首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Picolinate binds to the anionic semiquinoid form of D-amino acid oxidase (DAO), and the complex formed has a broad absorption band in the long-wavelength region extending beyond 800 nm, which is reminiscent of a charge transfer interaction. The binding has a stoichiometry of 1:1 with respect to the enzyme. The dissociation constant at 25 degrees C was 30 microM at pH 7.0. The pH dependence (pH 7.0-8.3) of the dissociation constant indicates that one proton is associated with the complex formation, and suggests that picolinate able to bind to the anionic semiquinoid enzyme is in the cationic form protonated at the nitrogen atom. By adding dithionite to the oxidized DAO solution containing pyruvate and various amines, a similar anionic semiquinoid DAO complex having a broad long-wavelength absorption band, appeared. Resonance Raman spectra with excitation at 623.8 nm of the anionic semiquinoid DAO complex formed in the presence of pyruvate and methylamine indicate that the complex consists of the anionic semiquinoid DAO and N-methyl-alpha-iminopropionate produced from pyruvate and methylamine, and that the imino group must be protonated. This supports the proposal that the presence of a positively charged group in the vicinity of flavin is required for the stabilization of the anionic semiquinoid flavin. The results also suggest that the broad absorption band is derived from the charge transfer interaction between the anionic semiquinoid flavin and the imino acid, in which the flavin C(4a)-N(5) locus and the locus containing (Formula: see text) of the amino acid are important for the interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Resonance Raman (RR) spectra excited at 632.8 nm within a charge transfer absorption band were obtained for a catalytic intermediate, the purple complex of D-amino acid oxidase with D-proline or D-alanine as a substrate. The resonance enhanced Raman lines around 1605 and 1360 cm?1 in either of the complexes were suggested to be derived from vibrational modes of reduced flavin molecule. Since the highest energy band at 1692 cm?1 in the RR spectrum with D-alanine was shifted to 1675 cm?1 upon [15N] substitution of alanine and ammonium, this Raman line in the spectrum with D-alanine or the line at 1658 cm?1 with D-proline is assigned to the CN stretching mode of an imino acid corresponding to each amino acid. These results confirm the concept that the purple intermediate of D-amino acid oxidase consists of reduced flavin and an imino acid.  相似文献   

3.
4.
Tilocca A  Gamba A  Vanoni MA  Fois E 《Biochemistry》2002,41(48):14111-14121
Large-scale Car-Parrinello molecular dynamics simulations of D-alanine oxidation catalyzed by the flavoenzyme D-amino acid oxidase have been carried out. A model of the enzyme active site was built by starting from the enzyme X-ray structure, and by testing different subsystems comprising different sets of aminoacyl residues. In this process, the stability of the enzyme-substrate complex was taken as a measure of the accuracy of the model. The activated transfer of the amino acid alpha-hydrogen from the substrate to the flavin N5 position was then induced by constraining a suitable transfer reaction coordinate, and the free energy profile of the reaction was calculated. The evolution of electronic and structural properties of both enzyme-bound substrate and flavin cofactor along the reaction path is consistent with a hydride-transfer mechanism. The calculated free energy barrier for this process (13 kcal/mol) is in excellent agreement with the activation energy value derived from the experimentally determined rate constant for the corresponding enzyme-catalyzed reaction. The electronic distribution of the reduced flavin shows that the transferred electrons tend to be centered near the C4a position rather than delocalized over the flavin pyrimidine ring. This feature is mechanistically relevant in that such an electronic distribution may promote the subsequent enzyme-catalyzed reduction of molecular oxygen to yield hydrogen peroxide via a postulated flavin 4a-peroxide intermediate. These results also show that a first-principles molecular dynamics approach is suitable to study the mechanism of complex enzymatic processes, provided that a smaller, yet reliable, subsystem of the enzyme can be identified, and special computational techniques are employed to enhance the sampling of the reactive event.  相似文献   

5.
The resonance Raman (RR) spectra of the complexes of D-amino acid oxidase (DAO) with benzoate derivatives were measured. The RR spectra of complexes of DAO with benzoate derivatives excited at 514.5 nm are similar to one another and also similar to that of oxidized flavin. In the cases of DAO-o-NH2-benzoate and DAO-o-OH-benzoate complexes, however, the line at 568 or 565 cm-1, derived from the benzoate derivative, was intensified. In the case of DAO-o-NH2-benzoate complex, which has an intense charge-transfer absorption band, the resonance enhancement of the Raman lines at 1583 and 568 cm-1 in the RR spectrum excited at 632.8 nm is striking. The former line is known to involve the vibrational displacements of the N(5) and C(4a) atoms of isoalloxazine and the latter is considered to be derived from a ring deformation mode of o-NH2-benzoate. This suggests that the o-NH2-benzoate molecule lies along the N(5)-C(4a) bond and parallel to the flavin face. A Raman line derived from o-OH-benzoate in the RR spectrum of DAO-o-OH-benzoate complex excited at 514.5 nm was detected. This result supports the view that the complex has a charge-transfer band, as has been pointed out by Massey and Ganther. Also, the spectrum of quasi-DAO-o-OH-benzoate complex is identical with that of the complex of DAO, suggesting that the active sites of these two enzymes have similar structures.  相似文献   

