首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Excessive sequestration of Plasmodium falciparum-infected (pRBC) and uninfected erythrocytes (RBC) in the microvasculature, cytoadherence, and rosetting, have been suggested to be correlated with the development of cerebral malaria. P. falciparum erythrocyte membrane protein-1 (PfEMP1) is the parasite-derived adhesin which mediates rosetting. Herein we show that serum proteins are crucial for the rosette formation of four strains of parasites (FCR3S1, TM284, TM180, and R29), whereas the rosettes of a fifth strain (DD2) are serum independent. Some parasites, e.g., FCR3S1, can be depleted of all rosettes by washes in heparin and Na citrate and none of the rosettes remain when the parasite is grown in foetal calf serum or ALBUMAX. Rosettes of other parasites are less sensitive; e.g., 20% of TM180 and R29 and 70% of TM284 rosettes still prevail after cultivation. A serum fraction generated by ion-exchange chromatography and poly-ethylene-glycol precipitation restored 50% of FCR3S1 and approx 40 to 100% of TM180 rosettes. In FCR3S1, antibodies to fibrinogen reverted the effect of the serum fraction and stained fibrinogen bound to the pRBC surface in transmission electron microscopy. Normal, nonimmune IgM and/or IgG was also found attached to the pRBC of the four serum-dependent strains as seen by surface immunofluorescens. Our results suggest that serum proteins, known to participate in rouleaux formation of normal erythrocytes, produce stable rosettes in conjunction with the recently identified parasite-derived rosetting ligand PfEMP1.  相似文献   

2.
Plasmodium merozoite surface protein-1 (MSP-1) is an essential antigen for the merozoite invasion of erythrocytes. A key challenge to the development of an effective malaria vaccine that can block the erythrocyte invasion is to establish the molecular interaction(s) among the parasite surface proteins as well as with the host cell encoded receptors. In the present study, we applied molecular interactions and proteome approaches to identify PfMSP-1 associated complex on the merozoite surface. Proteomic analysis identified a major malaria surface protein, PfRhopH3 interacting with PfMSP-1(42). Pull-down experiments with merozoite lysate using anti-PfMSP-1 or anti-PfRhopH3 antibodies showed 16 bands that when identified by tandem mass spectrometry corresponded to11 parasite proteins: PfMSP-3, PfMSP-6, PfMSP-7, PfMSP-9, PfRhopH3, PfRhopH1, PfRAP-1, PfRAP-2, and two RAP domain containing proteins. This MSP-1 associated complex was specifically seen at schizont/merozoite stages but not the next ring stage. We could also identify many of these proteins in culture supernatant, suggesting the shedding of the complex. Interestingly, the PfRhopH3 protein also showed binding to the human erythrocyte and anti-PfRhopH3 antibodies blocked the erythrocyte invasion of the merozoites. These results have potential implications in the development of PfMSP-1 based blood stage malaria vaccine.  相似文献   

3.
BACKGROUND: Plasmodium falciparum merozoites bind to and invade human erythrocytes via specific erythrocyte receptors. This establishes the erythrocytic stage of the parasite life cycle that causes clinical disease resulting in 2-3 million deaths per year. We tested the hypothesis that a Plasmodium falciparum ligand, EBA-175 region II (RII), which binds its erythrocyte receptor glycophorin A during invasion, can be used as an immunogen to induce antibodies that block the binding of RII to erythrocytes and thereby inhibit parasite invasion of erythrocytes. Accordingly, we immunized mice, rabbits, and monkeys with DNA plasmids that encoded the 616 amino acid RII. MATERIALS AND METHODS: DNA vaccine plasmids that targeted the secretion of recombinant RII protein with and without the universal T-cell helper epitopes P2P30 were used to immunize mice, rabbits, and Aotus monkeys. RII specific antibodies were assessed by IFA, ELISA, blocking of native [35S] labeled EBA-175 binding to human erythrocytes, and growth inhibition assays, all in vitro. RESULTS: The RII DNA plasmids were highly immunogenic as measured by ELISA and IFA. The anti-RII antibodies blocked the binding of native EBA-175 to erythrocytes, and rosetting of erythrocytes on COS-7 cells expressing RII. Most important, murine and rabbit anti-RII antibodies inhibited the invasion of merozoites into erythrocytes. We immunized nonhuman primates and showed that the RII-DNA plasmids were immunogenic and well tolerated in these monkeys. Monkeys were challenged with parasitized erythrocytes; one of three monkeys that received RII DNA plasmid was protected from fulminant disease. After challenge with live parasites, anti-RII antibody titers were boosted in the immunized monkeys. CONCLUSIONS: By proving the hypothesis that anti-RII antibodies can block merozoite invasion of erythrocytes, these studies pave the way for the clinical evaluation of EBA-175 as a receptor-blockade vaccine.  相似文献   

