首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
A newly synthesized photoreactive thiamine derivative, 4-azido-2-nitrobenzoylthiamine was found to be a competitive inhibitor of the thiamine transport system in Saccharomyces cerevisiae, exhibiting an apparent Ki of 36 nM. When exposed to visible light, 4-azido-2-nitrobenzoylthiamine irreversibly inactivated the thiamine transport. 4-azido-2-nitrobenzoylthiamine-dependent photoinactivation of thiamine transport was partially protected by thiamine, but not by the nitrene-trapping reagent p-aminobenzoate. On the other hand, the irradiation of the yeast cells in the presence of 4-azido-2-nitrobenzoylthiamine did not significantly lead to inactivation of the biotin transport system. The results suggest that 4-azido-2-nitrobenzoylthiamine is a specific irreversible inhibitor of the thiamine transport system in Saccharomyces cerevisiae.  相似文献   

2.
As part or a systematic study of alcoholism and thiamine absorption, the effect of diet-induced thiamine deficiency and the role of the unstirred water layer on thiamine transport were investigated. Using 3H-labeled dextran as a marker of adherent mucosal volume, jejunal uptake of 14C-labeled thiamine hydrochloride was measured, in vitro, in thiamine-deficient rats and pair-fed controls. Uptake of low thiamine concentrations (0.2 and 0.5 μM) was greater in the thiamine-deficient rats thatn in the controls. In contrast, uptake rates for high thiamine concentrations (20 and 50 μM) were similar in both groups. While 1Jmax was unaltered, 1Km was decreased in thiamine deficiency, suggesting a decrease in unstirred water layer thickness. Accordingly, the thickness of the water layer was measured in both groups of animals and correlated with 1Jmax and 1Km under unstirred and st irred conditions. Without stirring, there was no difference in 1Jmax between the two groups. In contrast, both 1Km and the water layer were reduced in the thiamine-deficient rats. With stirring, 1Jmax was not affected, but both 1Km and the water layer thickness were reduced to similar values in both groups. Reversal of thiamine deficiency resulted in the return of thiamine uptake and the unstirred water layer thickness to control values. These data support the concept of a dual system of thiamine transport and emphasize the role of the unstirred water layer as an important determinant of transport kinetics not only under physiologic situations but also in diet-induced rat thiamine deficiency, a model for a clinical pathological state. The decrease in the unstirred water layer thickness in thiamine deficiency may be also viewed as a possible adaptive mechanism to facilitate absorption of meager supplies of thiamine.  相似文献   

3.
The transport of sucrose by selected mutant and wild-type cells of Streptococcus mutans was studied using washed cocci harvested at appropriate phases of growth, incubated in the presence of fluoride and appropriately labelled substrates. The rapid sucrose uptake observed cannot be ascribed to possible extracellular formation of hexoses from sucrose and their subsequent transport, formation of intracellular glycogen-like polysaccharide, or binding of sucrose or extracellular glucans to the cocci. Rather, there are at least three discrete transport systems for sucrose, two of which are phosphoenolpyruvate-dependent phosphotransferases with relatively low apparent Km values and the other a non-phosphotransferase (non-PTS) third transport system (termed TTS) with a relatively high apparent Km. For strain 6715-13 mutant 33, the Km values are 6.25·10?5 M, 2.4·10?4 M, and 3.0·10?3 M, respectively; for strain NCTC-10449, the Km values are 7.1·10?5 M, 2.5·10?4 M and 3.3·10?3 M, respectively. The two lower Km systems could not be demonstrated in mid-log phase glucose-adapted cocci, a condition known to repress sucrose-specific phosphotransferase activity, but under these conditions the highest Km system persists. Also, a mutant devoid of sucrose-specific phosphotransferase activity fails to evidence the two high affinity (low apparent Km) systems, but still has the lowest affinity (highest Km) system. There was essentially no uptake at 4°C indicating these processes are energy dependent. The third transport system, whose nature is unknown, appears to function under conditions of sucrose abundance and rapid growth which are known to repress phosphoenolpyruvate-dependent sucrose-specific phosphotransferase activity in S. mutans. These multiple transport systems seem well-adapted to S. mutans which is faced with fluctuating supplies of sucrose in its natural habitat on the surfaces of teeth.  相似文献   

