首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The removal of Fe(III) from human serum transferrin by chelators is thought to proceed through intermediate species in which the chelator becomes associated with the metal center of the protein. The visible spectral shifts associated with the formation of such intermediates in the wild-type (WT) protein are too small for reliable kinetic data to be obtained. Therefore, studies were undertaken with the recombinant N-terminal lobe variant H249A, a variant showing more pronounced spectral changes. The kinetics of the synergistic anion-exchange reaction between nitrilotriacetate (NTA) and carbonate in variant H249A was studied by stopped-flow spectrophotometry as a model for this process in the WT protein. Anion exchange occurs by two pathways at pH 7.4 and 25 degrees C: an NTA-independent dissociative pathway to form a carbonate-free intermediate Fe-H249A (Eq. 1) that subsequently reacts with NTA (Eq. 2):and an NTA-dependent associative pathway (the major pathway) in which a quaternary Fe-H249A-(CO(3))(NTA) intermediate is formed (Eq. 3), which then decays to product (Eq. 4):The reverse reaction, where HCO(3)(-) exchanges for NTA, likewise follows these two pathways. The overall apparent equilibrium constant for formation of Fe-H249A-NTA from Fe-H249A-CO(3) is K'=442 at pH 7.4. The NTA complex is favored over the carbonate complex both kinetically and thermodynamically in the pH range 7.4-8.2.  相似文献   

2.
Interaction between oxyhaemoglobin and peroxynitrite was studied using stopped-flow rapid-scan spectrophotometry. The influence of pH, peroxynitrite concentration and temperature on the pseudo-first-order rate constants was studied and the activation energy calculated. The kinetic curve for the oxyhaemoglobin-peroxynitrite reaction showed that a fast reaction occurred in the initial seconds, followed by a slow process of decrease in absorbance. The biphasic reaction kinetics of oxyhaemoglobin with peroxynitrite or hydrogen peroxide demonstrated the existence of an intermediary species. For the first time a rapid-scan stopped-flow spectrophotometry study is presented, yielding spectral and kinetic data of the reaction.  相似文献   

3.
The thermal triple helix to coil transitions of two human type V collagens (alpha 1(2) alpha 2 and alpha 1 alpha 2 alpha 3) and bovine type XI collagen differ from those of the interstitial collagens type I, II, and III by the presence of unfolding intermediates. The total transition enthalpy of these collagens is comparable to the transition enthalpy of the interstitial collagens with values of 17.9 kJ/mol tripeptide units for type XI collagen, 22.9 kJ/mol for type V (alpha 1(2) alpha 2), and 18.5 kJ/mol for type V (alpha 1 alpha 2 alpha 3). It is shown by optical rotatory dispersion and differential scanning calorimetry that complex transition curves with stable intermediates exist. Type XI collagen has two main transitions at 38.5 and 41.5 degrees C and a smaller transition at 40.1 degrees C. Type V (alpha 1(2) alpha 2) shows two main transitions at 38.2 and 42.9 degrees C and two smaller transitions at 40.1 and 41.3 degrees C. Compared to these two collagens type V (alpha 1 alpha 2 alpha 3) unfolds at a lower temperature with two main transitions at 36.4 and 38.1 degrees C and two minor transitions at 40.5 and 42.9 degrees C. The intermediates present at different temperatures are characterized by resistance to trypsin digestion, length measurements of the resistant fragments after rotary shadowing, and amino-terminal sequencing. One of the intermediate peptides has been identified as belonging to the alpha 2 type V chain, starting at position 430 and being about 380 residues long. (The residue numbering begins with the first residue of the first amino-terminal tripeptide unit of the main triple helix. The alpha 2(XI) chain was assumed to be the same length as the alpha 1(XI). One intermediate was identified from the alpha 2(XI) chain and with starting position at residue 495, and three from the alpha 3(XI) with starting positions at residues 519, 585, and 618.  相似文献   