4.
The C-terminal 19-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) is a target of protective Abs against blood-stage infection and a leading candidate for inclusion in a human malaria vaccine. However, the precise role, relative importance, and mechanism of action of Abs that target this protein remain unclear. To examine the potential protective role of Abs to MSP-1(19) in individuals naturally exposed to malaria, we conducted a treatment time to infection study over a 10-wk period in 76 residents of a highland area of western Kenya during a malaria epidemic. These semi-immune individuals were not all equally susceptible to reinfection with P. falciparum following drug cure. Using a new neutralization assay based on transgenic P. falciparum expressing the P. chabaudi MSP-1(19) orthologue, individuals with high-level MSP-1(19)-specific invasion-inhibitory Abs (>75th percentile) had a 66% reduction in the risk of blood-stage infection relative to others in the population (95% confidence interval, 3-88%). In contrast, high levels of MSP-1(19) IgG or IgG subclass Abs measured by enzyme immunoassay with six different recombinant MSP-1(19) Ags did not correlate with protection from infection. IgG Abs measured by serology and functional invasion-inhibitory activity did not correlate with each other. These findings implicate an important protective role for MSP-1(19)-specific invasion inhibitory Abs in immunity to blood-stage P. falciparum infection, and suggest that the measurement of MSP-1(19) specific inhibitory Abs may serve as an accurate correlate of protection in clinical trials of MSP-1-based vaccines.  相似文献   

5.
Rosetting is a property of many malaria parasite species that has been linked to virulence in the major species infecting humans, Plasmodium falciparum. Here, the basic properties of rosettes in the rodent malaria laboratory model, P. chabaudi, were studied with a view to future studies on the role of rosetting in malaria parasite virulence and transmission. Rosetting occurred in 14 out of the 15 P. chabaudi clones studied, varied consistently between clones, and ranged between 9 and 37% at full parasite maturity. Rosetting frequency markedly declined after the mouse reached peak parasitemia, possibly due to host immunity. Consistent with P. falciparum and P. vivax, rosettes in P. chabaudi were disrupted by treatment with trypsin and EDTA. However, P. chabaudi rosettes were insensitive to sulfated glycoconjugates (heparin, heparan sulfate and fucoidan). The molecular basis of rosetting in P. chabaudi is unknown at present, but the results suggest that the molecules involved may differ from those in human-infecting species.  相似文献   

6.
The merozoite surface protein-1 (MSP-1) of Plasmodium falciparum comprises two major targets of antibody-mediated immunity: the polymorphic block 2 and the 19-kDa C-terminal domain MSP-1(19). Here, we measured antibodies to three block 2 variants and MSP-1(19) among Amazonian gold miners and examined the repertoire of block 2 variants in local parasites. Main findings were as follows: (1) Only seven different block 2 variants were found in 18 DNA sequences analyzed. (2) No major difference was observed in IgG subclass distribution of antibodies from symptomatic P. falciparum-infected patients, asymptomatic parasite carriers, and non-infected subjects. (3) Antibodies to all block 2 antigens, but not to MSP-1(19), were biased towards IgG3 across different strata of cumulative malaria exposure. (4) Similar proportions of symptomatic and asymptomatic subjects failed to recognize the block 2 variant expressed by infecting parasites. These negative results underscore the limits of conventional antibody assays to evaluate clinical immunity to malaria.  相似文献   

