首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial electron transport system is necessary for growth and survival of malarial parasites in mammalian host cells. NADH dehydrogenase of respiratory complex I was demonstrated in isolated mitochondrial organelles of the human parasite Plasmodium falciparum and the mouse parasite Plasmodium berghei by using the specific inhibitor rotenone on oxygen consumption and enzyme activity. It was partially purified by two sequential steps of fast protein liquid chromatographic techniques from n-octyl glucoside solubilization of the isolated mitochondria of both parasites. In addition, physical and kinetic properties of the malarial enzymes were compared to the host mouse liver mitochondrial respiratory complex I either as intact or as partially purified forms. The malarial enzyme required both NADH and ubiquinone for maximal catalysis. Furthermore, rotenone and plumbagin (ubiquinone analog) showed strong inhibitory effect against the purified malarial enzymes and had antimalarial activity against in vitro growth of P. falciparum. Some unique properties suggest that the enzyme could be exploited as chemotherapeutic target for drug development, and it may have physiological significance in the mitochondrial metabolism of the parasite.  相似文献   

2.
Ornithine decarboxylase from the African trypanosome is an important target for antitrypanosomal chemotherapy. Despite this, the enzyme had not been previously purified or extensively characterized as it is a very low level protein. In this paper we describe the purification of Trypanosoma brucei brucei ornithine decarboxylase from bloodstream form trypomastigotes by 107,000-fold to a specific activity of 2.7 x 10(6) nmol CO2/h/mg of protein in the parasite. T. brucei ornithine decarboxylase had a native molecular weight of 90,000 and a subunit molecular weight of 45,000. The isoelectric point of the protein was 5.0. The Km for ornithine was 280 microM and the Ki for the irreversible inhibitor alpha-difluoromethylornithine (DFMO) was 220 microM with a half-time of inactivation at saturating DFMO concentration of 2.7 min. T. brucei ornithine decarboxylase appears similar to mouse ornithine decarboxylase, further supporting our previous suggestion that the selective toxicity of DFMO to the parasite is not due to catalytic differences between the two proteins. Although a small quantity of T. brucei ornithine decarboxylase was purified from T. brucei, extensive structural and kinetic studies will require a more ample source of the enzyme. We therefore expressed our previously cloned T. brucei ornithine decarboxylase gene in Escherichia coli using a vector that contains an inducible lambda promoter. T. brucei ornithine decarboxylase activity was induced in E. coli to levels that were 50 to 200 fold of that present in the long-slender bloodstream form of T. brucei. Ornithine decarboxylase activity in the crude E. coli lysate was 1500-6000 nmol of CO2/h/mg of protein and represented 0.05-0.2% of the total cell protein. The recombinant T. brucei ornithine decarboxylase was purified to apparent homogeneity from the transformed E. coli. The purified recombinant enzyme had kinetic and physical properties essentially identical to those of the native enzyme.  相似文献   

3.
Plasmodiumfalciparum is responsible for the majority of life-threatening cases of human malaria. The global emergence of drug-resistant malarial parasites necessitates identification and characterization of novel drug targets. Carbonic anhydrase (CA) is present at high levels in human red cells and in P. falciparum. Existence of at least three isozymes of the alpha < class was demonstrated in P. falciparum and a rodent malarial parasite Plasmodium berghei. The major isozyme CA1 was purified and partially characterized from P. falciparum (PfCA1). A search of the malarial genome database yielded an open reading frame similar to the alpha-CAs from various organisms, including human. The primary amino acid sequence of the PfCA1 has 60% identity with a rodent parasite Plasmodium yoelii enzyme (PyCA). The single open reading frames encoded 235 and 252 amino acid proteins for PfCA1 and PyCA, respectively. The highly conserved active site residues were also found among organisms having alpha-CAs. The PfCA1 gene was cloned, sequenced and expressed in Escherichia coli. The purified recombinant PfCA1 enzyme was catalytically active. It was sensitive to acetazolamide and sulfanilamide inhibition. Kinetic properties of the recombinant PfCA1 revealed the authenticity to the wild type enzyme purified from P. falciparum in vitro culture. Furthermore, the PfCA1 inhibitors acetazolamide and sulfanilamide showed good antimalarial effect on the in vitro growth of P. falciparum. Our molecular tools developed for the recombinant enzyme expression will be useful for developing potential antimalarials directed at P. falciparum carbonic anhydrase.  相似文献   

