首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Kaposi's sarcoma (KS) arises more frequently in homosexual and bisexual men than in other groups of HIV-1 infected individuals. Clinico-epidemiologic data indicate that homosexuals often are infected with multiple microbial agents and/or subjected to other antigenic stimuli, preceding or accompanying HIV-1 infection. Signs of immune activation, in fact, frequently have been detected in these individuals, and the onset of KS can precede any sign of immunodeficiency. These data have suggested that products from activated immune cells may affect the development of AIDS-KS. Here we report that conditioned media from activated or dysregulated T cells contain a variety of cytokines that promote the growth of spindle cells derived from KS lesions of AIDS patients (AIDS-KS cells) and induce normal vascular cells, potential cell progenitors of the AIDS-KS cells, to acquire features of the KS cell phenotype ("spindle" cell morphology and growth responsiveness to the mitogenic effect of extracellular HIV-1 Tat protein). The same conditioned media or cytokines promote HIV-1 gene expression and rescue defective HIV-1 proviruses, interrupting HIV-1 latency and increasing Tat production. The cellular and viral effects of cytokines are increased in an additive or synergistic manner by picomolar concentrations of extracellular Tat. These data suggest that cytokines produced by activated immune cells cooperate with HIV-1 infection in AIDS-KS pathogenesis.  相似文献   

2.
The Tat protein of HIV-1, a transactivator of viral gene expression, is released by acutely infected T cells and, in this form, exerts angiogenic activities. These have linked the protein to the pathogenesis of Kaposi's sarcoma (KS), a vascular tumor frequent and aggressive in HIV-1-infected individuals (AIDS-KS). In this study, we show that a combination of the same inflammatory cytokines increased in KS lesions, namely IL-1 beta, TNF-alpha, and IFN-gamma, synergizes with Tat to promote in nude mice the development of angioproliferative KS-like lesions that are not observed with each factor alone. Inflammatory cytokines induce the tissue expression of both basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), two angiogenic molecules highly produced in primary KS lesions. However, bFGF, but not VEGF, synergizes with Tat in vivo and induces endothelial cells to migrate, to adhere, and to grow in response to Tat in vitro. Tat angiogenic effects correlate with the expression of the alpha v beta 3 integrin that is induced by bFGF and binds the arginine-glycine-aspartic acid (RGD) region of Tat. In contrast, no correlation is observed with the expression of alpha v beta 5, which is promoted by VEGF and binds Tat basic region. Finally, KS lesion formation induced by bFGF and Tat in nude mice is blocked by antagonists of RGD-binding integrins. Because alpha v beta 3 is an RGD-binding integrin that is highly expressed in primary KS lesions, where it colocalizes with extracellular Tat on vessels and spindle cells, these results suggest that alpha v beta 3 competitors may represent a new strategy for the treatment of AIDS-KS.  相似文献   

3.
Previous studies indicated that the Tat protein of human immunodeficiency virus type-1 (HIV-1) is a progression factor for Kaposi's sarcoma (KS). Specifically, extracellular Tat cooperates with basic fibroblast growth factor (bFGF) in promoting KS and endothelial cell growth and locomotion and in inducing KS-like lesions in vivo. Here we show that Tat and bFGF combined increase matrix-metalloproteinase-2 (MMP-2) secretion and activation in endothelial cells in an additive/synergistic manner. These effects are due to the activation of the membrane-type-1-matrix-metalloproteinase and to the induction of the membrane-bound tissue inhibitor of metalloproteinase-2 (TIMP-2) by Tat and bFGF combined, but also to Tat-mediated inhibition of both basal or bFGF-induced TIMP-1 and -2 secretion. Consistent with this, Tat and bFGF promote vascular permeability and edema in vivo that are blocked by a synthetic MMP inhibitor. Finally, high MMP-2 expression is detected in acquired immunodeficiency virus syndrome (AIDS)-KS lesions, and increased levels of MMP-2 are found in plasma from patients with AIDS-KS compared with HIV-uninfected individuals with classic KS, indicating that these mechanisms are operative in AIDS-KS. This suggests a novel pathway by which Tat can increase KS aggressiveness or induce vasculopathy in the setting of HIV-1 infection.  相似文献   