7.
The major protein component at the surface of merozoites, the infectious form of blood stage malaria parasites, is the merozoite surface protein 1 (MSP-1) complex. In the human malaria parasite Plasmodium falciparum, this complex is generated by proteolytic cleavage of a 190-kDa glycosylphosphatidylinositol-anchored precursor into four major fragments, which remain non-covalently associated. Here, we describe the in vitro reconstitution of the MSP-1 complex of P. falciparum strain 3D7 from its heterologously produced subunits. We provide evidence for the arrangement of the subunits within the complex and show how they interact with each other. Our data indicate that the conformation assumed by the reassembled complex as well as by the heterologously produced 190-kDa precursor corresponds to the native one. Based on these results we propose a first structural model for the MSP-1 complex. Together with access to faithfully produced material, this information will advance further structure-function studies of MSP-1 that plays an essential role during invasion of erythrocytes by the parasite and that is considered a promising candidate for a malaria vaccine.  相似文献   

8.
One strategy to develop a multi-antigen malaria vaccine is to employ live vectors to carry putative protective Plasmodium falciparum antigens to the immune system. The 19 kDa carboxyl terminus of P. falciparum merozoite surface protein 1 (MSP-1), which is essential for erythrocyte invasion and is a leading antigen for inclusion in a multivalent malaria vaccine, was genetically fused to fragment C of tetanus toxin and expressed within attenuated Salmonella typhi CVD 908. Under conditions in the bacterial cytoplasm, the fragment C-MSP-1 fusion did not form the epidermal growth factor (EGF)-like domains of MSP-1; monoclonal antibodies failed to recognize these conformational domains in immunoblots of non-denatured protein extracted from live vector sonicates. The MSP-1 was nevertheless immunogenic. One month following intranasal immunization of BALB/c mice with the live vector construct, four out of five mice exhibited > or =four-fold rises in anti-MSP-1 by ELISA (GMT=211); a single intranasal booster raised titers further (GMT=1280). Post-immunization sera recognized native MSP-1 on merozoites as determined by indirect immunofluorescence. These data encourage efforts to optimize MSP-1 expression in S. typhi (e.g. as a secreted protein), so that the EGF-like epitopes, presumably necessary for stimulating protective antibodies, can form.  相似文献   

9.
Merozoites of the malaria parasite Plasmodium falciparum expose at their surface a large multiprotein complex, composed of proteolytically processed, noncovalently associated products of at least three genes, msp-1, msp-6, and msp-7. During invasion of erythrocytes, this complex is shed from the surface except for a small glycosylphosphatidylinositol-anchored portion originating from MSP-1. The proteolytic cleavage separating the C-terminal portion of MSP-1 is required for successful invasion. Little is known about the structure and function of the abundant and essential multipartite complex. Using heterologously produced MSP-1, MSP-6, and MSP-7 in precursor and with the exception of MSP-7 in processed form, we have studied in vitro the complex formation between the different proteins to identify the interaction partners within the complex. Both MSP-6(36) and MSP-7 bind only to MSP-1 subunits that are shed, but although MSP-6(36) contacts just subunit p38, MSP-7 interacts with p83, p30, and p38. The intact C-terminal region of MSP-6 is required for the association with p38 as well as for its multimerization into tetramers. Furthermore, our data suggest that only the processed form and not the precursor form of MSP-1 interacts with MSP-6(36). MSP-6- as well as MSP-7-specific rabbit antibodies inhibit parasite multiplication in vitro as shown previously for antibodies directed against MSP-1. Our findings raise interesting questions with regard to proteolysis-mediated mechanisms of maturation of the MSP-1-MSP-6-MSP-7 complex and to the mode by which antibodies directed against this complex interfere with parasite multiplication.  相似文献   