4.
The light-induced processes of the biological photoreceptor phytochrome (recombinant phyA of oat and recombinant CphA from the cyanobacterium Tolypothrix PCC7601) have been investigated in a time-resolved manner in the temperature range from 0 to 30°C. Both proteins were heterologously expressed and assembled in vitro with phycocyanobilin. The Pr state of plant phytochrome phyA is converted to the Pfr state after formation of four intermediates with an overall quantum yield of ∼18%. The reversal reaction (Pfr-to-Pr) shows several intermediates, all of which, even the first detectable one, exhibit already all spectral features of the Pr state. The canonical phytochrome CphA from Tolypothrix showed a similar intermediate sequence as its plant ortholog. Whereas the kinetics for the forward reaction (Pr-to-Pfr) was nearly identical for both proteins, the reverse process (Pr formation) in the cyanobacterial phytochrome was slower by a factor of three. As found for the Pfr-to-Pr intermediates in the plant protein, also in CphA all detectable intermediates showed the spectral features of the Pr form. For both phytochromes, activation parameters for both the forward and the backward reaction pathways were determined.  相似文献   

5.
D R Doerge 《Biochemistry》1986,25(16):4724-4728
The irreversible inactivation of bovine lactoperoxidase by thiocarbamide goitrogens was measured, and the kinetics were consistent with a mechanism-based (suicide) mode. Sulfide ion inactivated, 2-mercaptobenzimidazole-inactivated, and 1-methyl-2-mercaptoimidazole-inactivated lactoperoxidases have different visible spectra, suggesting different products were formed. The results support a mechanism in which reactive intermediates are formed by S-oxygenation reactions catalyzed by lactoperoxidase compound II. It is proposed that the reaction of electron-deficient intermediates with the heme prosthetic group is responsible for the observed spectral changes and inactivation by thiocarbamides.  相似文献   

6.
Freeze-trapping reaction intermediates in macromolecular crystals is now a proven technique for obtaining their high-resolution structures by X-ray crystallography. The structural study of metalloprotein mechanisms has spearheaded this work, mainly because of the increased availability of single-crystal UV/visible spectrophotometry that enables reaction monitoring in the crystalline state. In particular, through formation of the frozen glass state, the stabilization of intermediates involving dissolved gases has yielded some of the most spectacular results. Metalloprotein systems still dominate this field, and the most recent successes, along with the accompanying advances in methodology, are presented.  相似文献   

7.
In the present study, we investigated the metal-binding reactivity of the isolated alpha domain of human metallothionein isoform 1a, with specific emphasis on resolving the debate concerning the cooperative nature of the metal-binding mechanism. The metallation reaction of the metal-free alpha domain with Cd2+ was unequivocally shown to proceed by a noncooperative mechanism at physiologic pH by CD and UV absorption spectroscopy and ESI MS. The data clearly show the presence of intermediate partially metallated metallothionein species under limiting Cd2+ conditions. Titration with four molar equivalents of Cd2+ was required for the formation of the Cd4alpha species in 100% abundance. The implications of a noncooperative metal-binding mechanism are that the partially metallated and metal-free species are stable intermediates, and thus may have a potential role in the currently undefined function of metallothionein.  相似文献   

