首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The aim of this study was to test the effect of oxygen partialpressure as a possible limiting factor of nitrogen fixationfollowing defoliation. The response of nitrogenase activity(C2H2-reduction) of defoliated and undefoliated white and redclover plants (Trifolium repens L. and Trifolium pratense L.)to either 19 kPa oxygen or 55 kPa oxygen was investigated. Priorto defoliation, white clover plants were grown for five weeksin a growth chamber, and red clover plants for 7 or 11 weeksin a glasshouse. The results included measurements of 16N2-uptake. Increasing oxygen partial pressure from 19 to 55 kPa severelyrestricted nitrogenase activity of undefoliated white cloverplants; however, 2 h after complete defoliation, the same treatmentcaused a significant increase. A fivefold increase in nitrogenaseactivity upon exposure to the elevated oxygen partial pressurewas found at the end of a 24 h period. This beneficial effectdecreased gradually from 1 to 5 d after defoliation. The responseof recently defoliated red clover plants to 55 kPa oxygen partialpressure was similar to that of white clover, independentlyof plant age. The gradual recovery of nitrogenase activity duringthree weeks of regrowth was associated with a simultaneous changein the response to increased oxygen partial pressure, leadingagain to the response of undefoliated plants. These data suggested that lack of oxygen at the site of nitrogenfixation, resulting from a dramatic increase in oxygen-diffusionresistance, is the main factor limiting nitrogenase activityfollowing defoliation. Trifolium repens L., Trifolium pratense L., white clover, red clover, defoliation, regrowth, nodules, nitrogen fixation, nitrogenase activity, oxygen limitation  相似文献   

2.
Autoradiographs were made of plants of Lolium multiflorum Lam.after 14CO2 had been fixed by selected leaves. The results showedthat labelled compounds were not translocated to other tillersbut were moved to the whole root system. This pattern of distributionwas changed when all or some of the tillers on the plant weredefoliated. Where a single undefoliated tiller remained, itinitially supplied the cut tillers with 14C-containing products,thus reintegrating a system of apparently independent tillers.When all the tillers were partially defoliated, labelled compoundswere no longer translocated to the root system. A further experimentsuggested that root reserves were not mobilized for regrowthfollowing defoliation. These results are discussed in termsof the integration of a grass plant in the vegetative state.  相似文献   

3.
The youngest fully expanded leaves of single tillers of vegetativeperennial ryegrass plants were exposed to 14CO2. Thereafter,quantitative and fractional analysis of the partitioning, storageand re-mobilization after defoliation of the 14C-labelled assimilatewas sequentially conducted over a 22 d period. In undefoliated plants, most 14C reached its final destinationwithin 5–6 of feeding. Forty per cent of assimilated 14Cwas subsequently lost through respiration, while 13.5, 8.5 and34 per cent remained in roots, stem bases and tops respectively.At least some 14C was distributed to tillers throughout theplant, but secondary tillers subtended by the fed tiller madethe greatest demand on 14C translocated from the fed tiller. A small, but significant portion of 14C was invested into longterm storage in undefoliated plants, four per cent of the totalassimilated still being present in a labile chemical form inroots and stem bases 22 d after feeding. In plants that wereseverely defoliated 4 d after feeding, depletion of reserve14C was observed relative to undefoliated plants. The depletiontook place from stem bases, not roots, and both low and highmolecular weight storage compounds were involved. A portionof the depleted 14C was incorporated into new growth after defoliation. Lolium perenne, perennial ryegrass, assimilate partitioning, storage, re-mobilization, defoliation  相似文献   

4.
A closed-system flow-through enclosure apparatus was used tomeasure symbiotic nitrogen fixation directly. A legume-basedsystem comprising 6-week-old Trifolium repens L. (white clovercv. Blanca) growing with Lolium perenne L. (perennial ryegrasscv. Trani) in an agricultural soil was incubated for 19 d ina 15N-enriched atmosphere (mean value 3.663 atom%). An actinorhizal-basedsystem comprising 1 -year-old Alnus glutinosa L. (alder) saplingsgrowing with Festuca rubra L. (red fescue) in open-cast coalspoil was incubated for 21 d in a 15N-enriched atmosphere (meanvalue 3.265 atom%). Indirect estimates of N2 fixation were carriedout concurrently using N difference and 15N isotope dilutiontechniques. The theory underlying the three techniques and modificationswhich were adopted for comparative purposes are discussed. Thedirect measurements of N2 fixation were then compared with theindirect estimates using Pinc, the proportion of the N incrementduring the measurement period that was derived from fixation.The simple N difference method gave similar values for Pinc(0.94 and 0.97) as those derived from more complicated isotopemethodologies, both indirect (0.91) and direct (0.90). Valuesfor alder were far more variable, ranging from 0.16 to 0.92;this was due largely to variability within the trees and a verysmall N increment during the measurement period. Key words: N2 fixation, 15N2, white clover, alder, enclosure apparatus  相似文献   