4.
5.
Human immunodeficiency virus (HIV)-1 Tat released from HIV-1-infected monocytes is believed to enter other cells via an integrin-facilitated pathway, resulting in altered gene expression. Indeed, exogenous Tat protein can increase cell adhesion molecule gene expression in human endothelial cells. Signaling pathways initiated by Tat in endothelial cells are not known. We evaluated the ability of endogenous tat to stimulate monocyte adhesion via activation of nuclear factor-kappaB (NF-kappaB) within human umbilical vein endothelial cells. Transfection with pcTat, but not control vector DNA, increased NF-kappaB binding activity, NF-kappaB luciferase reporter activity, and monocyte adhesion. pcTat also increased kappaB-dependent HIV-1-LTR-CAT reporter activity 28-fold compared with a 3-fold increase produced by transfection with an equivalent amount of pcTax (from human leukemia virus). The pcTat-induced increase in pNF-kappaB-Luc activity and monocyte adhesion to endothelial cells was blocked by cotransfection with dominant-negative mutant IkappaBalpha and by incubation with 10 mM aspirin. We conclude that monocyte adhesion to human endothelial cells stimulated by pcTat is mediated via an NF-kappaB-dependent mechanism. Furthermore, inhibition studies using aspirin suggest that pcTat-stimulated NF-kappaB activation and monocyte adhesion occur via a redox-sensitive mechanism.  相似文献   

6.
We have here investigated the effect of TNF-related apoptosis-inducing ligand (TRAIL), a new member of the TNF cytokine superfamily, on the survival of Jurkat lymphoblastoid cell lines stably transfected with plasmids expressing the wild-type or mutated (Cys22) human immunodeficiency virus type 1 (HIV-1) tat gene. Jurkat cells transfected with wild-type tat were resistant to TRAIL-mediated apoptosis, while Jurkat cells mock-transfected with the control plasmid or with a mutated nonfunctional tat cDNA were highly susceptible to TRAIL-mediated apoptosis. Also, pretreatment with low concentrations (10-100 ng/ml) of extracellular synthetic Tat protein partially protected Jurkat cells from TRAIL-mediated apoptosis. Taken together, these results demonstrated that endogenously expressed tat and, to a lesser extent, extracellular Tat block TRAIL-mediated apoptosis. Since it has been shown that primary lymphoid T cells purified from HIV-1-infected individuals are more susceptible than those purified from normal individuals to TRAIL-mediated apoptosis, our findings underscore a potentially important role of Tat in protecting HIV-1-infected cells from TRAIL-mediated apoptosis.  相似文献   

7.
Angiogenic switch marks the beginning of tumor’s strategy to acquire independent blood supply. In some subtypes of non-Hodgkin’s lymphomas, higher local vascular endothelial growth factor (VEGF) expression correlates with increased microvessel density. However, this local VEGF expression is higher only in tumors with elevated expression of the receptors of the growth factor, suggesting an autocrine growth-promoting feedback loop. Several studies have indicated that VEGF receptors are also targeted by Tat protein from the HIV-1-infected cells. Given the similarity of the basic region of Tat to the angiogenic factors (basic fibroblast growth factor, VEGF), Tat mimics these proteins and binds to their receptors. We evaluated the role of HIV-1 Tat in regulating the level of VEGF expression and microvessel density in the AIDS-related diffuse large B-cell (DLBCL) and Burkitt lymphomas (BL). By luciferase assay, we showed that VEGF promoter activity was downregulated in vitro in cells transfected with Tat. Reduced VEGF protein expression in primary HIV-1 positive BL and DLBCL, compared to the negative cases, supported the findings of promoter downregulation from the cell lines. Microvascular density assessed by CD34 expression was, however, higher in HIV-1 positive than in HIV-1 negative tumors. These results suggest that Tat has a wider angiogenic role, besides the regulation of VEGF expression. Thus, targeting Tat protein itself and stabilizing transient silencing of VEGF expression or use of monoclonal antibodies against their receptors in the AIDS-associated tumors will open a window for future explorable pathways in the management of angiogenic phenotypes in the AIDS-associated non-Hodgkin’s lymphomas.  相似文献   