8.
The reaction of xanthine oxidase with 2-hydroxy-6-methylpurine (also called 2-oxo-6-methylpurine) has been studied under both anaerobic and aerobic conditions. Reaction of enzyme with substoichiometric concentrations of hydroxymethylpurine in aerobic 0.1 M 3-(cyclohexylamino)propanesulfonic acid, 0.1 N KCl, 0.3 mM EDTA, pH 10.0, exhibits two reaction intermediates detectable by UV-visible spectrophotometry. The rate constants for formation of the first intermediate, conversion of the first to the second, and the decay of the second to give oxidized enzyme are 18, 1.2, and 0.13 s-1, respectively. The difference spectra of these two intermediates relative to oxidized enzyme are characterized by absorbance maxima at 470 and 540 nm, respectively, with extinction changes (relative to oxidized enzyme) of approximately 410 M-1 cm-1. The 0.13 s-1 decay of the second intermediate agrees well with kcat of 0.11 s-1 determined under the same conditions. Based on a comparison of the kinetics of the reaction as monitored by UV-visible absorption and electron paramagnetic resonance spectrometry, it is concluded that these spectral intermediates arise from the molybdenum center of the enzyme in the MoIV and MoV valence states, respectively, the latter corresponding to the species exhibiting the "very rapid" MoV EPR signal known to be formed in the course of the reaction. This conclusion is supported by the results of experiments using cytochrome c reduction to follow the formation of superoxide production in the course of the aerobic reaction of xanthine oxidase with substoichiometric hydroxymethylpurine, which demonstrate unequivocally that the species exhibiting the very rapid EPR signal is formed by one-electron oxidation of a MoIV species rather than direct one-electron reduction of MoVI by substrate. No evidence is found for the formation of any of the MoV EPR signals designated "rapid" in the present studies, and it is concluded that this species is not a bona fide catalytic intermediate in the reductive half-reaction of xanthine oxidase.  相似文献   

9.
2-Hydroxybiphenyl 3-monooxygenase (EC 1.14.13.44) from Pseudomonas azelaica HBP1 is an FAD-dependent aromatic hydroxylase that catalyzes the conversion of 2-hydroxybiphenyl to 2, 3-dihydroxybiphenyl in the presence of NADH and oxygen. The catalytic mechanism of this three-substrate reaction was investigated at 7 degrees C by stopped-flow absorption spectroscopy. Various individual steps associated with catalysis were readily observed at pH 7.5, the optimum pH for enzyme turnover. Anaerobic reduction of the free enzyme by NADH is a biphasic process, most likely reflecting the presence of two distinct enzyme forms. Binding of 2-hydroxybiphenyl stimulated the rate of enzyme reduction by NADH by 2 orders of magnitude. The anaerobic reduction of the enzyme-substrate complex involved the formation of a transient charge-transfer complex between the reduced flavin and NAD(+). A similar transient intermediate was formed when the enzyme was complexed with the substrate analog 2-sec-butylphenol or with the non-substrate effector 2,3-dihydroxybiphenyl. Excess NAD(+) strongly stabilized the charge-transfer complexes but did not give rise to the appearance of any intermediate during the reduction of uncomplexed enzyme. Free reduced 2-hydroxybiphenyl 3-monooxygenase reacted rapidly with oxygen to form oxidized enzyme with no appearance of intermediates during this reaction. In the presence of 2-hydroxybiphenyl, two consecutive spectral intermediates were observed which were assigned to the flavin C(4a)-hydroperoxide and the flavin C(4a)-hydroxide, respectively. No oxygenated flavin intermediates were observed when the enzyme was in complex with 2, 3-dihydroxybiphenyl. Monovalent anions retarded the dehydration of the flavin C(4a)-hydroxide without stabilization of additional intermediates. The kinetic data for 2-hydroxybiphenyl 3-monooxygenase are consistent with a ternary complex mechanism in which the aromatic substrate has strict control in both the reductive and oxidative half-reaction in a way that reactions leading to substrate hydroxylation are favored over those leading to the futile formation of hydrogen peroxide. NAD(+) release from the reduced enzyme-substrate complex is the slowest step in catalysis.  相似文献   

10.
The peroxidase-catalyzed degradation of 5-hydroxytryptamine (serotonin) was studied using rapid scan or conventional spectrophotometry for detection of one-electron conversions of enzyme compounds I, II and III. The spectral changes of serotonin during oxidation and spectral and bleaching properties of reaction products were examined. The results of the investigation clearly indicate the ability of serotonin to function as an electron donor substrate for animal peroxidases.  相似文献   