5.
The effects of different applied NO3 concentrations onextension growth and final length and area of leaves 1–4of five cereals and six pasture grasses of temperate originwere examined. Increased applied NO3 in the range 0.1–50mol m–3; caused decreased duration of growth but increasedgrowth rate and final length of leaves 2–4 of the cerealsAvena saliva, Hordeum vulgare, Secale cereale x Triticosecaleand Triticum aestivum. For all cereals, increased NO3resulted in increased area of leaves 1-4. Pasture grasses weresupplied either 0.5 or 50 mol m–3; NO3. Increasedapplied NO3 (0.5–50 mol m–3) resulted indecreased duration of growth and increased growth rate and finalarea of leaves 1–4 of Bromus willdenowii leaves 2–4of Festuca arundinaceae and leaves 3 and 4 of Lolium multiflorum.In addition, length of leaves 3 and 4 of B. willdenowii increasedwith increased NO3. Increased NO3 resulted in increased areaof leaves 2–4 of Daciylis glomerata and Lolium perenneand leaves 3 and 4 of Phalaris aquatica but had no effect onextension growth of all three species. Avena saliva L., oat, Hordeum vulgare L., barley, Secale cereaie L., rye, x Triticosecale Wittm, triticale, Triticum aestivum L., wheat, Bromus willdenowii Kunth, prairie grass, Dactylis glomerata L., cocksfoot, Festuca arundinaceae Shreb, tall fescue, Lolium multiflorum Lam, Italian ryegrass, Lolium perenne L, perennial ryegrass, Phalaris aquatica L, nitrate,, leaf extension, leaf expansion  相似文献   

6.
The aim of the study was to evaluate the impact of defoliation intensity, defoliation frequency, and interactions with N supply on N uptake, N mobilization from and N allocation to roots, adult leaves, and growing leaves. Plants of Lolium perenne were grown under two contrasted N regimes. Defoliation intensity treatments consisted of a range of percentage leaf area removal (0, 25, 50, 75, or 100%). These treatments were applied in parallel to a set of plants previously undefoliated, and to a second set of plants which had been defoliated several times at a constant height. A (15)N tracer technique was used to quantify N uptake, mobilization, and allocation over a 7 d period. A significant reduction in plant N uptake was observed with the removal of more than 75% of lamina area, but only with high N supply. As defoliation intensity increased, the amount of N taken up and subsequently allocated to growing leaves during the labelling period was maintained at the expense of N allocation to roots and adult leaves. Increasing defoliation intensity increased the relative contribution of roots supplying mobilized N to growing leaves and decreased the relative contribution of adult leaves. Defoliation frequency did not substantially alter N uptake, mobilization, and allocation between roots, adult and growing leaves on a plant basis. However, tiller number per plant was largely increased under repeated defoliation, hence indicating that allocation and mobilization of N to growing leaves, on the basis of individual tillers, was decreased by defoliation frequency.  相似文献   

7.
Single plants of white clover, grown in a controlled environmentand dependent for nitrogen on fixation in their root nodules,were defoliated once by removing approximately half their shoottissue. Their regrowth was compared with the growth of comparableundefoliated plants. Two similar experiments were carried out:in the first, plants were defoliated at 2.5 g, and in the secondat 1.2 g total plant d. wt. Defoliation reduced rate of N2 fixation by > 70 per cent,rate of photosynthesis by 83–96 per cent, and rate ofplant respiration by 30–40 per cent. Nodule weights initiallydeclined following defoliation as a result of loss of carbohydratesand other unidentified components. No immediate shedding ofnodules was observed but nodules on the most severely defoliatedplants exhibited accelerated senescence. The original rates of N2 fixation were re-attained after 5–6or 9 d regrowth, with increase in plant size at defoliation.In general, the rate of recovery of N2 fixation was relatedto the re-establishment and increase of the plant's photosyntheticcapacity. Throughout the growth of both defoliated and undefoliatedplants nodule respiration (metabolism) accounted for at least23 ± 2 per cent of gross photosynthesis. The unit ‘cost’of fixing N2 in root nodules, in terms of photosynthate, appearedto be unaffected by defoliation, except perhaps for plants veryrecently defoliated. Similarly, the percentage nitrogen contentsof shoot, root and nodules of defoliated plants became adaptedwithin a few days to those characteristic of undefoliated plants. Trifolium repens, white clover, N2 fixation, defoliation, photosynthesis, respiration  相似文献   