4.
A structure-based approach has been taken to develop 4'-substituted analogs of triclosan that target the key malarial enzyme Plasmodium falciparum enoyl acyl carrier protein reductase (PfENR). Many of these compounds exhibit nanomolar potency against purified PfENR enzyme and modest (2-10microM) potency against in vitro cultures of drug-resistant and drug-sensitive strains of the P. falciparum parasite. X-ray crystal structures of nitro 29, aniline 30, methylamide 37, and urea 46 demonstrate the presence of hydrogen-bonding interactions with residues in the active site and point to future rounds of optimization to improve compound potency against purified enzyme and intracellular parasites.  相似文献   

5.
Ornithine decarboxylase was purified from androgen-treated mouse kidney to homogeneity and high specific activity. The purified enzyme was utilized for production and screening of rat monoclonal and polyclonal antibodies. A rat monoclonal antibody was isolated which was capable of immunoprecipitation of native mouse kidney ornithine decarboxylase activity or the [3H]difluoromethylornithine-inactivated enzyme. Phosphorylation of mouse ornithine decarboxylase by casein kinase-II prior to immunoprecipitation led to complete loss of the epitope recognized by the monoclonal antibody but did not alter recognition by polyclonal antibody. Mammalian ornithine decarboxylase activity obtained from several species, in crude or partially purified extracts, was subjected to quantitative immunoprecipitation with monoclonal and polyclonal antibody. Polyclonal antibody immunoprecipitated all of the ornithine decarboxylase activity from every extract tested, while monoclonal antibody was capable of only limited immunoprecipitation (60-80%). Due to the inability of the monoclonal antibody to recognize ornithine decarboxylase phosphorylated in vitro by casein kinase-II and the partial immunoprecipitation of ornithine decarboxylase activity from cell extracts, a portion of the ornithine decarboxylase molecule population must exist in a phosphorylated state. This immunological evidence further confirms existing data that the enzyme exists in at least two distinct forms.  相似文献   

6.
2'-Substituted analogs of triclosan have been synthesized to target inhibition of the key malarial enzyme Plasmodium falciparum enoyl acyl carrier protein reductase (PfENR). Many of these compounds exhibit good potency (EC50<500 nM) against in vitro cultures of drug-resistant and drug-sensitive strains of the P. falciparum parasite and modest (IC50=1-20 microM) potency against purified PfENR enzyme. Compared to triclosan, this survey of 2'-substituted derivatives has afforded gains in excess of 20- and 30-fold versus the 3D7 and Dd2 strains of parasite, respectively.  相似文献   

7.
Ornithine decarboxylase of the African trypanosome Trypanosoma brucei brucei had an estimated native molecular weight of 100,000 by gel filtration and a subunit molecular weight of 45,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene encoding this enzyme, present in a single copy in T. brucei, was identified by mouse ornithine decarboxylase cDNA under relatively stringent conditions of hybridization and subcloned in a 5.9-kilobase (kb) SstI fragment from a cosmid clone into the plasmid pUC 19. This clone encompassed a 2.8-kb SstII fragment that contained the entire T. brucei ornithine decarboxylase gene. The 2.8-kb SstII fragment hybridized to a 2.4-kb mRNA that presumably encodes the parasite enzyme. The 2.8-kb SstII fragment was partially sequenced and found to contain an open reading frame of 445 amino acids that has 61.5% homology with the corresponding sequence of the mouse enzyme. The only major discrepancies between the two enzymes are the addition of a 20-amino acid N-terminal peptide and the deletion of a 36-amino acid C-terminal peptide and the T. brucei ornithine decarboxylase. The C terminus has been postulated to be one of the structural factors associated with rapid in vivo turnover of mammalian ornithine decarboxylase. The absence of this C-terminal peptide in T. brucei ornithine decarboxylase predicts a slow turnover for the parasite enzyme in vivo, and this is supported by our experimental data. The lack of turnover of ornithine decarboxylase in trypanosomes may constitute the basis of selective antitrypanosomal action of the irreversible enzyme inhibitor DL-alpha-difluoromethylornithine.  相似文献   