11.
Cytochrome P-450 is known to catalyze the following oxygen transfer reaction: RH + PhIO----ROH + PhI where RH represents a variety of hydroxylatable substrates and PhIO a variety of iodosobenzene derivatives that serve as oxygen donors, and neither molecular oxygen nor an external electron donor is required. To determine whether the cytochrome functions in such reactions by a peroxidase-type mechanism, the kinetics of its interaction with a variety of substituted iodosobenzenes and iodobenzene diacetates have been determined by stopped flow spectrophotometry. The reaction of phenobarbital-induced rabbit liver microsomal cytochrome P-450 form 2 with iodosobenzenes or iodobenzene diacetates leads to the reversible formation of three spectral intermediates, termed E, F, and G. Complex E is characterized by a type I difference spectrum, representing the iodosobenzene-dependent partial shift of the low spin hexacoordinate form of the ferric enzyme to the high spin pentacoordinate form, F represents a transient intermediate whose spectrum cannot be determined for kinetic reasons, and G represents a blue-shifted intermediate with an absorption maximum at about 393 nm in the absolute spectrum. The striking and principal feature of these observations is that the spectrum of Complex G does not vary with structural differences in the iodosobenzene derivatives, in contrast to the transient species observed in previous studies in this laboratory in the reaction between cytochrome P-450 form 2 and aromatic peroxy compounds. Complex G exhibits the spectral properties one might anticipate for an iron-oxo intermediate containing only one oxygen atom derived from the starting iodosobenzene.  相似文献   

12.
Reactive oxygen intermediates and serine proteases are important components of host defense systems but can produce host injury if not tightly regulated. To determine whether these components can be coordinately controlled, we investigated regulation of superoxide generation by physiologically relevant concentrations of a) highly purified serum-derived antichymotrypsin (ACT), b) recombinant, wild-type ACT, c) rACT in which amino acid substitutions were engineered into the reactive center, and d) chymotrypsin/ACT complexes. These proteins and protein complexes inhibited superoxide anion production in neutrophils stimulated by f-Met-Leu-Phe, Con A, or PMA. In contrast, ligand-stimulated degranulation was not inhibited. In addition, using the recombinants and complexes, the region of ACT involved in inhibiting superoxide anion production was shown to be structurally distinct from the reactive center of the protein. The results indicate that functional domains of ACT corresponding to different biological activities can be decoupled and suggest that three species of ACT (intact ACT, a complexed protease/ACT form, and a partially denatured or proteolyzed form of ACT) that can exist in the microenvironment of an activated neutrophil may play an important role in regulating neutrophil function.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) DNA integration intermediates consist of viral and host DNA segments separated by a 5-nucleotide gap adjacent to a 5'-AC unpaired dinucleotide. These short-flap (pre-repair) integration intermediates are structurally similar to DNA loci undergoing long-patch base excision repair in mammalian cells. The cellular proteins flap endonuclease 1 (FEN-1), proliferating cell nuclear antigen, replication factor C, DNA ligase I and DNA polymerase delta are required for the repair of this type of DNA lesion. The role of FEN-1 in the base excision repair pathway is to cleave 5'-unpaired flaps in forked structures so that DNA ligase can seal the single-stranded breaks that remain following gap repair. The rate of excision by FEN-1 of 5'-flaps from short- and long-flap oligonucleotide substrates that mimic pre- and post-repair HIV-1 integration intermediates, respectively, and the effect of HIV-1 integrase on these reactions were examined in the present study. Cleavage of 5'-flaps by FEN-1 in pre-repair HIV-1 integration intermediates was relatively inefficient and was further decreased 3-fold by HIV-1 integrase. The rate of removal of 5'-flaps by FEN-1 from post-repair HIV-1 integration intermediates containing relatively long (7-nucleotide) unpaired 5'-tails and short (1-nucleotide) gaps was increased 3-fold relative to that seen with pre-repair substrates and was further stimulated 5- to 10-fold by HIV-1 integrase. Overall, post-repair structures were cleaved 18 times more effectively in the presence of HIV-1 integrase than pre-repair structures. The site of cleavage was 1 or 2 nucleotides 3' of the branch point and was unaffected by HIV-1 integrase. Integrase alone had no detectable activity in removing 5'-flaps from either pre- or post-repair substrates.  相似文献   