8.
A growth-chamber study was carried out to determine whetherthe response of apparent nitrogenase activity (C2 H2 reduction)to complete defoliation is influenced by the availability ofcarbohydrate reserves Reserve carbohydrate (TNC) concentrationsof 6-week-old white clover (Trifoliun repens L) plants weremodified by CO2 pretreatments There was no difference in theresponse of apparent nitrogenase activity to defoliation betweenplants with different TNC concentrations C2H2 reduction activitydeclined sharply after defoliation and then recovered similarlyin both high- and low-TNC plants Further experiments were conductedto explain the lack of response of apparent nitrogenase activityto TNC levels Bacteroid degradation was ruled out because invitro nitrogenase activity of crude nodule extracts was stillintact 24 h after defoliation Sufficient carbohydrates appearedto be available to the nodules of defoliated plants becauseadding [14C]glucose to the nutrient solution did not preventthe decline in apparent nitrogenase activity These conclusionswere supported by the finding that an increase in pO2 aroundthe nodules of defoliated plants completely restored their C2H2reduction activity The comparison of the effects of defoliationand darkness suggested that the decrease in apparent nitrogenaseactivity was not related directly to the interruption of photosynthesisIt appears that lack of photosynthates is not the immediatecause of the decline of nitrogen-fixing activity after defoliation White clover, Trifolium repens L, defoliation, nitrogen fixation, regrowth, reserves, carbohydrates, acetylene reduction, nodule extract  相似文献   

9.
Single plants of white clover (Trifolium repens L.) were grownfrom stolon cuttings rooted in sand. All plants were inoculatedwith Rhizobium trifolii, and for 14 weeks received nutrientsolution containing 0.5 mg N each week, as either ammonium ornitrate. Plants were then leniently defoliated or were leftintact and a 15N-labelled N source was applied at intervalsof 4 d to replace the unlabelled N. Lement defoliation removedfully expanded leaves only; the remaining immature leaves accountedfor 39–44% of the total. At harvests over the following21 d, leaf numbers were counted and dry matter (DM), N contentsand 15N enrichments of individual plant organs were determined. Rates of leaf emergence and expansion were accelerated in defoliatedplants; numbers of young leaves were similar in defoliated andintact plants. Total DM and N content were less in defoliatedthan intact plants and were not affected by form of N supplied.DM of young leaves, growing points and stolons and N contentof young leaves were, however, greater when ammonium ratherthan nitrate N was supplied. Rates of increase in the contentof plant total N were 8.2 ± 1.36 mg N d-1 and 10.2±1.82 mg N d-1 in defoliated and intact plants respectively.The increases were predominantly due to N2 fixation, since recoveryof 15N showed that less than 1% of the increment in plant totalN was assimilated mineral N. Nevertheless, the contributionof mineral N to plant total N was 50% more in defoliated thanin intact plants; higher amounts of mineral N were found particularlyin young leaves and growing points. Partitioning of mineralN to nodulated roots increased over time and was greater whenammonium rather than nitrate N was present. White clover, Trifolium repens L. cv. S184, lenient defoliation, N accumulation, N2 fixation  相似文献   

10.
Prolamin fractions were extracted from seeds of five speciesof temperate meadow grasses. SDS-PAGE showed the presence ofpolypeptidcs with Mrs of 20–30000 in Phieum pratense andDactylis glomerata, and between 30000 and 65 000 in Lolium perenneand in two species of Festuca (F. rubra and F. arundinacea).The fractions had broadly similar amino acid compositions withhigh glutamate+glutamine (29 to 35 mol %) and phenylalaninc(8 to 10 mol %), but there was some variation in the contentsof prolinc (10 to 23 mol %) and several other amino acids includinglysine (0.3 to 1.9 mol %). Automated Edman degradation of twogel filtration fractions from L perenne and one fraction eachfrom the other four species showed single major N.terminal aminoacid sequences. These were homologous with each other, and withthe -typc prolamins of wheat, barley and rye. Key words: Prolamins, meadow grasses, SDS-PAGE  相似文献   

