首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Cyclo-oxygenase (COX) production in human promyelocytic leukaemia (HL-60) cells was studied during monocytic differentiation induced by 1 alpha, 25-dihydroxyvitamin D3 (24 nM; 3 days) or phorbol 12-myristate 13-acetate (100 nM; 1 day), or during granulocytic differentiation induced by retinoic acid (1 microns; 4 days). Undifferentiated or differentiated HL-60 cells were labelled with [35S]methionine, and membrane-bound COX was solubilized and quantified by SDS/PAGE. Immunoprecipitated 35S-labelled COX from cells induced to differentiate into monocytic or granulocytic lineage were clearly detected on the autoradiograms as a protein of approx. 70 kDa molecular size, whereas only a very faint COX band was detected in untreated HL-60 cells. During both monocytic and granulocytic differentiation, COX activity (measured by the conversion of exogenous arachidonic acid into prostaglandin E2) was dramatically increased. In addition, thromboxane synthesis was preferentially enhanced during monocytic differentiation. HL-60 cells, induced to differentiate into the monocytic or granulocytic lineage, provide a useful tool to investigate the cellular mechanisms involved in regulation of the synthesis of individual prostanoid-metabolizing enzymes.  相似文献   

2.
蛋白激酶C亚型在HL—60细胞诱导分化中的变化   总被引:1,自引:0,他引:1  
用全反式维甲酸(ATRA)或佛波酯(PMA)处理人早幼粒白血病细胞(HL-60)3天,用形态学,NBT还原实验,特异性和非特异性酯酶测定,证明细胞分别向粒细胞或单核/巨噬细胞分化。通过免疫组化法观察了蛋白激酶C(PKC)α,βⅠ和βⅡ亚型在分化后的变化。结果显示,ATRA可引起HL-60细胞PKCα,βⅠ和βⅡ的含量升高,分别为对照的5.0,2.8和4.2倍,并存在从胞膜向胞质转位。PMA则使PC  相似文献   

3.
Human myeloid differentiation is accompanied by a decrease in cell proliferation. Because the translation rate is an important determinant of cell proliferation, we have investigated translation initiation during human myeloid cell differentiation using the HL-60 promyelocytic leukemia cell line and the U-937 monoblastic cell line. A decrease in the translation rate is observed when the cells are induced to differentiate along the monocytic/macrophage pathway or along the granulocytic pathway. The inhibition in protein synthesis correlates with specific regulation of two repressors of translation initiation, 4E-BP1 and 4E-BP2. Induction of HL-60 and U-937 cell differentiation into monocytes/macrophages by IFN-gamma or PMA results in a dephosphorylation and consequent activation of 4E-BP1. Dephosphorylation of 4E-BP1 was also observed when U-937 cells were induced to differentiate into monocytes/macrophages following treatment with retinoic acid or DMSO. In contrast, treatment of HL-60 cells with retinoic acid or DMSO, which results in a granulocytic differentiation of these cells, decreases 4E-BP1 amount without affecting its phosphorylation and strongly increases 4E-BP2 amount. Taken together, these data provide evidence for differential regulation of the translational machinery during human myeloid differentiation, specific to the monocytic/macrophage pathway or to the granulocytic pathway.  相似文献   

4.
5.
We have previously reported that ganglioside GM3 was remarkably increased during monocytoid differentiation of human myelogenous leukemia cell line HL-60 cells and that neolacto series gangliosides (NeuAc-nLc) were enriched during granulocytoid differentiation. In addition, HL-60 was differentiated into monocytic lineage by exogenous GM3 and into granulocytoid by NeuAc-nLc. In the present report, the enzymatic bases of glycosphingolipid biosynthesis in HL-60 during differentiation induced by 12-O-tetradecanoylphorbol-13-acetate and all-trans-retinoic acid were investigated. The following results were of particular interest. (i) Lactosylceramide alpha 2-->3 sialyltransferase (GM3 synthase) was remarkably up-regulated during monocyte differentiation, while the GM3 synthase level did not change in granulocytic differentiation. (ii) By contrast, lactosylceramide beta 1-->3N-acetylglucosaminyltransferase (Lc3Cer synthase) was down-regulated during monocytic differentiation, while the activity of Lc3Cer synthase was found to increase in granulocytic differentiation. (iii) The activities of four downstream glycosyltransferases (for synthesis of NeuAc-nLc) were found to increase or to remain unchanged during monocytic and granulocytic differentiation. These results strongly suggested the following. The dramatic GM3 increase and the decrease of NeuAc-nLc during monocytic differentiation are the consequences of the up-regulation of GM3 synthase and the down-regulation of Lc3Cer synthase, although the downstream enzymes are ready to catalyze their enzyme reactions. The notable increase of NeuAc-nLc and the relative decrease of GM3 during granulocytic differentiation are the results of the unchanged level of GM3 synthase and the up-regulation of Lc3Cer synthase together with the activation of the downstream glycosyltransferases. These results suggest that these two key upstream glycosyltransferases, GM3 synthase and Lc3Cer synthase, play critical roles in regulating the glycosphingolipid biosynthesis in HL-60 cells during differentiation. This switching mechanism of these two glycosyltransferases, together with our previous findings, might be one of the most important parts of the determining system of differentiation direction in human myeloid cells into monocytic or granulocytic lineages.  相似文献   