14.
The spectral behavior of the enzyme prostaglandin H synthase was studied in the Soret region under conditions that permitted comparison of enzyme intermediates involved in peroxidase and cyclooxygenase activities. First, the peroxidase activity was examined. The enzyme's spectral behavior upon reacting with 5-phenyl-pent-4-enyl-1-hydroperoxide was different depending on the presence or absence of the reducing substrate, phenol. In the reaction of prostaglandin H synthase with the peroxide in the absence of phenol, formation of the enzyme intermediate compound I is observed followed by partial conversion to compound II and then by enzyme bleaching. In the reaction with both peroxide and phenol the absorbance decreases and a steady-state spectrum is observed which is a mixture of native enzyme and compound II. The steady state is followed by an increase in absorbance back to that of the native enzyme with no bleaching. The difference can be explained by the reactivity of phenol as a reducing substrate with the prostaglandin H synthase intermediate compounds. Cyclooxygenase activity with arachidonic acid could not be examined in the absence of diethyldithiocarbamate because extensive bleaching occurred. In the presence of diethyldithiocarbamate, enzyme spectral behavior similar to that seen in the reaction of the peroxide and phenol was observed. The similarity of the spectra strongly suggests that the enzyme intermediates involved in both the peroxidase and cyclooxygenase reactions are the same.  相似文献   

15.
Reduced-minus-oxidized difference spectra were recorded on particle preparations of the cyanobacterium Anacystis nidulans. Physiological oxidation of anaerobic membranes was effected either by O2 or by light. In both cases the spectral changes observed in the 550-570nm region were essentially the same. The results were confirmed by dual-wavelength spectrophotometry. It is concluded that a membrane-bound cytochrome f-b complex participates in both respiratory and photosynthetic elevtron transport.  相似文献   

16.
The 5alpha-cholestan-6-one semicarbazone (1) on reaction with hydrogen peroxide at 0 degrees C affords selectively 5alpha-cholestan-6-spiro-1',2',4'-triazolidine-3'-one. (2) The structural assignment of the product was confirmed on the basis of its elemental, analytical and spectral analysis. The Hartree-Fock method using 6-31G* basis set was employed in order to explore the reaction mechanism. The results of the computational study show that the reaction proceeds through two radical intermediates formation. The different characteristics involved during the reaction were explained, firstly, the lower energy conformation of each molecule using total energy, hardness and dipole moment, and secondly, the explanation of the free radical mechanism, using frontier molecular orbital (FMO) theory, encoded electrostatic potential, spin electronic density and atomic charges. The localization of highest occupied molecular orbital (HOMO) or alpha-HOMO, lowest unoccupied molecular orbital (LUMO) or alpha-LUMO and the flow of atomic charges are in good agreement to support the present mechanism of the reaction. Stability and feasibility of all the optimized structures were supported by their respective fundamental frequencies and energy minima.  相似文献   

17.
Serpins are the prototypical members of the conformational disease family, a group of proteins that undergoes a change in shape that subsequently leads to tissue deposition. One specific example is alpha(1)-antichymotrypsin (ACT), which undergoes misfolding and aggregation that has been implicated in emphysema and Alzheimer's disease. In this study we have used guanidine hydrochloride (GdnHCl)-induced denaturation to investigate the conformational changes involved in the folding and unfolding of ACT. When the reaction was followed by circular dichroism spectroscopy, one stable intermediate was observed in 1.5 m GdnHCl. The same experiment monitored by fluorescence revealed a second intermediate formed in 2.5 m GdnHCl. Both these intermediates bound the hydrophobic dye ANS. These data suggest a four-state model for ACT folding N <--> I(1) <--> I(2) <--> U. I(1) and I(2) both have a similar loss of secondary structure (20%) compared with the native state. In I(2), however, there is a significant loss of tertiary interactions as revealed by changes in fluorescence emission maximum and intensity. Kinetic analysis of the unfolding reaction indicated that the native state is unstable with a fast rate of unfolding in water of 0.4 s(-1). The implications of these data for both ACT function and associated diseases are discussed.  相似文献   

