首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously demonstrated using noninvasive technologies that the interferon-gamma (IFN-γ) receptor complex is preassembled [ 1 ]. In this report we determined how the receptor complex is preassembled and how the ligand-mediated conformational changes occur. The interaction of Statl with IFN-γR1 results in a conformational change localized to IFN- γR1. Jakl but not Jak2 is required for the two chains of the IFN-γ receptor complex (IFN-γR1 and IFN-γR2) to interact; however, the presence of both Jakl and Jak2 is required to see any ligand-dependant conformational change. Two IFN- γR2 chains interact through species-specific determinants in their extracellular domains. Finally, these determinants also participate in the interaction of IFN-γR2 with IFN-γR1. These results agree with a detailed model of the IFN-γ receptor that requires the receptor chains to be pre-associated constitutively for the receptor to be active.  相似文献   

3.
4.
 Polymerase chain reaction was used to isolate cDNA clones encoding putative T-cell receptor (TCR) α chains in an amphibian, the Mexican axolotl (Ambystoma mexicanum). Five TCRα-V chain-encoding segments were identified, each belonging to a separate family. The best identity scores for these axolotl TCRα-V segments were all provided by sequences belonging to the human TCRα-V1 family and the mouse TCRα-V3 and TCRα-V8 families. A total of 14 different TCRA-J segments were identified from 44 TCRA-V/TCRA-J regions sequenced, suggesting that a large repertoire of TCRA-J segments is a characteristic of most vertebrates. The structure of the axolotl CDR3 α chain loop is in good agreement with that of mammals, including a majority of small hydrophobic residues at position 92 and of charged, hydrophilic, or polar residues at positions 93 and 94, which are highly variable and correspond to the TCRA-V/J junction. This suggests that some positions of the axolotl CDR3 α chain loop are positively selected during T-cell differentiation, particularly around residue 93 that could be selected for its ability to makes contacts with major histocompatibility complex-associated antigenic peptides, as in mammals. The axolotl Cα domain had the typical structure of mammalian and avian Cα domains, including the charged residues in the TM segment that are thought to interact with other proteins in the membrane, as well as most of the residues forming the conserved antigen receptor transmembrane motif. Received: 12 June 1996 / Revised: 11 September 1996  相似文献   

5.
CIRL-1 also called latrophilin 1 or CL belongs to the family of adhesion G protein-coupled receptors (GPCRs). As all members of adhesion GPSR family CIRL-1 consists of two heterologous subunits, extracellular hydrophilic p120 and heptahelical membrane protein p85. Both CIRL-1 subunits are encoded by one gene but as a result of intracellular proteolysis of precursor, mature receptor has two-subunit structure. It was also shown that a minor portion of the CIRL-1 receptor complexes dissociates, producing the soluble receptor ectodomain, and this dissociation is due to the second cleavage at the site between the site of primary proteolysis and the first transmembrane domain. Recently model of independent localization p120 and p85 on the cell surface was proposed. In this article we evaluated the amount of p120-p85 complex still presented on the cellular membrane and confirmed that on cell surface major amount of mature CIRL-1 presented as a p120-p85 subunit complex.  相似文献   

6.
Agonist molecules at the two neuromuscular acetylcholine (ACh) receptor (AChR) transmitter-binding sites increase the probability of channel opening. In one hypothesis for AChR activation (“priming”), the capping of loop C at each binding site transfers energy independently to the distant gate over a discrete structural pathway. We used single-channel analyses to examine the experimental support for this proposal with regard to brief unliganded openings, the effects of loop-C modifications, the effects of mutations to residues either on or off the putative pathway, and state models for describing currents at low [ACh]. The results show that (a) diliganded and brief unliganded openings are generated by the same essential, global transition; (b) the radical manipulation of loop C does not prevent channel opening but impairs agonist binding; (c) both on- and off-pathway mutations alter gating by changing the relative stability of the open-channel conformation by local interactions rather than by perturbing a specific site–gate communication link; and (d) it is possible to estimate directly the rate constants for agonist dissociation from and association to both the low and high affinity forms of the AChR-binding site by using a cyclic kinetic model. We conclude that the mechanism of energy transfer between the binding sites and the gate remains an open question.  相似文献   