8.
The hematopoietic compartments act as long-term reservoirs for human immunodeficiency virus type-1 (HIV-1). Although hematopoietic progenitor cells (HPCs) are rarely infectable, HPCs committed to the megakaryocytic lineage can be infected and support a productive infection by both the X4 and R5 strains of HIV-1. Indeed, in contrast to the CD34+ progenitors, the lineage-committed HPCs express high levels of the HIV-1 co-receptors, CXCR4 and CCR5. The HIV-1 transactivator (Tat) protein has been shown to alter co-receptor expression in T lymphocytes and macrophages. We hypothesized that Tat may regulate co-receptor expression in lineage-specific HPCs as well. We have monitored the effects of Tat protein on co-receptor expression and on lineage-specific differentiation, using the HPC cell line, K562. Butyric acid (BA)-induced erythroid differentiation in K562 cells was suppressed by 1-100 ng/ml of Tat, as evident from a 70-80% decrease in hemoglobin (Hb) production and a 10-30-fold decrease in glycophorin-A expression. However, Tat treatment enhanced phorbol myristate acetate (PMA)-induced megakaryocytic differentiation, as evident from a 180-210% increase in 3H-serotonin uptake and a 5-12-fold increase in CD61 expression. Tat did not significantly alter co-receptor expression in erythroid cells. However, Tat co-treatment profoundly effected both CXCR4 and CCR5 gene expression and protein levels in megakaryocytic cells. In PMA-stimulated cells, Tat increased CXCR4 and decreased in CCR5 expression, this was potentiated in cells chronically exposed to Tat. In conclusion, Tat protein suppresses erythroid and facilitates megakaryocytic differentiation of K562 cells. In megakaryocytic cells, Tat differentially effected CXCR4 and CCR5 expression. Because megakaryocytes may play a crucial role in HIV-1 infectivity in viral reservoirs, our findings implicate a role for Tat protein in dictating co-receptor usage in lineage-committed HPCs.  相似文献   

9.
Tat 蛋白是HIV-1 编码的反式转录激活因子,其主要功能是反式激活HIV-1病毒基因组转录的起始和延伸,启动病毒复制.近年来研究发现,Tat 蛋白在HIV-1感染所引起的严重中枢神经系统(CNS)并发症--艾滋病脑病中起重要作用,是艾滋病脑病发生与发展的重要致病因子.本文就HIV-1 Tat蛋白在艾滋病脑病中的研究进展作一综述.  相似文献   

10.
11.
A eukaryotic vector-host cell system is described where the additive transactivating effects of HIV-1 tat and adenovirus E1A on HIV-1 long terminal repeat (LTR) are exploited to increase expression of exogenous cDNAs. Human 143B and 293 cells, the latter constitutively producing E1A, were used as host cell lines. The bacterial gene chloramphenicol acetyltransferase (CAT) and the hepatitis B surface antigen (HBs-Ag) gene were employed as reporter genes inserted in pRPneoU3R, an episomal vector containing BK virus replication origin and early region, where cDNAs are expressed under control of HIV-1 LTR. The 293 cells were transformed by tat expression vectors to constitutively express tat. Stable cell clones of 293tat cells, constitutively expressing CAT after transformation with pRPneoU3R-CAT, show a CAT activity 600-fold higher than normal 293 transformed cells. CAT expression obtained in normal 293 cells can be transiently increased 10-fold by transfection by vectors expressing tat. The 293tat cells transformed by pRPneoU3R-HBs, an episomal vector expressing HBs-Ag from HIV LTR, yielded stable cell clones secreting HBs-Ag in the culture medium at a concentration up to 744 ng/ml or 44 ng/10(6) cells/24 h, 48-fold more than normal 293 cells. The use of this system for constitutive or inducible expression of sequences under control of HIV-1 LTR is discussed in view of possible applications for diagnostic, vaccinal and therapeutic purposes.  相似文献   

