首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1987,105(4):1781-1787
Our goal was to determine the direction of force generation of the inner dynein arms in flagellar axonemes. We developed an efficient means of extracting the outer row of dynein arms in demembranated sperm tail axonemes, leaving the inner row of dynein arms structurally and functionally intact. Sperm tail axonemes depleted of outer arms beat at half the beat frequency of sperm tails with intact arms over a wide range of ATP concentrations. The isolated, outer arm-depleted axonemes were induced to undergo microtubule sliding in the presence of ATP and trypsin. Electron microscopic analysis of the relative direction of microtubule sliding (see Sale, W. S. and P. Satir, 1977, Proc. Natl. Acad. Sci. USA, 74:2045-2049) revealed that the doublet microtubule with the row of inner dynein arms, doublet N, always moved by sliding toward the proximal end of the axoneme relative to doublet N + 1. Therefore, the inner arms generate force such that doublet N pushes doublet N + 1 tipward. This is the same direction of microtubule sliding induced by ATP and trypsin in axonemes having both inner and outer dynein arms. The implications of this result for the mechanism of ciliary bending and utility in functional definition of cytoplasmic dyneins are discussed.  相似文献   

2.
To produce oscillatory bending movement in cilia and flagella, the activity of dynein arms must be regulated. The central-pair microtubules, located at the centre of the axoneme, are often thought to be involved in the regulation, but this has not been demonstrated definitively. In order to determine whether the central-pair apparatus are directly involved in the regulation of the dynein arm activity, we analyzed the movement of singlet microtubules that were brought into contact with dynein arms on bundles of doublets obtained by sliding disintegration of elastase-treated flagellar axonemes. An advantage of this new assay system was that we could distinguish the bundles that contained the central pair apparatus from those that did not, the former being clearly thicker than the latter. We found that microtubule sliding occurred along both the thinner and the thicker bundles, but its velocity differed between the two kinds of bundles in an ATP concentration dependent manner. At high ATP concentrations, such as 0.1 and 1 mM, the sliding velocity on the thinner bundles was significantly higher than that on the thicker bundles, while at lower ATP concentrations the sliding velocity did not change between the thinner and the thicker bundles. We observed similar bundle width-related differences in sliding velocity after removal of the outer arms. These results provide first evidence suggesting that the central pair and its associated structures may directly regulate the activity of the inner (and probably also the outer) arm dynein.  相似文献   

3.
The regulation of dynein activity to produce microtubule sliding in flagella has not been well understood. To gain more insight into the roles of ATP and ADP in the regulation, we examined the effects of fluorescent ATP analogues and fluorescent ADP analogues on the ATPase activity and motile activity of dynein. 21S dynein purified from the outer arms of sea urchin sperm flagella hydrolyzed BODIPY(R) FL ATP (FL-ATP) at 78% of the rate for ATP hydrolysis. FL-ATP at 0.1-1 mM, however, induced neither microtubule translocation on a dynein-coated glass surface nor sliding disintegration of elastase-treated axonemes. Direct observation of single molecules of the fluorescent analogues showed that both the ATP and ADP analogues were stably bound to dynein over several minutes (dissociation rates = 0.0038-0.0082/s). When microtubule translocation on 21S dynein was induced by ATP, the initial increase of the mean velocity was accelerated by preincubation of the dynein with ADP. Similar increase was also induced by the preincubation with the ADP analogues. Even after preincubation with ADP, FL-ATP did not induce sliding disintegration of elastase-treated axonemes. After preincubation with a nonhydrolyzable ATP analogue, AMPPNP (adenosine 5'-(beta:gamma-imido)triphosphate), however, FL-ATP induced sliding disintegration in approximately 10% of the axonemes. These results indicate that both noncatalytic ATP binding and stable ADP binding, in addition to ATP hydrolysis, are involved in the regulation of the chemo-mechanical transduction in axonemal dynein.  相似文献   