7.
A structural characterization of a synthetic peptide corresponding to the fourth transmembrane domain (M4-TMD) of the γ-subunit of the nicotinic acetylcholine receptor from Torpedo californica has been undertaken. Solid-state NMR and CD spectroscopy studies indicate that upon reconstitution into lipid vesicles or magnetically aligned lipid bilayers, the synthetic M4-TMD adopts a linear α-helical conformation with the helix aligned within 15° of the membrane normal. Furthermore, analysis of the motional averaging of anisotropic interactions present in the solid-state NMR spectra of the reconstituted peptide, indicate that the dynamics of the peptide within the bilayer are highly sensitive to the phase adopted by the lipid bilayer, providing an insight into how the interaction of lipids with this domain may play a important role in the modulation of this receptor by its lipid environment.  相似文献   

8.

Background  

Alternative processing of α-thyroid hormone receptor (TRα, NR1A1) mRNAs gives rise to two functionally antagonistic nuclear receptors: TRα1, the α-type receptor, and TRα2, a non-hormone binding variant that is found only in mammals. TRα2 shares an unusual antisense coding overlap with mRNA for Rev-erbα (NR1D1), another nuclear receptor protein. In this study we examine the structure and expression of these genes in the gray short-tailed opossum, Monodelphis domestica, in comparison with that of eutherian mammals and three other marsupial species, Didelphis virginiana, Potorous tridactylus and Macropus eugenii, in order to understand the evolution and regulatory role of this antisense overlap.  相似文献   

9.
10.
Interest in structure-based G-protein-coupled receptor (GPCR) ligand discovery is huge, given that almost 30 % of all approved drugs belong to this category of active compounds. The GPCR family includes the dopamine receptor subtype D2 (D2DR), but unfortunately—as is true of most GPCRs—no experimental structures are available for these receptors. In this publication, we present the molecular model of D2DR based on the previously published crystal structure of the dopamine D3 receptor (D3DR). A molecular modeling study using homology modeling and docking simulation provided a rational explanation for the behavior of the arylpiperazine ligand. The observed binding modes and receptor–ligand interactions provided us with fresh clues about how to optimize selectivity for D2DR receptors.
Figure
Arylpiperazine ligand positioned inside dopamine D2 receptor bind site showing key amino acid residues  相似文献   

11.
12.
G-protein-coupled receptors have extraordinary therapeutic potential as targets for a broad spectrum of diseases. Understanding their function at the molecular level is therefore essential. A variety of crystal structures have made the investigation of the inactive receptor state possible. Recently released X-ray structures of opsin and the β2-adrenergic receptor (β2AR) have provided insight into the active receptor state. In addition, we have contributed to the crystal structure of an irreversible agonist-β2 adrenoceptor complex. These extensive studies and biophysical investigations have revealed that agonist binding leads to a low-affinity conformation of the active state that is suggested to facilitate G-protein binding. The high-affinity receptor state, which promotes signal transduction, is only formed in the presence of both agonist and G-protein. Despite numerous crystal structures, it is not yet clear how ligands tune receptor dynamics and G-protein binding. We have now used molecular dynamics simulations to elucidate the distinct impact of agonist and inverse agonist on receptor conformation and G-protein binding by investigating the influence of the ligands on the structure and dynamics of a complex composed of β2AR and the C-terminal end of the Gαs subunit (GαCT). The simulations clearly showed that the agonist isoprenaline and the inverse agonist carazolol influence the ligand-binding site and the interaction between β2AR and GαCT differently. Isoprenaline induced an inward motion of helix 5, whereas carazolol blocked the rearrangement of the extracellular part of the receptor. Moreover, in the presence of isoprenaline, β2AR and GαCT form a stable interaction that is destabilized by carazolol.  相似文献   