12.
13.
14.
Tat protein, a trans-activating factor of the human immunodeficiency virus type 1, acts also as an extracellular molecule modulating gene expression, cell survival, growth, transformation, and angiogenesis. Here we demonstrate that human thrombospondin-1 (TSP), a plasma glycoprotein and constituent of the extracellular matrix, binds to glutathione-S-transferase (GST)-Tat protein but not to GST. Scatchard plot analysis of the binding of free GST-Tat to immobilized TSP reveals a high-affinity interaction (Kd equal to 25 nM). Accordingly, TSP inhibits cell internalization and HIV-1 LTR trans-activating activity of extracellular Tat in HL3T1 cells with ID50 equal to 10-30 nM. Also, TSP inhibits cell interaction and mitogenic activity of extracellular Tat in T53 Tat-less cells. TSP is instead ineffective when administered after the interaction of Tat with cell surface heparan-sulfate proteoglycans has occurred, in keeping with its ability to prevent but not disrupt Tat/heparin interaction in vitro. Finally, TSP inhibits the autocrine loop of stimulation exerted by endogenous Tat in parental T53 cells. Accordingly, TSP overexpression inhibits cell proliferation, angiogenic activity, and tumorigenic capacity of stable T53 transfectants. Our data demonstrate the ability of TSP to bind to Tat protein and to affect its LTR trans-activating, mitogenic, angiogenic, and tumorigenic activity. These findings suggest that TSP may be implicated in the progression of AIDS and in AIDS-associated pathologies by modulating the bioavailability and biological activity of extracellular Tat.  相似文献   

15.
S Israel  A Honigman 《Gene》1991,104(2):139-145
An in-situ assay for monitoring regulated gene expression in continuously growing mammalian cells is described. This technique can be used for the detection of the transactivator (Tat) protein in human immunodeficiency virus(HIV)-infected cells. Human kidney cells 293, harboring the luc gene, and fused to the HIV-1 long terminal repeat, were isolated and served as tester cells. Tat is supplied by transfection with a tat-carrying plasmid, or alternatively by addition of Tat-containing cell extracts, made from virus-infected or plasmid-transfected cells. Light emitted from the tester cells is recorded on film continuously, or by a photo sensor. Transactivation by HIV Tat results in a pronounced increase in light emission from the tester cells (up to 3000-fold). This assay, which detects HIV-specific gene products, may be used as a diagnostic tool for the detection of active HIV present in peripheral blood.  相似文献   

16.
Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat   总被引:5,自引:0,他引:5  
HIV-1 Tat protein, released from HIV-infected cells, may act as a pleiotropic heparin-binding growth factor. From this observation, extracellular Tat has been implicated in the pathogenesis of AIDS and of AIDS-associated pathologies. Here we demonstrate that the heparin analog pentosan polysulfate (PPS) inhibits the interaction of glutathione S-transferase (GST)-Tat protein with heparin immobilized to a BIAcore sensor chip. Competition experiments showed that Tat-PPS interaction occurs with high affinity (K(d) = 9.0 nm). Also, GST.Tat prevents the binding of [(3)H]heparin to GST.Tat immobilized to glutathione-agarose beads. In vitro, PPS inhibits GST.Tat internalization and, consequently, HIV-1 long terminal repeat transactivation in HL3T1 cells. Also, PPS inhibits cell surface interaction and mitogenic activity of GST.Tat in murine adenocarcinoma T53 Tat-less cells. In all assays, PPS exerts its Tat antagonist activity with an ID(50) equal to approximately 1.0 nm. In vivo, PPS inhibits the neovascularization induced by GST.Tat or by Tat-overexpressing T53 cells in the chick embryo chorioallantoic membrane. In conclusion, PPS binds Tat protein and inhibits its cell surface interaction, internalization, and biological activity in vitro and in vivo. PPS may represent a prototypic molecule for the development of novel Tat antagonists with therapeutic implications in AIDS and AIDS-associated pathologies, including Kaposi's sarcoma.  相似文献   