11.
Single plants of white clover (Trifolium repens) were establishedfrom stolon cuttings rooted in acid-washed silver sand. Allplants were inoculated with Rhizobium trifolii, and receivednutrient solution containing 0·5 mg 15N as either ammoniumor nitrate weekly for 12 weeks (i.e. 6 mg 15N in total). Plantswere then leniently defoliated or left intact, and the labelledN supply was replaced with unlabelled N. Lenient defoliationremoved fully expanded leaves only, leaving immature leaveswhich accounted for 50–55% of the total; growing pointnumbers were not reduced. Nodules, leaves and growing pointswere counted over the following 21 d period, and d. wts, N contents,and 15N enrichments of individual plant organs were determined. Defoliated plants had fewer nodules, but numbers of growingpoints were unaffected by defoliation. The rates of both leafemergence and expansion were accelerated in defoliated plants;in consequence the number of young leaves remained less thanin intact plants until day 21. Total dry matter (DM) and N accumulationwere less in defoliated plants, and a greater proportion oftotal plant DM was invested in roots. About 97 % of plant totalN was derived from fixed atmospheric N, but there was incompletemixing of fixed and mineral N within the plant. Relatively moremineral N was incorporated into roots, whereas there was relativelymore fixed N in nodules. There was isotopic evidence that Nwas remobilized from root and stolon tissue for leaf regrowthafter defoliation; approximately 2 % of plant N turned overdaily in the 7-d period after defoliation, and this contributedabout 50% of the N increment in leaf tissue. White clover, Trifolium repens L. cv. SI84, lenient defoliation, N economy, regrowth, N remobilization  相似文献   

12.
In defoliated grasses, where photosynthesis is reduced due to removal of leaf material, it is well established that remobilization of nitrogen occurs from both older remaining leaves and roots towards the younger growing leaves. In contrast, little is known about the movement of nitrogen within intact grass plants experiencing prolonged inhibition of photosynthesis. We tested the following hypotheses in Festuca rubra L. ssp. rubra cv. Boreal: that both reduction of the atmospheric CO2 concentration and defoliation (1) induce mobilization of nitrogen from roots and older leaves towards growing leaves and (2) elicit similar directional change in the abundance of proteins in roots and older leaves relevant to the process of nitrogen mobilization including, glutamine synthetase (GS), EC 6.3.1.2; papain, EC 3.4.22.2; chymopapain, EC 3.4.22.6; ribulose bisphosphate carboxylase/oxygenase (Rubisco), EC 4.1.1.39; and the light harvesting complex of photosystem II (LHCPII). After growth at ambient atmospheric CO2 concentration, plants of F. rubra were subject to atmospheres containing either ambient (350 micro l l-1) or deplete (< 20 micro l l-1) CO2. Concurrently, plants were either left intact or defoliated on one occasion. Steady state 15N labelling coupled with a series of destructive harvests over a 7-day period enabled changes in the nitrogen dynamics of the plants to be established. Proteins pertinent to the process of nitrogen mobilization were quantified by immunoblotting. Irrespective of defoliation, plants in ambient CO2 mobilized nitrogen from older to growing leaves. This mobilization was inhibited by deplete CO2. Greater concentration of Rubisco and reduced chymopapain abundance in older remaining leaves of intact plants, in deplete compared with ambient CO2, suggested the inhibition of mobilization was due to inhibition of protein degradation, rather than to the export of degradation products. Both deplete CO2 and defoliation induced nitrogen mobilization from roots to growing leaves. In plants at ambient CO2, defoliation did not affect nitrogen uptake or its allocation. Therefore in F. rubra nitrogen mobilization can occur independently of any downregulation of nitrogen uptake. This suggests either different signal compounds may act to downregulate uptake and upregulate mobilization, or if one particular signalling compound is used its concentration threshold differs for induction of mobilization and downregulation of uptake. The abundance of the cysteine proteases papain and chymopapain was low in roots suggesting that they were not involved in protein degradation in this tissue.  相似文献   