4.
Using sea urchin (Hemicentrotus pulcherimus) sperm flagella, ATP hydrolysis coupled to sliding movement of microtubules was investigated. Flagellar axonemes were pretreated with trypsin and the microtubules induced to slide by addition of ATP (50-1,000 microM) at 0-20 degrees C. Motion-dependent hydrolysis of ATP was observed immediately after the addition of ATP, the rate of which was higher than that of steady state hydrolysis in axonemes without trypsin-treatment, or after complete disintegration. The rate of hydrolysis of ATP divided by the sliding velocity of microtubules reflects the ATP consumption necessary per unit distance of microtubule sliding. This parameter varied according to the experimental conditions in that it increased when the ATP concentration or temperature was decreased. Our results suggest that there is not a strict stoichiometric relationship between ATP hydrolysis and sliding distance in the dynein-tubulin system, indicating that the mechanochemical coupling is different from that in beating axonemes.  相似文献   

5.
The inner row of dynein arms contains three dynein subforms. Each is distinct in composition and location in flagellar axonemes. To begin investigating the specificity of inner dynein arm assembly, we assessed the capability of isolated inner arm dynein subforms to rebind to their appropriate positions on axonemal doublet microtubules by recombining them with either mutant or extracted axonemes missing some or all dyneins. Densitometry of Coomassie blue-stained polyacrylamide gels revealed that for each inner dynein arm subform, binding to axonemes was saturable and stoichiometric. Using structural markers of position and polarity, electron microscopy confirmed that subforms bound to the correct inner arm position. Inner arms did not bind to outer arm or inappropriate inner arm positions despite the availability of sites. These and previous observations implicate specialized tubulin isoforms or nontubulin proteins in designation of specific inner dynein arm binding sites. Further, microtubule sliding velocities were restored to dynein-depleted axonemes upon rebinding of the missing inner arm subtypes as evaluated by an ATP-induced microtubule sliding disintegration assay. Therefore, not only were the inner arm dynein subforms able to identify and bind to the correct location on doublet microtubules but they bound in a functionally active conformation.  相似文献   

6.
《The Journal of cell biology》1994,127(6):1683-1692
Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axonemes from Chlamydomonas flagella. First, the velocity of dynein-driven microtubule sliding in spoke-deficient mutants (pf14, pf17) was increased to wild-type level after treatment with the kinase inhibitors HA-1004 or H-7 or by the specific peptide inhibitors of cAMP-dependent protein kinase (cAPK) PKI(6-22)amide or N alpha-acetyl-PKI(6-22)amide. In particular, the peptide inhibitors of cAPK were very potent, stimulating half-maximal velocity at 12-15 nM. In contrast, kinase inhibitors did not affect microtubule sliding in axonemes from wild- type cells. PKI treatment of axonemes from a double mutant missing both the radial spokes and the outer row of dynein arms (pf14pf28) also increased microtubule sliding to control (pf28) velocity. Second, addition of the type-II regulatory subunit of cAPK (RII) to spoke- deficient axonemes increased microtubule sliding to wild-type velocity. Addition of 10 microM cAMP to spokeless axonemes, reconstituted with RII, reversed the effect of RII. Third, our previous studies revealed that inner dynein arms from the Chlamydomonas mutants pf28 or pf14pf28 could be extracted in high salt buffer and subsequently reconstituted onto extracted axonemes restoring original microtubule sliding activity. Inner arm dyneins isolated from PKI-treated axonemes (mutant strain pf14pf28) generated fast microtubule sliding velocities when reconstituted onto both PKI-treated or control axonemes. In contrast, dynein from control axonemes generated slow microtubule sliding velocities on either PKI-treated or control axonemes. Together, the data indicate that an endogenous axonemal cAPK-type protein kinase inhibits dynein-driven microtubule sliding in spoke-deficient axonemes. The kinase is likely to reside in close association with its substrate(s), and the substrate targets are not exclusively localized to the central pair, radial spokes, dynein regulatory complex, or outer dynein arms. The results are consistent with a model in which the radial spokes regulate dynein activity through suppression of a cAMP- mediated mechanism.  相似文献   