4.
Glucose transport in human erythrocytes is characterized by a marked asymmetry in the V and Km values for entry and for exit. In addition, they show a high Km and a high V for equilibrium exchange but low Km values for infinite cis and for infinite trans exit and entry. An allosteric pore model has been proposed to account for these characteristics. In this model, substrate-induced conformational changes destabilize the interfaces between protein subunits (the pore gates).Pores doubly occupied from inside destabilize the transport gates and result in high Km and high V transport parameters. This effect is less marked when pores are doubly occupied from outside and therefore transport asymmetry results.  相似文献   

5.
Klebsiella pneumoniae can accumulate methylammonium up to 80-fold by means of a transport system as indicated by the energy requirement, saturation kinetics and a narrow pH profile around pH 6.8. Methylammonium transport (apparent Km = 100 μM, V = 40 μmol/min per g dry weight at 15°C) is competitively inhibited by ammonium (apparent Ki = 7 μM). The low Ki value and the finding that methylammonium cannot serve as a nitrogen source indicate that ammonium rather than methylammonium is the natural substrate. Uphill transport is driven by a component of the protonmotive force, probably the membrane potential. The transport system is under genetic control; it is partially repressed by amino acids and completely by ammonium. Analysis of mutants suggest that the synthesis of the ammonium transport system is subject to the same ‘nitrogen control’ as nitrogenase and glutamine synthetase.  相似文献   

6.
Sulfate uptake by Saccharomyces cerevisiae is stimulated about 12-fold by preincubation of cells with 1% d-glucose or 1% ethanol. The KT remains unchanged (0.34–0.38 mM), the Jmar increase from 18–20 to 195–230 and 170–185 nmol/min per g dry wt., respectively, after glucose and ethanol preincubation. The stimulation involves protein synthesis (it is suppressed by cycloheximide), has a half-time of 18 min and requires mitochondrial respiration (no or low effect in respiration-deficient mutants and those lacking ADP-ATP transport in mitochondria, as well as after anaerobic preincubation of the wild-type strain, and in low-phosphate cells). The presence of NH4+ and some amino acids (e.g., leucine, aspartate, cysteine and methionine) depressed the stimulation while that of cationic amino acids (typically arginine and lysine) and of K+ increased it by 50–80%. The stimulated (i.e., newly synthesized) transport system was degraded with a half-life of about 10 min.  相似文献   

7.
Luit Slooten  Adriaan Nuyten 《BBA》1984,766(1):88-97
(1) Rates of ATP synthesis and ADP-arsenate synthesis catalyzed by Rhodospirillum rubrum chromatophores were determined with the firefly luciferase method and by a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase. (2) Vm for ADP-arsenate synthesis was about 2-times lower than Vm for ATP-synthesis. With saturating [ADP], K(Asi) was about 20% higher than K(Pi). With saturating [anion], K(ADP) was during arsenylation about 20% lower than during phosphorylation. (3) Plots of 1v vs. 1[substrate] were non-linear at low concentrations of the fixed substrate. The non-linearity was such as to suggest a positive cooperativity between sites binding the variable substrate, resulting in an increased VmKm ratio. High concentrations of the fixed substrate cause a similar increase in VmKm, but abolish the cooperativity of the sites binding the variable substrate. (4) Low concentrations of inorganic arsenate (Asi) stimulate ATP synthesis supported by low concentrations of Pi and ADP about 2-fold. (5) At high ADP concentrations, the apparent Ki of Asi for inhibition of ATP-synthesis was 2–3-times higher than the apparent Km of Asi for arsenylation; the apparent Ki of Pi for inhibition of ADP-arsenate synthesis was about 40% lower than the apparent Km of Pi for ATP synthesis. (6) The results are discussed in terms of a model in which Pi and Asi compete for binding to a catalytic as well as an allosteric site. The interaction between these sites is modulated by the ADP concentration. At high ADP concentrations, interaction between these sites occurs only when they are occupied with different species of anion.  相似文献   