10.
Plasmodium falciparum, the most important etiological agent of human malaria, is endowed with a highly complex cell cycle that is essential for its successful replication within the host. A number of evidence suggest that changes in parasite Ca2+ levels occur during the intracellular cycle of the parasites and play a role in modulating its functions within the RBC. However, the molecular identification of Plasmodium receptors linked with calcium signalling and the causal relationship between Ca2+ increases and parasite functions are still largely mysterious. We here describe that increases in P. falciparum Ca2+ levels, induced by extracellular ATP, modulate parasite invasion. In particular, we show that addition of ATP leads to an increase of cytosolic Ca2+ in trophozoites and segmented schizonts. Addition of the compounds KN62 and Ip5I on parasites blocked the ATP-induced rise in [Ca2+]c. Besides, the compounds or hydrolysis of ATP with apyrase added in culture drastically reduce RBC infection by parasites, suggesting strongly a role of extracellular ATP during RBC invasion. The use of purinoceptor antagonists Ip5I and KN62 in this study suggests the presence of putative purinoceptor in P. falciparum. In conclusion, we have demonstrated that increases in [Ca2+]c in the malarial parasite P. falciparum by ATP leads to the modulation of its invasion of red blood cells.  相似文献   

11.
Apical organellar proteins in Plasmodium falciparum merozoites play important roles upon invasion. To date, dense granule, the least studied apical organelle, secretes parasite proteins across the parasitophorous vacuole membrane (PVM) to remodel the infected erythrocyte. Although this phenomenon is key to parasite growth and virulence, only five proteins so far have been identified as dense granule proteins. Further elucidation of dense granule molecule(s) is therefore required. P. falciparum Exported Protein (EXP) 1, previously reported as a parasitophorous vacuole membrane (PVM) protein, is considered essential for parasite growth. In this study, we characterized EXP1 using specific anti-EXP1 antibodies generated by immunization of wheat germ cell-free produced recombinant EXP1. Immunofluorescence microscopy (IFA) demonstrated that EXP1 co-localized with RESA, indicating that the protein is initially localized to dense granules in merozoites, followed by translocation to the PVM. The EXP1 localization in dense granule of merozoites and its translocation to the PVM after invasion of erythrocytes were further confirmed by immunoelectron microscopy. Here, we demonstrate that EXP1 is one of the dense granule proteins in merozoites, which is then transported to the PVM after invasion.  相似文献   

12.
Merozoite surface protein 1 (MSP1) is the major protein component on the surface of the merozoite, the erythrocyte-invasive form of the malaria parasite Plasmodium. Present in all species of Plasmodium, it undergoes two distinct proteolytic maturation steps during the course of merozoite development that are essential for invasion of the erythrocyte. Antibodies specific for the C-terminal maturation product, MSP1-19, can inhibit erythrocyte invasion and parasite growth. This polypeptide is therefore considered to be one of the more promising malaria vaccine candidates. We describe here the crystal structure of recombinant MSP1-19 from P.falciparum (PfMSP1-19), the most virulent species of the parasite in humans, as a complex with the Fab fragment of the monoclonal antibody G17.12. This antibody recognises a discontinuous epitope comprising 13 residues on the first epidermal growth factor (EGF)-like domain of PfMSP1-19. Although G17.12 was raised against the recombinant antigen expressed in an insect cell/baculovirus system, it binds uniformly to the surface of merozoites from the late schizont stage, showing that the cognate epitope is exposed on the naturally occurring MSP1 polypeptide complex. Although the epitope includes residues that have been mapped to regions recognised by invasion-inhibiting antibodies studied by other workers, G17.12 does not inhibit erythrocyte invasion or MSP1 processing.  相似文献   

13.