8.
Ornithine decarboxylase was purified at least 1500-fold from mouse epidermis pretreated with five consecutive doses of 12-O-tetradecanoylphorbol-13-acetate and 3-isobutyl-1-methylxanthine at 3- to 4-day intervals. Following DEAE-cellulose chromatography and ammonium sulfate precipitation, ornithine decarboxylase was purified further by affinity chromatography. Ornithine decarboxylase was then radioactively labeled by covalently binding [3H]-alpha-difluromethylornithine to the enzyme following polyacrylamide gel electrophoresis under non-denaturing conditions. Following sodium dodecyl sulfate polyacrylamide gel electrophoresis and silver staining of protein, a band was identified that corresponded to a molecular weight of approx. 56,000, coincident with a peak of radioactivity. This is the first study to purify ornithine decarboxylase from mouse epidermis.  相似文献   

9.
Kinetic parameters on dihydroorotate dehydrogenase (DHO-DHase) from the rodent malarial parasite, Plasmodium berghei, have been determined. This enzyme, the fourth in de novo pyrimidine biosynthesis, is particulate and is absent in the mature mammalian red cell. The Km of the substrate, dihydroorotate, was determined to be 23 microM and the Ki values for a number of substrate analogues have been determined. The most potent inhibitor was dihydroazaorotate (Ki, 3 microM), 5-azaorotate (Ki, 20 microM) and other pyrimidine analogues. The activity of the enzyme was also affected by a number of respiratory chain inhibitors. As the P. berghei infection is accompanied by reticulocytosis, a comparative study of DHO-DHase in mouse reticulocytes was also carried out. The general properties of the enzyme from these sources were similar to those of the parasite enzyme. However, significant differences in the response of the two enzymes to various inhibitors were observed and could provide a rational basis for the development of chemotherapeutic agents active against the parasite.  相似文献   

10.
The antimicrobial biocide triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol] potently inhibits the growth of Plasmodium falciparum in vitro and, in a mouse model, Plasmodium berghei in vivo. Inhibition of [14C]acetate and [14C]malonyl-CoA incorporation into fatty acids in vivo and in vitro, respectively, by triclosan implicate FabI as its target. Here we demonstrate that the enoyl-ACP reductase purified from P. falciparum is triclosan sensitive. Also, we present the evidence for the existence of FabI gene in P. falciparum. We establish the existence of the de novo fatty acid biosynthetic pathway in this parasite, and identify a key enzyme of this pathway for the development of new antimalarials.  相似文献   

11.
The malarial parasite Plasmodium falciparum encodes for an alpha-carbonic anhydrase (CA) enzyme possessing catalytic properties distinct of that of the human host, which was only recently purified. A series of aromatic sulfonamides, most of which were Schiff's bases derived from sulfanilamide/homosulfanilamide/4-aminoethylbenzenesulfonamide and substituted-aromatic aldehydes, or ureido-substituted such sulfonamides, were investigated for in vitro inhibition of the malarial parasite enzyme (pfCA) and the growth of P. falciparum. Several inhibitors with affinity in the micromolar range (K(I)'s in the range of 0.080-1.230 microM) were detected, whereas the most potent such derivatives were the clinically used sulfonamide CA inhibitor acetazolamide, and 4-(3,4-dichlorophenyl-ureidoethyl)-benzenesulfonamide, which showed an inhibition constant of 80 nM against pfCA, being four times more effective an inhibitor as compared to acetazolamide (K(I) of 315 nM). The lipophilic 4-(3,4-dichlorophenylureido-ethyl)-benzenesulfonamide was also an effective in vitro inhibitor for the growth of P. falciparum (IC50 of 2 microM), whereas acetazolamide achieved the same level of inhibition at 20 microM. This is the first study proving that antimalarials possessing a novel mechanism of action can be obtained, by inhibiting a critical enzyme for the life cycle of the parasite. Indeed, by inhibiting pfCA, the synthesis of pyrimidines mediated by carbamoylphosphate synthase is impaired in P. falciparum but not in the human host. Sulfonamide CA inhibitors have the potential for the development of novel antimalarial drugs.  相似文献   