8.
The binding characteristics of the β-adrenergic antagonist, [3H]dihydroalprenolol, to hamster white adipocyte membranes were studied. This binding occurred at two classes of sites, one having high affinity (Kd = 1.6±1.3 nM) but low capacity (32±17 fmol/mg membrane protein) and one having low affinity but high binding capacity. While the binding at the high-affinity sites was competitively and stereoselectively displaced by both β-antagonists and β-agonists, competition at the low-affinity sites occurred only with β-antagonists and was non-stereoselective. Thus, the β-agonist (?)-isoproterenol was further used to define nonspecific binding. Under these conditions, saturation studies showed a single class of high-affinity (Kd = 1.6±0.5 nM) binding sites with a binding capacity of 53 ± 13 fmol/mg membrane protein (corresponding to 4000 ± 980 sites per cell), and independent kinetic analysis provided a Kd value of 1.9 nM. Competition experiments showed that these binding sites had the characteristics of a β1-receptor subtype, yielding Kd values in good agreement with the Kact and the Ki values found for agonist-stimulation and for antagonist-inhibition of adenylate cyclase in membranes and of cyclic AMP accumulation and lipolysis in intact cells. Furthermore, the ability of β-agonists to compete with this binding was severely depressed by p[NH]ppG. These results thus support the contention that the specific [3H]dihydroalprenolol binding sites defined as the binding displaceable by (?)-isoproterenol represent the physiologically relevant β-adrenergic receptors of hamster white adipocytes. Finally, studies of the lipolytic response of these cells to (?)-norepinephrine showed that the inhibitory effect of the α2-component of this catecholamine was apparent only when the effects of endogenous adenosine were suppressed, a result which argues against an important regulatory role for the α2-receptors in the adrenergic control of lipolysis in hamster white adipocytes.  相似文献   

9.
The uptake of [32P]phosphate into human red blood cells was inhibited (Ki = 0.6 mM) by the sulfhydryl reagent 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB). 2-Nitro-5-thiobenzoic acid (NTB), the reduced form of DTNB, was a less potent inhibitor (Ki = 7 mM). The inhibition of anion transport by DTNB could be reversed by washing DTNB-treated cells with isotonic buffer, or by incubating DTNB-treated cells with 2-mercaptoethanol, which converted DTNB to NTB. DTNB competitively inhibited the binding of 4-[14C]-benzamido-4′-aminostilbene-2,2′-disulfonate, a potent inhibitor of anion transport (Ki = 1?2 μM), to band 3 protein in cells and ghost membranes. These results suggest that the stilbene-disulfonate binding site in band 3 protein can readily accommodate the organic anion DTNB, and that inhibition by DTNB was not due to reaction with an essential sulfhydryl group.  相似文献   

10.
11.
1. In mitochondrial particles antimycin binds to two separate specific sites with dissociation constants Kd1 ≦ 4 · 10?13M and Kd2 = 3 · 10?9M, respectively.2. The concentrations of the two antimycin binding sites are about equal. The absolute concentration for each binding site is about 100 – 150 pmol per mg of mitochondrial protein.3. Antimycin bound to the stronger site mainly inhibits NADH- and succinate oxidase. Binding of antimycin to the weaker binding site inhibits the electron flux to exogenously added cytochrome c after blocking cytochrome oxidase by KCN.4. Under certain conditions cytochrome b and c1 are dispensible components for antimycin-sensitive electron transport.5. A model of the respiratory chain in yeast is proposed which accounts for the results reported here and previously. (Lang, B., Burger, G. and Bandlow, W. (1974) Biochim. Biophys. Acta 368, 71–85).  相似文献   

12.
Soluble (Na++K+)-ATPase consisting predominantly of αβ-units with Mr below 170 000 was prepared by incubating pure membrane-bound (Na++K+)-ATPase (35–48 μmol Pi/min per mg protein) from the outer renal medulla with the non-ionic detergent dodecyloctaethyleneglycol monoether (C12E8). (Na++K+)-ATPase and potassium phosphatase remained fully active in the detergent solution at C12E8/protein ratios of 2.5–3, at which 50–70% of the membrane protein was solubilized. The soluble protomeric (Na++K+)-ATPase was reconstituted to Na+, K+ pumps in phospholipid vesicles by the freeze-thaw sonication procedure. Protein solubilization was complete at C12E8/protein ratios of 5–6, at the expense of partial inactivation, but (Na++K+)-ATPase and potassium phosphatase could be reactivated after binding of C12E8 to Bio-Beads SM2. At C12E8/protein ratios higher than 6 the activities were irreversibly lost. Inactivation could be explained by delipidation. It was not due to subunit dissociation since only small changes in sedimentation velocities were seen when the C12E8/protein ratio was increased from 2.9 to 46. As determined immediately after solubilization, S20,w was 7.4 S for the fully active (Na++K+)-ATPase, 7.3 S for the partially active particle, and 6.5 S for the inactive particle at high C12E8/protein ratios. The maximum molecular masses determined by analytical ultracentrifugation were 141 000–170 000 dalton for these protein particles. Secondary aggregation occurred during column chromatography, with formation of enzymatically active (αβ)2-dimers or (αβ)3-trimers with S20,w=10–12 S and apparent molecular masses in the range 273 000–386 000 daltons. This may reflect non-specific time-dependent aggregation of the detergent micelles.  相似文献   