Background

Rosetting is a Plasmodium falciparum virulence factor implicated in the pathogenesis of life-threatening malaria. Rosetting occurs when parasite–derived P. falciparum Erythrocyte Membrane Protein One (PfEMP1) on the surface of infected erythrocytes binds to human receptors on uninfected erythrocytes. PfEMP1 is a possible target for a vaccine to induce antibodies to inhibit rosetting and prevent severe malaria.

Methodology/Findings

We examined the vaccine potential of the six extracellular domains of a rosette-mediating PfEMP1 variant (ITvar9/R29var1 from the R29 parasite strain) by immunizing rabbits with recombinant proteins expressed in E. coli. Antibodies raised to each domain were tested for surface fluorescence with live infected erythrocytes, rosette inhibition and phagocytosis-induction. Antibodies to all PfEMP1 domains recognized the surface of live infected erythrocytes down to low concentrations (0.02–1.56 µg/ml of total IgG). Antibodies to all PfEMP1 domains except for the second Duffy-Binding-Like region inhibited rosetting (50% inhibitory concentration 0.04–4 µg/ml) and were able to opsonize and induce phagocytosis of infected erythrocytes at low concentrations (1.56–6.25 µg/ml). Antibodies to the N-terminal region (NTS-DBL1α) were the most effective in all assays. All antibodies were specific for the R29 parasite strain, and showed no functional activity against five other rosetting strains.

Conclusions/Significance

These results are encouraging for vaccine development as they show that potent antibodies can be generated to recombinant PfEMP1 domains that will inhibit rosetting and induce phagocytosis of infected erythrocytes. However, further work is needed on rosetting mechanisms and cross-reactivity in field isolates to define a set of PfEMP1 variants that could induce functional antibodies against a broad range of P. falciparum rosetting parasites.  相似文献   

14.
The malaria parasite Plasmodium falciparum induces a number of novel adhesion properties in the erythrocytes that it infects. One of these properties, the ability of infected erythrocytes to bind uninfected erythrocytes to form rosettes, is associated with severe malaria and may play a direct role in the pathogenesis of disease. Previous work has shown that erythrocytes deficient in complement receptor (CR) 1 (CR1, CD35; C3b/C4b receptor) have greatly reduced rosetting capacity, indicating an essential role for CR1 in rosette formation. Using deletion mutants and mAbs, we have localized the region of CR1 required for the formation of P. falciparum rosettes to the area of long homologous repeat regions B and C that also acts as the binding site for the activated complement component C3b. This result raises the possibility that C3b could be an intermediary in rosetting, bridging between the infected erythrocyte and CR1. We were able to exclude this hypothesis, however, as parasites grown in C3-deficient human serum formed rosettes normally. We have also shown in this report that rosettes can be reversed by mAb J3B11 that recognizes the C3b binding site of CR1. This rosette-reversing activity was demonstrated in a range of laboratory-adapted parasite strains and field isolates from Kenya and Malawi. Thus, we have mapped the region of CR1 required for rosetting and demonstrated that the CR1-dependent rosetting mechanism occurs commonly in P. falciparum isolates, and could therefore be a potential target for future therapeutic interventions to treat severe malaria.  相似文献   