13.
Two Lolium genotypes, i.e. Lolium perenne cv. S23 and a L. perenne? L. multiflorum hybrid cv. Augusta were, in one treatment,grown in flowing solution culture with a maintained supply of at 10 mmol m–3 throughout. In another treatment, the plants were deprived of for 11 d, was then re-supplied and both control and N-deprived plants were either defoliatedor left entire. Effects of the stresses imposed by N deprivationor defoliation on subsequent net uptake of , shoot and root growth and their interactions were examined.There were no major differences in the behaviour of the twogenotypes throughout. The removal of NO3 supply did not altertotal dry matter production during the 11 d period of deprivationbut the rate of root growth accelerated markedly. There waslittle effect of N deprivation on the specific growth ratesof the recovering defoliated shoots. Cumulative net uptake of closely paralleled the pattern of growth and there were obvious and marked effects of both N deprivationand defoliation. Effects on uptake were more distinctly demonstrated when uptake was expressed on aper unit root or shoot basis, i.e. specific unit absorptionrates (SNO3). In the control plants with sustained supply, there was a progressive decline with time in SNO3, inspite of an increasing shoot: root ratio. After both N deprivationand defoliation treatments there was a rapid initial increasein SNO3, followed by an oscillatory cycle of increasing anddecreasing rates with a 10–11 d period. The relationshipsbetween growth and uptake were complex and did not conform to a previously predicted linear relationshipbetween SNO3, and the ratio total fresh plant weight: root freshweight. The results are discussed in relation to the possiblemechanisms involved. It is suggested that the oscillations inunit absorption rate indicated that the roots of N-deprivedor defoliated plants retained a high capacity for absorptionimmediately after re-supply or defoliation and that the stressedplants were unable to assimilate or utilize taken up; net uptake then decreased through a shift in favourof efflux over influx until the influx mechanism was able todominate and the pattern was then repeated. Key words: Lolium, genotypes, N deprivation, nitrate uptake, defoliation, unit absorption, growth  相似文献   

14.
Nitrogen re-mobilization and changes in free amino acids werestudied as a function of time in leaves, stubble, and rootsduring ryegrass (Lolium perenne L.) re-growth. Experiments with15N labelling clearly showed that during the first days nearlyall the nitrogen in new leaves came from organic nitrogen re-mobilizedfrom roots and stubble. On the days of defoliation, stubblehad the highest content of free amino acids with 23 mg per gdry weight against 15 mg and 14 mg in leaves and roots, respectively.The major amino acids in leaves were asparagine (23% of totalcontent in free amino acids), aminobutyrate, serine, glutamine,and glutamate (between 7% and 15%) whereas in roots and stubblethe contribution of amides was high, especially asparagine (about50%). Re-growth after cutting was associated with a rapid increaseof the free amino acid content in leaves, with a progressivedecrease in roots while stubble content remained virtually unchanged.In leaves, asparagine increased from the first day of re-growth,while the aspartate level remained unchanged and glutamine increasedstrongly on the first day but decreased steadily during thenext few days of re-growth. Asparagine in stubble and rootschanged in opposite directions: in stubble it tended to increasewhereas in roots it clearly decreased. In contrast, stubbleand roots showed a similar decrease in glutamine. In these twoplant parts, as in leaves, aspartate remained at a low level.Results concerning free amino acids are discussed with referenceto nitrogen re-mobilization from source organs (stubble androots) to the sink organ (regrowing leaves). Key words: Lolium perenne L, re-growth, nitrogen, free amino acids, glutamine, asparagine  相似文献   

15.
16.
The effects of different applied NO3 concentrations onextension growth and final length and area of leaves 1–4of five cereals and six pasture grasses of temperate originwere examined. Increased applied NO3 in the range 0.1–0.5.0mol m–3 caused decreased duration of growth but increasedgrowth rate and final length of leaves 2–4 of the cerealsAvena saliva, Hordeum vulgare, Secale cereale, x Triticosecaleand Triticum aestivum. For all cereals, increased NO3resulted in increased area of leaves 1–4. Pasture grasseswere supplied either 0.5 or 50 mol m–3 NO3. Increasedapplied NO3 (0.5–5.0 mol m–3) resulted indecreased duration of growth and increased growth rate and finalarea of leaves 1–4 of Bromus wiltdenowii, leaves 2–4ofFestuca arundinaceae and leaves 3 and 4 of Lolium muitiflorum.In addition, length of leaves 3 and 4 of B. witidenowii increasedwith increased NO3. Increased NO3 resulted inincreased area of leaves 2–4 of Dactylis gtomerata andLolium perenne and leaves 3 and 4 of Phalaris aquaiica but hadno effect on extension growth of all three species. Avena sativa L, oat, Hordeum vulgare L, barley, Secale cereale L, rye, x Triticosecale Wittm, triticale, Triticum aestivum L, wheat, Bromus willdenowii Kunth, prairie grass, Dactylis gtomerata L, cocksfoot, Festuca arundinaceae Shreb, tall fescue, Lolium multijlorum Lam, Italian ryegrass, Lolium perenne L, perennial ryegrass, Phalaris aquatica L, nitrate, leaf extension, leaf expansion  相似文献   