18.
B M Dunn  A L Fink 《Biochemistry》1984,23(22):5241-5247
Physical and kinetic properties of porcine pepsin have been examined in aqueous methanol solvents at temperatures below ambient to seek evidence for covalent intermediates in the catalyzed hydrolysis of good substrates. It was first demonstrated that aqueous methanol cryosolvents have no significant deleterious effects upon this protein. The addition of methanol does lead to a drastic reduction in the midpoint of the thermal melting curve of pepsin. This could account for rate reductions previously observed in catalysis by this enzyme. This effect is lessened by the addition of active-site ligands including substrates and is fully reversible upon dilution into aqueous solution. Two substrates were chosen which have chromophoric groups on opposite sides of the scissile peptide bond. The UV spectral changes from hydrolysis of Pro-Thr-Glu-Phe-(NO2)Phe-Arg-Leu and the fluorescence spectral changes from hydrolysis of DNS-Ala-Ala-Phe-Phe-OP4P+-CH3 were studied at temperatures down to -60 degrees C. The resulting Arrhenius plots were linear in the region where pepsin exists in the native state with downward curvature exhibited at higher temperatures where the reversible denaturation occurs. No "burst" reactions were observed with either substrate. In addition, efforts at trapping intermediates by low-temperature denaturation and precipitation have provided no evidence for covalent intermediates on the reaction pathway. Although this evidence is negative, we cannot rule out the possibility of the formation of covalent intermediates following an initial rate-limiting step.  相似文献   

19.
The structure of human alpha 2-macroglobulin (alpha 2M) after reaction with cis-dichlorodiammineplatinum (II) (cis-DDP) was studied by electron microscopy. The cis-DDP stabilized a novel conformation of the native inhibitor resembling a doughnut surrounded by two, three, of four well defined spherules. When only two spherules were present, these structures were usually oriented on opposite sides of the doughnut. The protein region joining a spherule to the central structure did not include sufficient mass to exclude stain and was, therefore, invisible. Other images showed spherules that were partially superimposed on the doughnut. A comparison of many molecules suggested great flexibility of the peripheral spherules relative to the central structure. The cis-DDP prevented complete conformational change when the alpha 2M was reacted with trypsin. The products of this reaction included apparent conformational intermediates. These intermediates most closely resembled either native alpha 2M or the well established "H" structure of alpha 2M-proteinase, depending on the initial conditions used to modify the alpha 2 M with cis-DDP. When cis-DDP-treated alpha 2M was reacted with trypsin, purified by chromatography and subsequently treated with diethyldithiocarbamate, complete conformational change was observed. Based on an analysis of the alpha 2M structural intermediates obtained using the chemical modification procedures described here, a new model of alpha 2M conformational change was developed. We postulate that conformational change initially involves contraction of the peripheral spherules towards the central doughnut. These spherules then unfold and elongate in the perpendicular direction to form the lateral walls of the proteinase transformed alpha 2M H structure.  相似文献   

20.
We investigated the temperature-mediated reassociation of the B820 subunit of Rs. rubrum to form a light-harvesting 1 complex (LH 1). By combining several spectroscopic techniques with global spectral data analysis fitting, we present evidence for the occurence of two spectral intermediates that appear during the reassociation process. At high temperatures, halfway the reassociation reaction, a prominent intermediate appears that has an absorption maximum around 850 nm, a fluorescence maximum around 860–867 nm, a high anisotropy (0.3 to 0.4) and a circular dichroism spectrum with three or four bands with alternating signs. At lower temperatures, more towards the end of the reassociation process, a second intermediate tends to appear that has an absorption maximum around 860 nm, a fluorescence maximum around 885 nm, a medium to high anisotropy (0.1 to 0.3) and a circular dichroism spectrum with two bands with alternating signs. The latter circular dichroism spectrum has a blueshifted zero-crossing compared to the spectrum of the LH 1 complex. Both intermediates have the spectroscopic features of a small oligomer. In the Qy region, the fluorescence anisotropy of both intermediates slightly increases at longer excitation wavelengths, indicative for energy transfer among the pigments within the intermediate oligomers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号