12.
An alpha-like DNA polymerase has been identified and characterized in the extracts from the malarial parasite Plasmodium falciparum. The enzyme is sensitive to the specific inhibitors of alpha-DNA polymerase, N-ethylmaleimide and aphidicolin, and is cell-cycle specific. High activity has been found in the schizont, is lower in trophozoites, and has only negligible activity in the ring form. The enzyme has a molecular weight of about Mr 100,000-103,000 estimated by detecting activity in SDS-polyacrylamide electrophoresis and by Bio-Gel filtration. Another active band of a molecular Mr 68,000 was detected by SDS electrophoresis when the enzyme was stored for 2 months at -20 degrees C. The catalytic activity of parasite enzyme was optimal between pH 8 and pH 9. The apparent Michaelis constant for dTTP was 4.3 microM.  相似文献   

13.
The parasite Plasmodium berghei imports the enzyme delta-aminolevulinate dehydratase (ALAD), and perhaps the subsequent enzymes of the pathway from the host red blood cell to sustain heme synthesis. Here we have studied the mechanism of this import. A 65-kDa protein on the P. berghei membrane specifically bound to mouse red blood cell ALAD, and a 93-amino-acid fragment (ALAD-DeltaNC) of the host erythrocyte ALAD was able to compete with the full-length enzyme for binding to the P. berghei membrane. ALAD-DeltaNC was taken up by the infected red blood cell when added to a culture of P. falciparum and this led to a substantial decrease in ALAD protein and enzyme activity and, subsequently, heme synthesis in the parasite, resulting in its death.  相似文献   

14.
A human neuroblastoma cell line (Paju) grew in 10 mM difluoromethyl-ornithine, which at this concentration normally stops the growth of all mammalian cells. Ornithine decarboxylase from Paju was resistant to inhibition in vitro by difluoromethylornithine, and required 10 microM of the compound for 50% inhibition, whereas ornithine decarboxylase from SH-SY5Y cells (another human neuroblastoma) and from rat liver needed only 0.5 microM difluoromethylornithine. Paju ornithine decarboxylase also exhibited a long half-life (over eight hours) in vivo. The half-life of immunoreactive protein was significantly longer than that of the activity. The long half-life of ornithine decarboxylase in Paju cells leads to its accumulation to a specific activity of 2000 nmol/mg of protein per 30 min during rapid growth (the corresponding activity in SH-SY5Y cells was about 2.5). When partially purified ornithine decarboxylase from Paju cells was incubated with rat liver microsomes it was inactivated with a half-life of 75 min. This inactivation was accompanied by a fall in the amount of immunoreactive protein. In the same inactivating system partially purified SH-SY5Y ornithine decarboxylase had a half-life of 38 min and its half-life in vivo was 50 min. The corresponding values for rat liver ornithine decarboxylase were 45 min and 40 min, respectively. Rat liver microsomes also inactivated rat liver adenosylmethionine decarboxylase. These results suggest that Paju ornithine decarboxylase has an altered molecular conformation, rendering it resistant to (i) difluoromethylornithine and (ii) proteolytic degradation both in vivo and in vitro.  相似文献   

15.
A human neuroblastoma cell line with an altered ornithine decarboxylase   总被引:5,自引:0,他引:5  
A human neuroblastoma cell line (Paju) was resistant to 10 mM difluoromethylornithine, a concentration at which the growth of all mammalian cells normally stops. Ornithine decarboxylase from Paju was very resistant to inhibition by difluoromethylornithine in vitro (Ki = 10 microM compared to 0.5 microM for mouse kidney ornithine decarboxylase). After purification, apparently homogeneous Paju ornithine decarboxylase was inactivated with [3H]difluoromethylornithine and analyzed by polyacrylamide gel electrophoresis. Under denaturing conditions it was found to have an altered molecular structure, i.e. two nonidentical subunits of Mr = 55,000 and 60,000. Another unusual feature of Paju ornithine decarboxylase was its long half-life in vivo (T 1/2 = 8 h compared with 36 min in human HL-60 promyelocytic leukemia cells). The disappearance of immunoreactive protein was only slightly slower than the loss of catalytic activity. The long half-life of Paju ornithine decarboxylase was not shared by adenosylmethionine decarboxylase. Despite the altered structure of Paju ornithine decarboxylase, it was recognized by a specific antisera raised in rabbit against mouse kidney ornithine decarboxylase. The Paju karyotype did not contain double minute chromosomes or any large homogeneously staining region such as that seen in a mouse lymphoma cell mutant that is resistant to difluoromethylornithine and overproduces ornithine decarboxylase (McConlogue, L., and Coffino, P. (1983) J. Biol. Chem. 258, 12083-12086).  相似文献   