15.
The Plasmodium falciparum malaria parasite is the causative agent of malaria tropica. Merozoites, one of the extracellular developmental stages of this parasite, expose at their surface the merozoite surface protein-1 complex (MSP-1), which results from the proteolytic processing of a 190-200 kDa precursor. MSP-1 is highly immunogenic in humans and numerous studies suggest that this protein is an effective target for a protective immune response. Although its function is unknown, there are indications that it may play a role during invasion of erythrocytes by merozoites. The parasite-derived msp-1 gene, which is approximately 5000 bp long, contains 74% AT. This high AT content has prevented stable cloning of the full-size gene in Escherichia coli and consequently its expression in heterologous systems. Here, we describe the synthesis of a 4917 bp gene encoding MSP-1 from the FCB-1 strain of P. falciparum adjusted for human codon preferences. The synthetic msp-1 gene (55% AT) was cloned, maintained and expressed in its entirety in E.coli as well as in CHO and HeLa cells. The purified protein is soluble and appears to possess native conformation because it reacts with a panel of mAbs specific for conformational epitopes. The strategy we used for synthesizing the full-length msp-1 gene was toassemble it from DNA fragments encoding all of the major proteolytic fragments normally generated at the parasite's surface. Thus, after subcloning we also obtained each of these MSP-1 processing products as hexahistidine fusion proteins in E.coli and isolated them by affinity chromatography on Ni2+agarose. The availability of defined preparations of MSP-1 and its major processing products open up new possibilities for in-depth studies at the structural and functional level of this important protein, including the exploration of MSP-1-based experimental vaccines.  相似文献   

16.
用透射电镜观察红内期鼠疟原虫的入侵过程,发现红细胞在与裂殖子实际接触之前就发生很多种形状变化,主要有杯状和伪足两种类型。前者是红细胞与裂殖子相邻的一侧弯曲,形成与裂殖子表面相适应的凹陷;后者则是红细胞伸出突起或伪足逐渐接近裂殖子。附着之后,即逐渐扩展将其包围。在入侵中、后期,红细胞凹陷口周围呈波浪形突出,或者口部升高,凹陷壁逐渐变薄,有明显的前进趋势。这表明,红细胞在裂殖子诱导下,内吞活性增强了,有能力进行变形运动,包围裂殖子,从而以这种方式形成纳虫泡和使裂殖子进入其胞体内。  相似文献   

17.
Merozoite surface protein 1 (MSP-1) is a precursor to major antigens on the surface of Plasmodium spp. merozoites, which are involved in erythrocyte binding and invasion. MSP-1 is initially processed into smaller fragments; and at the time of erythrocyte invasion one of these of 42 kDa (MSP-1(42)) is subjected to a second processing, producing 33 kDa and 19 kDa fragments (MSP-1(33) and MSP-1(19)). Certain MSP-1-specific monoclonal antibodies (mAbs) react with conformational epitopes contained within the two epidermal growth factor domains that comprise MSP-1(19), and are classified as either inhibitory (inhibit processing of MSP-1(42) and erythrocyte invasion), blocking (block the binding and function of the inhibitory mAb), or neutral (neither inhibitory nor blocking). We have mapped the epitopes for inhibitory mAbs 12.8 and 12.10, and blocking mAbs such as 1E1 and 7.5 by using site-directed mutagenesis to change specific amino acid residues in MSP-1(19) and abolish antibody binding, and by using PEPSCAN to measure the reaction of the antibodies with every octapeptide within MSP-1(42). Twenty-six individual amino acid residue changes were made and the effect of each on the binding of mAbs was assessed by Western blotting and BIAcore analysis. Individual changes had either no effect, or reduced, or completely abolished the binding of individual mAbs. No two antibodies had an identical pattern of reactivity with the modified proteins. Using PEPSCAN each mAb reacted with a number of octapeptides, most of which were derived from within the first epidermal growth factor domain, although 1E1 also reacted with peptides spanning the processing site. When the single amino acid changes and the reactive peptides were mapped onto the three-dimensional structure of MSP-1(19), it was apparent that the epitopes for the mAbs could be defined more fully by using a combination of both mutagenesis and PEPSCAN than by either method alone, and differences in the fine specificity of binding for all the different antibodies could be distinguished. The incorporation of several specific amino acid changes enabled the design of proteins that bound inhibitory but not blocking antibodies. These may be suitable for the development of MSP-1-based vaccines against malaria.  相似文献   