7.
To help understand the functional properties of inner and outer dynein arms in axonemal motility, sliding velocities of outer doublets were measured in disintegrating axonemes of Chlamydomonas mutants lacking either of the arms. Measurements under improved solution conditions yielded significantly higher sliding velocities than those observed in a previous study [Okagaki and Kamiya, 1986, J. Cell Biol. 103:1895-1902]. As in the previous study, it was found that the velocities in axonemes of wild type (wt) and a mutant (oda1) missing the outer arm differ greatly: 18.5 +/- 4.1 microns/sec for wt and 4.4 +/- 2.3 microns/sec for oda1 at 0.5 mM Mg-ATP. In contrast, axonemes of two types of mutants (ida2 and ida4) that lacked different sets of two inner-arm heavy chains displayed velocities almost identical with the wild-type velocity. Moreover, axonemes of a non-motile double mutant ida2 X ida4 underwent sliding disintegration at a similar high velocity, although less frequently than in axonemes of single mutants. These observations support the hypothesis that the inner and outer dynein arms in disintegrating axonemes drive microtubules at different speeds and it is the faster outer arm that determines the overall speed when both arms are present. The inner arm may be important for the initiation of sliding. The axoneme thus appears to be equipped with two (or more) types of motors with different intrinsic speeds.  相似文献   

8.
To clarify the functional differentiation between the outer and inner dynein arms in eukaryotic flagella, their mechanochemical properties were assessed by measuring the sliding velocities of outer-doublet microtubules in disintegrating axonemes of Chlamydomonas, using wild-type and mutant strains that lack either of the arms. A special procedure was developed to induce sliding disintegration in Chlamydomonas axonemes which is difficult to achieve by ordinary methods. The flagella were first fragmented by sonication, demembranated by Nonidet P-40, and then perfused under a microscope with Mg-ATP and nagarse, a bacterial protease with broad substrate specificity. The sliding velocity varied with the Mg-ATP concentration in a Michaelis-Menten manner in the axonemes from the wild type and a motile mutant lacking the outer dynein arm (oda38). The maximal sliding velocity and apparent Michaelis constant for Mg-ATP were measured to be 13.2 +/- 1.0 micron/s and 158 +/- 36 microM for the wild type and 2.0 +/- 0.1 micron/s and 64 +/- 18 microM for oda38. These maximal sliding velocities were significantly smaller than those estimated in beating axonemes; the reason is not clear. The velocities in the presence or absence of 10(-5) M Ca2+ did not differ noticeably. The axonemes of nonmotile mutants lacking either outer arms (pf13A, pf22) or inner arms (pf23) were examined for their ability to undergo sliding disintegration in the presence of 0.1 mM Mg-ATP. Whereas pf13A axonemes underwent normal sliding disintegration, the other two species displayed it only very poorly. The poor ability of pf23 axonemes to undergo sliding disintegration raises the possibility that the outer dynein arm cannot function well in the absence of the inner arm.  相似文献   

9.
The movement of eukaryotic flagella is characterized by its oscillatory nature. In sea urchin sperm, for example, planar bends are formed in alternating directions at the base of the flagellum and travel toward the tip as continuous waves. The bending is caused by the orchestrated activity of dynein arms to induce patterned sliding between doublet microtubules of the flagellar axoneme. Although the mechanism regulating the dynein activity is unknown, previous studies have suggested that the flagellar bending itself is important in the feedback mechanism responsible for the oscillatory bending. If so, experimentally bending the microtubules would be expected to affect the sliding activity of dynein. Here we report on experiments with bundles of doublets obtained by inducing sliding in elastase-treated axonemes. Our results show that bending not only "switches" the dynein activity on and off but also affects the microtubule sliding velocity, thus supporting the idea that bending is involved in the self-regulatory mechanism underlying flagellar oscillation.  相似文献   