17.
Use of the self-thinning rule to describe size/density compensation(SDC) in defoliated swards is examined. It is shown that defoliationrelated variation in leaf area and associated morphogeneticchanges in plant structure necessitate slope corrections, designatedCa and Cr , respectively. The theory predicts that reduced leafarea in more heavily defoliated swards will result in SDC atslopes more negative than -3/2 (variable leaf area SDC), andthat there will be a transition to -3/2 (constant leaf area)SDC at higher herbage mass. Empirical data from previous experiments with Lolium perenneL. and Medicago sativa L. are examined, and appear to confirmthe theoretical predictions, including the slope change at thepoint of transition from variable to constant leaf area SDC.This transition point, designated di , is subject to interspecificvariation and is related to the mature shoot size of a particularspecies. Some applications of this theory are discussed, andin particular a sward productivity index is proposed.Copyright1995, 1999 Academic Press Variable leaf area self-thinning, size/density compensation, Lolium perenne, Medicago sativa, sward productivity index  相似文献   

18.
WOLEDGE  J. 《Annals of botany》1979,44(2):197-207
The photosynthetic capacity of newly expanded leaves of vernalizedor non-vernalized plants of S24 perennial ryegrass (Lolium perenneL.), grown in long or short photoperiods, was measured in twoexperiments. In the first, leaves were protected from shadingduring development, while in the second, the natural shade ofneighbouring tillers in a sward was allowed. In the first experiment there was little effect of vernalization,day length or flowering, and leaves in all treatments had photosyntheticrates at 250 W m–2 of between 28 and 32 mg CO2 dm–2h–1.In the second experiment the photosynthetic rate of successiveleaves fell as sward leaf area increased. This downward trendwas reversed, however, in flowering tillers in the vernalizedlong-day treatment, while in the other treatments, which didnot flower, photosynthetic capacity continued to fall. It isconcluded that the leaves of reproductive tillers have highphotosynthetic capacities because stem extension carries themto the top of the canopy where they are well illuminated duringexpansion. Lolium perenneL, ryegrass, photosynthetic capacity, flowering, shading, vernalization  相似文献   

19.
The relative assimilatory activity of the inflorescence, itsindividual components, and the leaves of flowering tillers ofPoa annua L. and Lolium perenneL. was determined over the periodfrom inflorescence emergence to seed shedding. The pattern of14CO2 fixation was similar for both species and the inflorescencewas by far the most important assimilatory organ of the reproductivetiller, particularly over the latter period of seed developmentas leaf senescence progressed. With the exception of the seedsall parts of the inflorescence showed significant assimilatoryactivity and the lemmas and paleas accounted for 40–50per cent of the total 14C fixed by the inflorescence in bothspecies. The importance of the grass inflorescence as a photosyntheticstructure is discussed in relation to similar studies on cereals. Poa annua, Lolium perenne, carbon dioxide assimilation, inflorescence  相似文献   

20.
Paterson  Eric  Thornton  Barry  Sim  Allan  Pratt  Shona 《Plant and Soil》2003,250(2):293-305
The aim of this study was to investigate the physiological basis of increased root exudation from Festuca rubra, in response to defoliation. The hypothesis, that assimilate supply to roots is a key determinant of the response of root exudation to defoliation was tested by imposing CO2-deplete (< 50 mol mol–1) atmospheres to F. rubra. This was done as a non-destructive means of preventing supply of new assimilate to roots of intact and defoliated plants. F. rubra was grown in axenic sand systems, with defoliation and CO2-depletion treatments applied to plants at 14 and 35 days after planting. Root exudation and NO3 uptake were quantified throughout, and post-treatment uptake and allocation of N were determined from the distribution of 15N label, supplied as 15NO3 . Defoliation of F. rubra resulted in significantly (P <0.01) increased root exudation, CO2-depletion did not result in increased exudation from plants of either age. When treatments were applied to F. rubra after 14 days, defoliation and CO2-depletion each reduced NO3 uptake significantly (P <0.05). However, in older plants, uptake of NO3 was less sensitive to defoliation and CO2-depletion. The results indicate that increased root exudation following defoliation is not related directly to reduced assimilate supply to roots. This was evident from the lack of effect of CO2-depletion on root exudation, and the absence of correlation between root-C efflux and the rate of NO3 uptake. The physiological basis of increased exudation following defoliation remains uncertain, but may be dependent on physical damage, either directly or as a consequence of systemic responses to wounding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号