13.
The inducible, nonenergy-requiring glucose transport system of the yeast Kluyveromyces lactis is inactivated upon starving cells of glucose by (1) transferring logarithmic phase glucose-grown cells to synthetic medium containing a nonglycolytic carbon source, and (2) upon transition of logarithmic phase glucose-grown cells to stationary phase. The steady-state accumulation of nonmetabolizeable 6-deoxyglucose and the apparent Km of transport of 6-deoxyglucose is the same in stationary phase cells and in logarithmic phase cells. The rate of transport is lower in the nongrowing cells. Restoration of activity requires energy and protein synthesis as well as inducer.  相似文献   

14.
Flufenamate, a non-steroidal anti-inflammatory drug, is a powerful inhibitor of anion transport in the human erythrocyte (I50 = 6·10?7M). The concentration dependence of the binding to ghosts reveals two saturable components. [14C]Flufenamate binds with high affinity (Kd1 = 1.2·10?7M) to 8.5·105 sites per cell (the same value as the number of band 3 protein per cell); it also binds, with lower affinity (Kd2 = 10?4M) to a second set of sites (4.6·107 per cell). Pretreatment of cells with 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS), a specific inhibitor of anion transport, prevents [14C]flufenamate binding only to high affinity sites. These results suggest that high affinity sites are located on the band 3 protein involved in anion transport. Extracellular chymotrypsin and pronase at low concentration cleave the 95 kDa band 3 into 60 kDa and 35 kDa fragments without affecting either anion transport or [14C]flufenamate binding. Splitting by trypsin at the inner membrane surface of the 60 kDa chymotryptic fragment into 17 kDa transmembrane fragment and 40 kDa water-soluble fragment does not affect [14C]flufenamate binding. In contrast degradation at the outer membrane surface of the 35 kDa fragment by high concentration of pronase or papain decreases both anion transport capacity and number of high affinity binding sites for [14C]flufenamate. Thus it appears that 35 kDa peptide is necessary for both anion transport and binding of the inhibitors and that the binding site is located in the membrane-associated domain of the band 3 protein.  相似文献   

15.
We determine the kinetic parameters V and KT of lactose transport in Escherichia coli cells as a function of the electrical potential difference (Δψ) at pH 7.3 and ΔpH = 0. We report that transport occurs simultaneously via two components: a component which exhibits a high KT (larger than 10 mM) and whose contribution is independent of Δψ, a component which exhibits a low KT independent of Δψ (0.5 mM) but whose V increases drastically with increasing Δψ. We associate these components of lactose transport with facilitated diffusion and active transport, respectively. We analyze the dependence upon Δψ of KT and V of the active transport component in terms of a mathematical kinetic model developed by Geck and Heinz (Geck, P. and Heinz, E. (1976) Biochim. Biophys. Acta 443, 49–63). We show that within the framework of this model, the analysis of our data indicates that active transport of lactose takes place with a H+/lactose stoichiometry greater than 1, and that the lac carrier in the absence of bound solutes (lactose and proton(s)) is electrically neutral. On the other hand, our data relative to facilitated diffusion tend to indicate that lactose transport via this mechanism is accompanied by a H+/lactose stoichiometry smaller than that of active transport. We discuss various implications which result from the existence of H+/lactose stoichiometry different for active transport and facilitated diffusion.  相似文献   

