming growth factor beta-activated kinase 1 [TAK1]/TAB/Ubc13) to activate NF-kappaB, allowing TLR signaling and NOD2 signaling to synergistically augment cytokine release. These findings suggest a biochemical mechanism for the faulty cytokine balance seen in Crohn's disease.  相似文献   

13.
Cross-communication between heterologous signaling systems and the epidermal growth factor receptor (EGFR) has been shown to be critical for a variety of biological responses: EGFR transactivation when G-protein-coupled receptors (GPCRs) are stimulated represents the paradigm of an interreceptor network that is dependent on G-proteins, kinases, metalloproteases, and growth factor precursors. Investigating the mechanism of this process will help expand our knowledge of physiological regulatory mechanisms and diverse pathophysiological disorders.  相似文献   

14.
Abscisic acid (ABA) is a major plant hormone that controls germination, seedling growth, and seed development. During the vegetative phase, ABA plays a key regulatory role in adaptive responses to common abiotic stresses, such as drought, high salinity, and cold. In seeds, ABA modulates the synthesis of storage components and prevents the precocious germination of embryos. ABA-regulated processes are critical for plant growth and survival, especially under unfavorable environmental conditions. Numerous genetic and biochemical studies to delineate signal transduction pathways have led to the identification of a large number of ABA signaling components. However, our knowledge about specific response pathways is still fragmentary. Over the past several years, significant progress has been made in identifying key regulators of early events in the ABA response. In this short review, new advances in ABA signaling research, especially those focused on ABA receptors, will be summarized.  相似文献   

15.
Cellular signaling pathways play a very important role in almost all molecular processes in the cell, and are generally composed of a complex set of cascades in which enzymes and proteins play a key role. These signaling pathways include different types of cellular signaling classified based on their receptors and effector proteins such as enzyme-linked receptors, cytokine receptors, and G-protein-coupled receptors each of which is subdivided into different classes. Signaling pathways are tightly controlled by different mechanisms mostly thorough inhibiting/activating their receptors or effector proteins. In the last two decades, our knowledge of molecular biology has changed dramatically and today we know that more than 85% of the human genome expresses noncoding RNAs most of which are crucial in the cellular and molecular mechanisms of cells. One of these noncoding RNAs are long noncoding RNAs (lncRNA) containing more than 200 nucleotides. LncRNAs participate in the progression of cancer growth through several mechanism including signaling pathways. In this review, we summarize some of the most important of lncRNAs and their effect on important signaling pathways.  相似文献   

16.
17.
Over the past ten years, several growth factor receptors have been shown to be ligand-regulated tyrosine kinases. Tyrosine kinase activity is essential for signal transmission, suggesting that phosphorylation cascades may play an important role. Considerable effort has gone into understanding the structure and function of tyrosine kinase receptors in order to define their mechanisms of signal transmission. However, the protein substrates of the receptor kinases have proven to be difficult to isolate and clone. This review focuses on the receptors for insulin, epidermal growth factor, and platelet-derived growth factor. They are all tyrosine kinases, but emerging evidence suggests that they utilize multiple separate signal transduction pathways. Work carried out during the next several years should yield considerable insight into the complexity of the components which interact with these tyrosine kinase receptors to regulate cellular growth and metabolism.  相似文献   

18.
Although used as a therapeutic for 50 years, it is only recently that the application of molecular techniques has provided a basis for understanding growth hormone's (GH) clinical actions. This article reviews progress in our current knowledge of the molecular mechanism of growth hormone (GH) receptor activation based on a number of physicochemical techniques, and documents insights gained into the means used by the activated GH receptor to control the expression of genes regulating growth and metabolism. These findings are related to disorders of short stature, and the therapeutic consequences are summarized.  相似文献   

19.
The myofibroblast is a highly specialized cell type that plays a critical role during normal tissue wound healing, but also contributes pathologically to chronic inflammatory conditions such as fibrosis and cancer. As fibrotic conditions continue to be a major burden to the public health system, novel therapies that target the function of myofibroblasts may show promise in the clinic. The cytokine transforming growth factor β (TGFβ) is the most potent known inducer of myofibroblast differentiation and thus represents a powerful target to modify myofibroblast function during disease. This review focuses on our current understanding of the key signaling pathways activated by TGFβ during myofibroblast differentiation.  相似文献   

20.
A disintegrin and metalloprotease (ADAM) is a membrane-anchored metalloprotease implicated in the ectodomain shedding of cell surface proteins, including the ligands for epidermal growth factor (EGF) receptors (EGFR)/ErbB. It has been well documented that the transactivation of the EGFR plays critical roles for many cellular functions, such as proliferation and migration mediated through multiple G protein-coupled receptors (GPCRs). Recent accumulating evidence has suggested that ADAMs are the key metalloproteases activated by several GPCR agonists to produce a mature EGFR ligand leading to the EGFR transactivation. In this review, we describe the current knowledge on ADAMs implicated in mediating EGFR transactivation. The major focus of the review will be on the possible upstream mechanisms of ADAM activation by GPCRs as well as downstream signal transduction and the pathophysiological significances of ADAM-dependent EGFR transactivation. ectodomain shedding; angiotensin II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号