16.
Malaria vaccines containing the Plasmodium falciparum Circumsporozoite protein repeat domain are undergoing human trials. There is no simple method to evaluate the effect of vaccine-induced responses on P. falciparum sporozoite infectivity. Unlike the rodent malaria Plasmodium berghei, P. falciparum sporozoites do not infect common laboratory animals and only develop in vitro in human hepatocyte cultures. We generated a recombinant P. berghei parasite bearing P. falciparum Circumsporozoite protein repeats. These hybrid sporozoites are fully infective in vivo and in vitro. Monoclonal and polyclonal Abs to P. falciparum repeats neutralize hybrid parasite infectivity, and mice immunized with a P. falciparum vaccine are protected against challenge with hybrid sporozoites.  相似文献   

17.
Malaria remains a major global health concern. New, inexpensive, and effective antimalarial agents are urgently needed. Here we show that curcumin, a polyphenolic organic molecule derived from turmeric, inhibits chloroquine-resistant Plasmodium falciparum growth in culture in a dose dependent manner with an IC(50) of approximately 5 microM. Additionally, oral administration of curcumin to mice infected with malaria parasite (Plasmodium berghei) reduces blood parasitemia by 80-90% and enhances their survival significantly. Thus, curcumin may represent a novel treatment for malarial infection.  相似文献   

18.
An IgM monoclonal antibody (Mab 36) which reacts with the circumsporozoite (CS) proteins of both P. falciparum and P. berghei was isolated from Plasmodium falciparum sporozoite-immunized mice. In assays of biological activity, Mab 36 induces the CS precipitation reaction with live sporozoites and blocks the invasion of hepatoma cells by sporozoites in vitro at concentrations much lower than those observed for previously reported CS protein-specific monoclonal antibodies. Mab 36 also provided complete protection against P. berghei sporozoite challenge in mice at low doses. Linear epitope mapping revealed that the epitope specificities recognized by Mab 36 are completely encompassed by other monoclonals previously shown to be associated in vivo with protection against P. falciparum or P. berghei sporozoite infection. These results suggest that the ability to make high-affinity IgM antibody to specific CS protein repeat epitopes may be important for eliciting protection against malarial infection.  相似文献   

19.
DL-alpha-difluoromethylornithine and DL-alpha-monofluoromethyldehydroornithine methyl ester, inhibitors of ornithine decarboxylase, blocked exoerythrocytic schizogony of Plasmodium berghei in mice and in cultured human hepatoma cells. These effects were reversed by exogenous administration of the polyamine, spermidine. The antimalarial drug, primaquine, the side chain of which is structurally analogous to a natural polyamine, did not enhance the activity of alpha-difluoromethylornithine or alpha-monofluoromethyldehydroornithine methyl ester. These results extend previous observations that polyamines influence the malaria parasite's schizogony outside the red blood cell but not within it.  相似文献   

20.
Here we report the existence, purification and characterisation of carbonic anhydrase in Plasmodium falciparum. The infected red cells contained carbonic anhydrase approximately 2 times higher than those of normal red cells. The three developmental forms of the asexual stages, ring, trophozoite and schizont were isolated from their host red cells and found to have stage-dependent activity of the carbonic anhydrase. The enzyme was purified to homogeneity from the crude extract of P. falciparum using multiple steps of fast liquid chromatographic techniques. It had a Mr of 32 kDa and was active in a monomeric form. The human red cell enzyme was also purified for comparison with the parasite enzyme. The parasite enzyme activity was sensitive to well-known sulfonamide-based inhibitors of both bacterial and mammalian enzymes, sulfanilamide and acetazolamide. The kinetic properties and the amino terminal sequences of the purified enzymes from the parasite and host red cell were found to be different, indicating that the purified protein most likely exhibited the P. falciparum carbonic anhydrase activity. In addition, the enzyme inhibitors had antimalarial effect against in vitro growth of P. falciparum. Moreover, the vital contribution of the carbonic anhydrase to the parasite survival makes the enzyme an attractive target for therapeutic evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号