16.
l-Carnitine uptake and exodus was studied in rat extensor digitorum longus muscle in vitro. A saturable transport process was observed, which had an apparent Km of 60 μM and V of 22 nmol/h per g tissue. Transport was inhibited by 2,4-dinitrophenol, sodium azide, anaerobiosis, ouabain, and sodium ion depletion. Analogs of l-carnitine containing a quarternary ammonium group were found to inhibit uptake (d-carnitine, Ki = 400 μM γ-butyrobetaine, Ki = 60 μ M, choline chloride, Ki = 14 mM), while those not containing this functional group (γ-aminobutyrate, d,l-β-hydroxybutyrate) had no significant effect at concentrations 100 times the apparent Km of l-carnitine. Carnitine exodus from rat extensor digitorum longus muscle consisted of two phases. The rapid initial phase was attributed to leakage of l-carnitine from damaged muscle fibers, as it proceeded at nearly the same rate at 0° and 37°C, and leveled off to a rate of near zero after 1 h of incubation in vitro. The quantitatively more important phase of exodus showed a latency of 1–2 h and then proceeded at a linear rate of 40–45 nmol/h per g tissue. The results of this study support the contention that l-carnitine is taken up by a carrier-mediated, active transport system in rat extensor digitorum longus muscle. Functionally, the transport system for uptake is distinct from the process by which carnitine is lost from this muscle.  相似文献   

17.
With the aid of direct microfluorimetric determination of marker organic anions (fluorescein and uranin) accumulated in the proximal tubules the influence of Na+ in the bath medium on the active transport of these anions was studied. Kinetic analysis of the rate dependence of organic acid active transport into tubules on their concentration in the bath medium with a constant Na+ concentration permitted to define values of apparent Km and V for uranin and fluorescein transport in the medium with different Na+ content. It was shown that a decrease of Na+ concentration in the medium increases Km and lowers the V/Km ratio with uncharged V. By varying the Na+ concentration in the medium with a constant concentration of the marker anion the KmNa+ and VNa+ values for fluorescein and uranin transport were determined. A KmNa+ value for fluorescein in twice as much that for uranin. The 1/Km value for uranin transport is a linear function of Na+ concentration, while for fluorescein transport it is a quadratic one. Therefore it is concluded that two Na+ from the medium participate in active transfer of one fluorescein anion whereas only one Na+ from the medium is required for active transfer of one uranin anion. The run out of fluorescein from tubules preloaded with this acid is sharply reinforced by the Na+ omission from the medium. Thus, active transport of organic acids in proximal tubules of frog kidney is Na+-dependent, and Na+ from the medium is likely to participate directly in formation of a transport complex. When Na+ is absent in the medium a carrier fulfils a facilitated diffusion only.  相似文献   

18.
The kinetic parameters of the sugar transport in avian erythrocytes were evaluated under aerobic and anaerobic conditions. In anaerobic cells, transport measurements with 3-O-[14C] methylglucose resulted in a set of similar dissociation-like constants. Thus the Michaelis constants of 3-O-[14C] methylglucose entry and exit, Kso and Ksi, were 8 and 7 mM, respectively. The equilibrium exchange constant, Bs, and the counterflow constant, Rs, were 9 and 11 mM, respectively. The activity constant for 3-O-methylglucose transport, Fs, defined as V/Km, was 4 ml/h per g. This set of kinetic constants was compatible with a symmetrical mobile-carrier model. In contrast, the Michaelis constant for glucose entry, Kgo, was 2 mM and less than the counterflow constant, Rg (8 mM). This result could be accounted for by slower movement of the glucose-carrier complex than the free carrier. The activity constant for glucose transport, Fg, was 5 ml/h perg.Under aerobic conditions, two of the dissociation-like constants (Ksi and Bs) for 3-O-methylglucose transport were significantly larger than those obtained in anaerobic cells, but the remaining two (Kso and Rs) remained unchanged. The values, for Kso, Ksi, Bs and Rs were 8, 26, 20 and 8 mM, respectively. The activity constant, Fs, decreased to 2 ml/h per g. These changes in kinetic constants were consistent with the hypothesis that anoxia accelerated sugar transport by releasing free carrier that was previously sequestered on the inside of the cell membrane.  相似文献   

19.
20.
The addition of cholate to the microsomes at 37.5°C resulted in a striking decrease in the apparent substrate dissociation constant (K′s) and its temperature dependency. The microsomal membranes depleted of 80% of the lipids preserved the temperature dependency of the Ks and exhibited breaks in the Van't Hoff plot at the characteristic temperature of the lipids phase transition. The results indicate that the cytochrome P-450 is considerably restrained from expressing its maximum substrate binding potential at physiological temperature. In addition, the results indicate that the majority of the lipids apparently do not play a significant role in imposing constraint on the substratecytochrome P-450 binding reaction and in the temperature dependency of the Ks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号