10.
The effect of vanadate on the ATP-induced disruption of trypsin-treated axonemes and the ATP-induced straightening of rigor wave preparations of sea urchin sperm was investigated. Addition of ATP to a suspension of trypsin-treated axonemes results in a rapid decrease in turbidity (optical density measured at 350 nm) concomitant with the disruption of the axonemes by sliding between microtubules to form tangles of connected doublet microtubules (Summers and Gibbons, 1971; Sale and Satir, 1977). For axonemes digested to approximately 93 percent of their initial turbidity, 5 {muM} vanadate completely inhibits the ATP-induced decrease in turbidity and the axonemes maintain their structural integrity. However, with axonemes digested to approximately 80 percent of their initial turbidity, vanadate fails to inhibit the ATP-induced decrease in turbidity and the ATP-induced structural disruption of axonemes, even when the vanadate concentration is raised as high as 100 μm. For such axonemes digested to 80 percent of their initial turbidity, the form of ATP-induced structural changes, in the presence of 25 μM vanadate, was observed by dark-field light microscopy and revealed that the axonemes become disrupted into curved, isolated doublet microtubules, small groups of doublet microtubules, and “banana peel” structures in which tubules have peeled back from the axoneme. Addition of 5 μM ATP to rigor wave sperm, which were prepared by abrupt removal of ATP from reactivated sperm, causes straightening of the rigor waves within 1 min, and addition of more than 10 μM ATP causes resumption of flagellar beating. Addition of 40 μM vanadate to the rigor wave sperm does not inhibit straightening of the rigor waves of 2 μM-1 mM ATP, although oscillatory beating is completely inhibited. These results suggest that vanadate inhibits the mechanochemical cycle of dyein at a step subsequent to the MgATP(2-)-induced release of the bridged dynein arms.  相似文献   

11.
Flagellar axonemes isolated from sea urchin sperm were digested with trypsin for various time periods. The course of digestion was monitored turbidimetrically and was found to take two different courses depending on the presence or absence of ATP in the digestion mixture. It was found that ATP induced active disintegration of the axonemes after slight digestion. Samples of the digested axonemes were examined with the electron microscope to determine the effects of trypsin digestion on the substructures of the axonemes. The rate at which trypsin sensitized the axonemes to ATP paralleled the rate at which it damaged the radial spokes and the nexin links, while the dynein arms were removed much more slowly. The results suggest that inactive dynein arms form cross bridges between the adjacent doublet tubules in digested axonemes, and that when activated by the addition of ATP, they induce an active shearing force between adjacent doublets. The radial spokes and the nexin links are not directly involved in the production of mechanical force, but they may participate in regulating the sliding between tubules to produce a propagated bending wave.  相似文献   

12.
With the rapid-freeze, deep-etch replica technique, the structural conformations of outer dynein arms in demembranated cilia from Tetrahymena were analyzed under two different conditions, i.e., in the absence of ATP and in the presence of ATP and vanadate. In the absence of ATP, the lateral view of axonemes was characterized by the egg- shaped outer dynein arms, which showed a slightly baseward tilt with a mean inclination of 11.1 degrees +/- 3.4 degrees SD from the perpendicular to the doublet microtubules. On the other hand, in the presence of 1 mM ATP and 100 microM vanadate, the outer arms were extended and slender and showed an increased baseward tilt with a mean inclination of 31.6 degrees +/- 4.9 degrees SD. In ATP-activated axonemes, these two types of arms coexisted, each type occurring in groups along one row of outer arms. These findings strongly suggest that the interdoublet sliding is caused by dynamic structural changes of dynein arms that follow the hydrolysis of ATP.  相似文献   

13.
In order to clarify the role of the inner arms of the axoneme in sperm flagellar movement, we prepared an ATPase fraction (12S) from the outer arm-depleted axonemes of sea urchin sperm flagella. When both arm-depleted axonemes were incubated with the 12S ATPase, they exhibited the sliding disintegration of outer doublet microtubules. Electron microscopy revealed that the ATPase rebound to the original inner arm sites of the axoneme. Therefore, it is quite likely that the 12S ATPase is one of the components of the inner arms. We referred to it as "inner arm dynein".  相似文献   