13.
Background: The biological functions of estrogens extend beyond the female and male reproductive tract, affecting the cardiovascular and renal systems. Traditional views on the role of postmenopausal hormone therapy (HT) in protecting against heart disease, which were challenged by clinical end point studies that found adverse effects of combined HT, are now being replaced by more differentiated concepts suggesting a beneficial role of early and unopposed HT that does not include a progestin.Objective: We reviewed recent insights, concepts, and research results on the biology of both estrogen receptor (ER) subtypes, ERα and ERβ, in cardiac and vascular tissues. Knowledge of these ER subtypes is crucial to understanding gender and estrogen effects and to developing novel, exciting strategies that may have a profound clinical impact.Methods: This review focuses on in vivo studies and includes data presented at the August 2007 meeting of the American Physiological Society as well as data from a search of the MEDLINE and Ovid databases from January 1986 to November 2007. Search results were restricted to English-language publications, using the following search terms: estrogen, estrogen receptor α, estrogen receptor β, estrogen receptor α agonist, estrogen receptor α antagonist, estrogen receptor β agonist, estrogen receptor β antagonist, PPT, DPN, heart, vasculature, ERKO mice, BERKO mice, transgenic mice, and knockout mice.Results: Genetic mouse models and pharmacologic studies that employed selective as well as nonselective ER agonists support the concept that both ER subtypes confer protective effects in experimental models of human heart disease, including hypertension, cardiac hypertrophy, and chronic heart failure.Conclusions: Genetic models and novel ligands hold the promise of further improving our understanding of estrogen action in multiple tissues and organs. These efforts will ultimately enhance the safety and efficacy of HT and may also result in new applications for synthetic female sex hormone analogues.  相似文献   

14.
This paper explores the implications of certain new developments in cell biology upon neuroscience. Until recently it was thought that neurotransmitters and neuromodulators had only one function, which was to stimulate their specific receptors at the cell surface. From here on, all activity was supposed to be effected by postsynaptic cascades. The discovery that membrane components, particularly G-protein-linked receptors, are not static but are subject to a massive and complex process of continual endocytosis, processing in the endosome system and recycling back to the external membrane, raises the question of its functional significance. In addition, it has been found that many neuromodulators such as polypeptides have their main locus of action inside the postsynaptic neuron. This review covers the role of the endocytic mechanism on receptor desensitization and resensitization, synaptic reorganization and plasticity synaptic scaling and the possible repair of oxidative damage. The possible involvement of this system in Alzheimer's disease is discussed.  相似文献   

15.
16.
The discovery, of a series of 2-Cl-5-heteroaryl-benzamide antagonists of the P2X(7) receptor via parallel medicinal chemistry is described. Initial analogs suffered from poor metabolic stability and low Vd(ss). Multi parametric optimization led to identification of pyrazole 39 as a viable lead with excellent potency and oral bioavailability. Further attempts to improve the low Vd(ss) of 39 via introduction of amines led to analogs 40 and 41 which maintained the favorable pharmacology profile of 39 and improved Vd(ss) after iv dosing. But these analogs suffered from poor oral absorption, probably driven by poor permeability.  相似文献   

17.
18.
19.
20.
Clinical studies have established the role of cigarette smoking as a risk factor in the progression of chronic kidney disease (CKD). We have shown that nicotine promotes mesangial cell proliferation and hypertrophy via nonneuronal nicotinic acetylcholine receptors (nAChRs). The α7-nAChR is one of the most important subunits of the nAChRs. These studies were designed to test the hypothesis that nicotine worsens renal injury in rats with 5/6 nephrectomy (5/6Nx) and that the α7-nAChR subunit is required for these effects. We studied five different groups: Sham, 5/6Nx, 5/6Nx + nicotine (Nic; 100 μg/ml dry wt), 5/6Nx + Nic + α7-nAChR blocker methyllicaconitine (MLA; 3 mg·kg(-1)·day(-1) sq), and Sham + Nic. Blood pressure was measured by the tail-cuff method, and urine was collected for proteinuria. After 12 wk, the rats were euthanized and kidneys were collected. We observed expression of the α7-nAChR in the proximal and distal tubules. The administration of nicotine induced a small increase in blood pressure and resulted in cotinine levels similar to those found in the plasma of smokers. In 5/6Nx rats, the administration of nicotine significantly increased urinary protein excretion (onefold), worsened the glomerular injury score and increased fibronectin (~ 50%), NADPH oxidase 4 (NOX4; ~100%), and transforming growth factor-β expression (~200%). The administration of nicotine to sham rats increased total proteinuria but not albuminuria, suggesting direct effects on tubular protein reabsorption. These effects were prevented by MLA, demonstrating a critical role for the α7-nAChR as a mediator of the effects of nicotine in the progression of CKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号