18.
The major surface protein MSP-1 of Plasmodium falciparum blood-stage malaria parasites contains notably conserved sequence blocks with unknown function. The recombinant protein 190L, which represents such a block, exhibits a high affinity for red blood cell membranes. We demonstrate that both 190L and native MSP-1 protein bind to the inner red blood cell membrane skeleton protein spectrin. By using overlapping peptides covering the 190L molecule, we show that the spectrin contact site of 190L is included in a linear sequence of 30 amino acid residues. Association of 190L with naturally occurring spectrin deficient red blood cells is drastically reduced. In the same cells parasite invasion is normal, but the intracellular parasite development arrests late in the trophozoite stage. A similar situation arises when synthetic peptides covering the spectrin recognition sequence of 190L are added to P.falciparum cultures. These data and the cellular localization of MSP-1 suggest the possibility that MSP-1 associates with spectrin under natural conditions.  相似文献   

19.
We have identified a Plasmodium vivax merozoite surface protein (MSP) that migrates on SDS-polyacrylamide gels at a Mr of about 185 kDa. This protein was recognized by a P. vivax monoclonal antibody (mAb) that localizes the protein by immunofluorescence to the surface of merozoites and also immunoprecipitates this protein from NP-40 detergent extracts of [35S]methionine metabolically radiolabeled P. vivax schizonts. The P. vivax MSP does not become biosynthetically radiolabeled with [3H]glucoamine, [3H]myristate, [3H]palmitate, or [3H]mannose, indicating that this P. vivax MSP is not posttranslationally modified and bound to the merozoite membrane by a glycosylphosphatidylinositol (GPI) lipid anchor. Thus, in this respect, this protein is different from members of the MSP-1 protein family and from MSP-2 and MSP-4 of P. falciparum. The mAb cross-reacts with and outlines the surface of P. cynomolgi merozoites and immunoprecipitates a 150-kDa P. cynomolgi homologue. The mAb was used as an affinity reagent to purify the native homologous MSP from NP-40 extracts of P. cynomolgi mature schizonts in order to develop a specific polyclonal antiserum. The resulting anti-PcyMSP rabbit antiserum cross-reacts strongly with the P. vivax 185-kDa MSP and also recognizes an analogous 110-kDa protein from P. knowlesi. We have determined via an immunodepletion experiment that the 110-kDa P. knowlesi MSP corresponds to the PK 110 protein partially characterized earlier (Perler et al. 1987). The potential of P. vivax MSP as a vaccine candidate was addressed by conducting in vitro inhibition of erythrocyte invasion assays, and the IgG fraction of both the P. vivax MSP mAb and the P. cynomolgi MSP rabbit antiserum significantly inhibited entry of P. vivax merozoites. We denote, on a preliminary basis, these antigenically related merozite surface proteins PvMSP-185, PcyMSP-150, and PkMSP-110.  相似文献   

20.
Erythrocyte invasion by the malaria merozoite is accompanied by the regulated discharge of apically located secretory organelles called micronemes. Plasmodium falciparum apical membrane antigen-1 (PfAMA-1), which plays an indispensable role in invasion, translocates from micronemes onto the parasite surface and is proteolytically shed in a soluble form during invasion. We have previously proposed, on the basis of incomplete mass spectrometric mapping data, that PfAMA-1 shedding results from cleavage at two alternative positions. We now show conclusively that the PfAMA-1 ectodomain is shed from the merozoite solely as a result of cleavage at a single site, just 29 residues away from the predicted transmembrane-spanning sequence. Remarkably, this cleavage is mediated by the same membrane-bound parasite serine protease as that responsible for shedding of the merozoite surface protein-1 (MSP-1) complex, an abundant, glycosylphosphatidylinositol-anchored multiprotein complex. Processing of MSP-1 is essential for invasion. Our results indicate the presence on the merozoite surface of a multifunctional serine sheddase with a broad substrate specificity. We further demonstrate that translocation and shedding of PfAMA-1 is an actin-independent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号