14.
A physical model of microtubule sliding in ciliary axonemes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Ciliary movement is caused by coordinated sliding interactions between the peripheral doublet microtubules of the axoneme. In demembranated organelles treated with trypsin and ATP, this sliding can be visualized during progressive disintegration. In this paper, microtubule sliding behavior resulting from various patterns of dynein arm activity and elastic link breakage is determined using a simplified model of the axoneme. The model consists of a cylindrical array of microtubules joined, initially, by elastic links, with the possibility of dynein arm interaction between microtubules. If no elastic links are broken, sliding can produce stable distortion of the model, which finds application to straight sections of a motile cilium. If some elastic links break, the model predicts a variety of sliding patterns, some of which match, qualitatively, the observed disintegration behavior of real axonemes. Splitting of the axoneme is most likely to occur between two doublets N and N + 1 when either the arms on doublet N + 1 are active and arms on doublet N are inactive or arms on doublet N - 1 are active while arms on doublet N are inactive. The analysis suggests further experimental studies which, in conjunction with the model, will lead to a more detailed understanding of the sliding mechanism, and will allow the mechanical properties of some axonemal components to be evaluated.  相似文献   

15.
To investigate the role of axonemal components in the mechanics and regulation of flagellar movement, we have generated a series of monoclonal antibodies (mAb) against sea urchin (Lytechinus pictus) sperm axonemal proteins, selected for their ability to inhibit the motility of demembranated sperm models. One of these antibodies, mAb D1, recognizes an antigen of 142 kDa on blots of sea urchin axonemal proteins and of purified outer arm dynein, suggesting that it acts by binding to the heaviest intermediate chain (IC1) of the dynein arm. mAb D1 blocks the motility of demembranated sea urchin spermatozoa by modifying the beating amplitude and shear angle without affecting the ATPase activity of purified dynein or of demembranated immotile spermatozoa. Furthermore, mAb D1 had only a marginal effect on the velocity of sliding microtubules in trypsin-treated axonemes. This antibody was also capable of inhibiting the motility of flagella of Oxyrrhis marina, a primitive dinoflagellate, and those of demembranated human spermatozoa. Localization of the antigen recognized by mAb D1 by immunofluorescence reveals its presence on the axonemes of flagella from sea urchin spermatozoa and O. marina but not on the cortical microtubule network of the dinoflagellate. These results are consistent with a dynamic role for the dynein intermediate chain IC1 in the bending and/or wave propagation of flagellar axonemes.  相似文献   

16.
Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N + 1) tipward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. The 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2+, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

17.
ABSTRACT Dynein arms and isolated dynein from Paramecium tetraurelia ciliary axonemes are comparable in structure, direction of force generation, and microtubule translocation ability to other dyneins. In situ arms have dimensions and substructure similar to those of Tetrahymena. Based on spoke arrangement in intact axonemes, arms translocate axonemal microtubules in sliding such that active dynein arms are (-) end directed motors and the doublet to which the body and cape of the arms binds (N) translocates the adjacent doublet (N+1) upward. After salt extraction, based on ATPase activity, paramecium dynein is found as a 22S and a 14S species. the 22S dynein is a three-headed molecule that has unfolded from the in situ dimensions; the 14S dynein is single headed. Both dyneins can be photocleaved by UV light (350 nm) in the presence of Mg2-, ATP and vanadate; the photocleavage pattern of 22S dynein differs from that seen with Tetrahymena. Both isolated dyneins translocate taxol-stabilized, bovine brain microtubules in vitro. Under standard conditions, 22S dynein, like comparable dyneins from other organisms, translocates at velocities that are about three times faster than 14S dynein.  相似文献   