6.
7.
To investigate the structural modulation of ligands and their interaction in the active-site nanospace when they form charge-transfer (CT) complexes with D-amino acid oxidase (DAO) in three redox states, we compared Raman bands of the ligands in complex with DAO with those of ligands free in solution. Isotope-labeled ligands were synthesized for assignments of observed bands. The COO(-) stretching of ligands observed around, 1,370 cm(-1) downshifted by about 17 cm(-1) upon complexation with oxidized, semiquinoid and reduced DAO, except for the case of reduced DAO-N-methylisonicotinate complex (8 cm(-1) downward shift); the interaction mode of the carboxylate group with the guanidino group of Arg283 and the hydroxy moiety of Tyr228 of DAO is similar in the three redox states. The C=N stretching mode (1,704 cm(-1)) of Delta(1)-piperideine-2-carboxylate (D1PC) downshifted to 1,675 and 1,681 cm(-1) upon complexation with reduced and semiquinoid DAO, respectively. The downward shifts indicate that the C=N bond is weakened upon the complexation. This is probably due mainly to charge-transfer (CT) interaction between D1PC and semiquinoid or reduced flavin, i.e., the partial electron donation from the highest occupied molecular orbital (HOMO) of reduced flavin or a singly occupied molecular orbital (SOMO) of semiquinoid flavin to the lowest unoccupied molecular orbital (LUMO), an antibonding orbital, of D1PC. This speculation was supported by the finding that the magnitude of the shift is smaller by 5 cm(-1) (observed at 1,680 cm(-1)) in the case of reduced DAO reconstituted with 7,8-Cl(2)-FAD, whose reduced form has lower electron-donating ability than natural reduced FAD. The amount of electron flow was estimated by applying the theory of Friedrich and Person [(1966) J. Chem. Phys. 44, 2166-2170] to these complexes; the amounts of charge transfer from reduced FAD and reduced 7,8-Cl(2)-FAD to D1PC were estimated to be about 10 and 8% of one electron, respectively, in the CT complexes of reduced DAO with D1PC.  相似文献   

8.
D-amino acid oxidase (D-amino acid oxygen oxidoreductase E.C. 1.4.3.3.) was found to bind various nitroaromatics with characteristic spectral changes similar in form to those caused by benzoate and its analogues. Nitrobenzene and o-nitroaniline were found to be competitive inhibitors of the enzyme. Dissociation constants of nitroaromatics tested were larger than those of the carboxylates except in the case of o-nitroaniline. Dinitrophenol was also found to bind to the enzyme with almost the same value of dissociation constant as nitrobenzene; on the other hand, dicarboxylates had no complex ability (3).  相似文献   

9.
10.
Resonance Raman (RR) spectra of two reaction intermediates of D-amino acid oxidase with substrate analogs were obtained. The reaction intermediates studied were (1) the one in the aerobic oxidative reaction of the enzyme with beta-cyano-D-alanine and (2) the other in the reverse reductive reaction of the enzyme with chloropyruvate and ammonium. Both intermediates are characterized with the charge transfer absorption bands in the long wavelength region extending beyond 600 nm. The RR spectra of the two intermediates excited at 488.0 or 514.5 nm are those of oxidized flavin, which is consistent with our previous assumption that oxidized flavin is involved in these reaction intermediates. Relatively simple RR spectra were obtained for these intermediates with excitation at 632.8 nm which is within the region of the charge transfer bands. The resonance enhancement for the Raman lines around 1585 and 1350 cm-1 for either of the intermediates with excitation in the region of the charge transfer bands suggests that the charge transfer interaction involves the N(5)-C(4a) region extending to the C(10a)-N(1)-C(2) region of the isoalloxazine nucleus. The Raman line at 1657 cm-1 for the intermediate with chloropyruvate and ammonium was assigned to C = N of an imino acid from the isotopic frequency shift upon 15N-substitution. The assignment substantiates our previous conclusion that the intermediate involves an imino acid, alpha-imino-beta-chloropropionate.  相似文献   

11.
12.
13.
D-Amino acid oxidase (DAAO) has been proposed to be involved in the oxidation of D-serine, an allosteric activator of the NMDA-type glutamate receptor in the brain, and to be associated with the onset of schizophrenia. The recombinant human DAAO was expressed in Escherichia coli and was isolated as an active homodimeric flavoenzyme. It shows the properties of the dehydrogenase-oxidase class of flavoproteins, possesses a low kinetic efficiency, and follows a ternary complex (sequential) kinetic mechanism. In contrast to the other known DAAOs, the human enzyme is a stable homodimer even in the apoprotein form and weakly binds the cofactor in the free form.  相似文献   

14.
15.
16.
Resonance Raman (RR) spectra were obtained for the purple complexes of D-amino acid oxidase (DAO) with D-lysine or N-methylalanine. RR spectra of a complex of oxidized DAO with the oxidation product of D-lysine or D-proline were also measured. The isotope shifts of the observed bands of the purple complex with D-lysine upon 13C- or 15N-substitution of lysine indicate that the ligand is delta 1-piperideine-2-carboxylate. That the band at 1671 cm-1 for the purple intermediate with N-methylalanine shifts to 1666 cm-1 in D2O solution indicates that the imino acid, N-methyl-alpha-iminopropionate, has a protonated imino group. Many bands due to a ligand in the RR spectra of the complex of oxidized DAO with an oxidation product can be observed below 1000 cm-1, but no band for the purple complex is seen in this frequency region. The band associated with the CO2-symmetric stretching mode of the product, such as delta 1-piperideine-2-carboxylate or delta 1-pyrrolidine-2-carboxylate, complexed with the oxidized DAO shifts in D2O solution. This suggests that the product imino acid interacts with the enzyme through some proton(s).  相似文献   

17.
1. Activity of D-amino acid oxidase was detected in tissue extract of mouse liver by two sensitive spectrophotometric methods. 2. The activity was also detectable in extracts of the heart, but not of lung.  相似文献   

18.
1. An appreciable amount of D-amino acid oxidase was found in the extract of mouse liver by enzyme-linked immunosorbent assay (ELISA). 2. The content of the enzyme in the kidney and heart extracts was also measured by the assay.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号