17.
Tat is required for efficient HIV-1 reverse transcription.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

18.
Continuous high-titer HIV-1 vector production   总被引:14,自引:0,他引:14  
Human immunodeficiency virus type 1 (HIV-1)-based vectors are currently made by transient transfection, or using packaging cell lines in which expression of HIV-1 Gag and Pol proteins is induced. Continuous vector production by cells in which HIV-1 Gag-Pol is stably expressed would allow rapid and reproducible generation of large vector batches. However, attempts to make stable HIV-1 packaging cells by transfection of plasmids encoding HIV-1 Gag-Pol have resulted in cells which secrete only low levels of p24 antigen (20-80 ng/ml), possibly because of the cytotoxicity of HIV-1 protease. Infection of cells with HIV-1 can result in stable virus production; cell clones that produce up to 1,000 ng/ml secreted p24 antigen have been described. Here we report that expression of HIV-1 Gag-Pol by a murine leukemia virus (MLV) vector allows constitutive, long-term, high-level (up to 850 ng/ml p24) expression of HIV-1 Gag. Stable packaging cells were constructed using codon-optimized HIV-1 Gag-Pol and envelope proteins of gammaretroviruses; these producer cells could make up to 10(7) 293T infectious units (i.u.)/ml (20 293T i.u./cell/day) for at least three months in culture.  相似文献   

19.
Immature dendritic cells are among the first cells infected by retroviruses after mucosal exposure. We explored the effects of human immunodeficiency virus-1 (HIV-1) and its Tat transactivator on these primary antigen-presenting cells using DNA microarray analysis and functional assays. We found that HIV-1 infection or Tat expression induces interferon (IFN)-responsive gene expression in immature human dendritic cells without inducing maturation. Among the induced gene products are chemokines that recruit activated T cells and macrophages, the ultimate target cells for the virus. Dendritic cells in the lymph nodes of macaques infected with simian immunodeficiency virus (SIV) have elevated levels of monocyte chemoattractant protein 2 (MCP-2), demonstrating that chemokine induction also occurs during retroviral infection in vivo. These results show that HIV-1 Tat reprograms host dendritic cell gene expression to facilitate expansion of HIV-1 infection.  相似文献   

20.
Co-infection with HIV-1 and Kaposi''s sarcoma-associated herpesvirus (KSHV) is the cause of aggressive AIDS-related Kaposi''s sarcoma (AIDS-KS) characterized by abnormal angiogenesis. The impact of HIV-1 and KSHV interaction on the pathogenesis and extensive angiogenesis of AIDS-KS remains unclear. Here, we explored the synergistic effect of HIV-1 Tat and KSHV oncogene Orf-K1 on angiogenesis. Our results showed that soluble Tat or ectopic expression of Tat enhanced K1-induced cell proliferation, microtubule formation and angiogenesis in chorioallantoic membrane and nude mice models. Mechanistic studies revealed that Tat promoted K1-induced angiogenesis by enhancing NF-κB signaling. Mechanistically, we showed that Tat synergized with K1 to induce the expression of miR-891a-5p, which directly targeted IκBα 3′ untranslated region, leading to NF-κB activation. Consequently, inhibition of miR-891a-5p increased IκBα level, prevented nuclear translocation of NF-κB p65 and ultimately suppressed the synergistic effect of Tat- and K1-induced angiogenesis. Our results illustrate that, by targeting IκBα to activate the NF-κB pathway, miR-891a-5p mediates Tat and K1 synergistic induction of angiogenesis. Therefore, the miR-891a-5p/NF-κB pathway is important in the pathogenesis of AIDS-KS, which could be an attractive therapeutic target for AIDS-KS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号