18.
When 21S dynein ATPase [EC 3.6.1.3] from sea urchin sperm flagellar axonemes was mixed with the salt-extracted axonemes, the ATPase activity was much higher than the sum of ATPase activities in the two fractions, as reported previously (Gibbons, I.R. & Fronk, E. (1979) J. Biol. Chem. 254, 187-196). This high ATPase level was for the first time demonstrated to be due to the activation of the 21S dynein ATPase activity by the axonemes. The mode of the activation was studied to get an insight into the mechanism of dynein-microtubule interaction. The salt-extracted axonemes caused a 7- to 8-fold activation of the 21S dynein ATPase activity at an axoneme : dynein weight ratio of about 14 : 1. The activation was maximal at a low ionic strength (no KCl) at pH 7.9-8.3. Under these conditions, 21S dynein rebound to the salt-extracted axonemes. The maximal binding ratio of 21S dynein to the axonemes was the same as that observed in the maximal activation of 21S dynein ATPase. The sliding between the outer doublet microtubules in the trypsin-treated 21S dynein-rebound axonemes took place upon the addition of 0.05-0.1 mM ATP in the absence of KCl. During the sliding, the rate of ATP hydrolysis was at the same level as that of the 21S dynein activated by the salt-extracted axonemes. However, it decreased to the level of 21S dynein alone after the sliding. These results suggested that an interaction of the axoneme-rebound 21S dynein with B-subfibers of the adjacent outer doublet microtubules in the axoneme causes the activation of the ATPase activity.  相似文献   

19.
The binding properties of dynein arms to the A- and B-tubules of outer doublets of cilia from Tetrahymena pyriformis were examined, with the following results: 1. When 30s dynein purified from Tetrahymena cilia was added to doublets deficient in dynein arms, it bound to both A- and B-tubules almost equally and formed arms along the edges. The overall length of arms bound to the A-tubule was 22 +/- 3 nm, and that of arms bound to the B-tubule was 24 +/- 3 nm. Each arm bound to the A- and B-tubules was pointed toward the base at angles of 55 degrees +/- 7 degrees and 48 degrees +/- 7 degrees, respectively. In the presence of sufficient amounts of dynein, the arms along the A- and B-tubules were located at intervals of 22.8 +/- 1.5 nm and 22.5 +/- 1.7 nm, respectively. 2. On adding ATP, only the arms bound to the B-tubule were dissociated from the doublet decorated with arms on both sides. The dissociated arms rebound themselves to the B-tubule after hydrolysis of the ATP. When several doublets decorated with arms along both A- and B-tubules were arrayed side by side, the interdoublet spacing increased from 14 +/- 2 nm to 17 +/- 2 nm on addition of ATP. 3. The turbidity of a suspension of trypsin [EC 3.4.21.4]-treated axonemes decreased rapidly on addition of ATP, then recovered partially. Observations by dark-field microscopy and electron microscopy showed that the doublets which had slid out from the axonemes on ATP addition formed large aggregates after hydrolysis of the ATP. The dynein arms were also solubilized from the axonemes upon addition of ATP, and rebound themselves to the B-tubule after hydrolysis of the added ATP. 4. The double-reciprocal plot for the ATPase [EC 3.6.1.3] activity of the trypsin-treated axonemes against ATP concentration was composed of two straight lines, from which the Km values were estimated to be 1.0 and 12.7 micrometer. The dependence of the decrease in turbidity of the axonemal suspension on ATP concentration indicated that the binding of ATP to sites with an apparent dissociation constant of 1 micrometer induced dissociation of the arms from the B-tubule.  相似文献   

20.
ABSTRACT. Tetrahymena thermophila mutants homozygous for the oad mutation become nonmotile when grown at the restrictive temperature of 39° C. Axonemes isolated from nonmotile oad mutants ( oad 39° C axonemes) lack approximately 90% of their outer dynein arms and are deficient in 22S dynein. Here we report that oad 39° C axonemes contain 40% of the 22S dynein heavy chains that wild-type axonemes contain and that oad axonemes do not undergo ATP-induced microtubule sliding in vitro. Wild-type 22S dynein will bind to the outer arm position in oad axonemes and restore ATP-induced microtubule sliding in those axonemes. Unlike wild-type 22S dynein, oad 22S dynein does not bind to the outer arm position in oad axonemes. These data indicate that the oad mutation affects some component of the outer arm dynein itself rather than the outer arm dynein binding site. These data also indicate that oad axonemes can be used to assay outer dynein arm function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号