6.
The effect of serum from 32 AML patients on the normal human myeloid differentiation and the hexamethylene-bisacetamide induced granulocytic differentiation of HL-60 promyelocytic leukaemic cell line was studied. Nonadherent normal mononuclear marrow cells were cultured in vitro at a concentration of 5 x 10(5) cells/ml for 6 days with each of the 32 AML sera. Ten normal human AB sera were used as control. The results showed an inhibitory activity on both morphological and functional differentiation of normal human myeloid immature marrow cells by 29 out of the 32 AML sera tested. These 29 AML sera were added to cultures of HL-60 (2.5 x 10(5)/ml) leukaemia cell line which incorporated 2 mM hexamethylene-bisacetamide for 6 days. The results showed no significant inhibition of hexamethylene-bisacetamide induced granulocytic differentiation by any of the 29 AML sera. The efficacy of hexamethylene-bisacetamide in inducing differentiation in the presence of inhibitory factors suggests a possible role in the treatment of AML patients.  相似文献   

7.
The human blood granulocyte (neutrophil) is adapted to find and destroy infectious agents. The nucleus of the human neutrophil has a segmented appearance, consisting of a linear or branched array of three or four lobes. Adequate levels of lamin B receptor (LBR) are necessary for differentiation of the lobulated nucleus. The levels of other components of the nuclear envelope may also be important for nuclear shape determination. In the present study, immunostaining and immunoblotting procedures explored the levels of various components of the nuclear envelope and heterochromatin, comparing freshly isolated human neutrophils with granulocytic forms of HL-60 cells, a tissue culture model system. In comparison to granulocytic HL-60 cells, blood neutrophil nuclear envelopes contain low-to-negligible amounts of LBR, lamins A/C, B1 and B2, LAP2β and emerin. Surprisingly, a “mitotic” chromosome marker, H3(S10)phos, is elevated in neutrophil nuclei, compared to granulocytic HL-60 cells. Furthermore, neutrophil nuclei appear to be more fragile to methanol fixation, than observed with granulocytic HL-60 cells. Thus, the human neutrophil nucleus appears to be highly specialized, possessing a paucity of nuclear envelope-stabilizing proteins. In consequence, the neutrophil nucleus appears to be very malleable, supporting rapid migration through tight tissue spaces.  相似文献   

8.
To evaluate the involvement of protein phosphatases (PP) in differentiation of human myelogenous leukemia HL-60 cells, we made use of potent inhibitors of PP1 and PP2A, calyculin-A (CAL-A) and okadaic acid (OKA). CAL-A and OKA could augment all-trans retinoic acid (ATRA)-induced granulocytic differentiation, whereas the differentiation toward macrophage lineage by 12-o-tetradecanoylphorbol acetate (TPA) was unchanged in the presence of CAL-A. CAL-A augmented the phosphorylation of 18K, 23K and 30K proteins induced by ATRA. The PP1 and PP2A were identified and were present mainly in the cytosol of HL-60 cells. These results suggest that either PP1 or PP2A or both may be involved in regulating granulocytic differentiation of HL-60 cells.  相似文献   

9.
We have previously reported that Brazilian propolis extracts inhibited growth of HL-60 human myeloid leukemia cells, which is partly attributed to the induction of apoptosis associated with granulocytic differentiation. In this study, we isolated three compounds which induce granulocytic differentiation evaluated by nitroblue tetrazolium (NBT)-reducing assays from the water extract of propolis and identified as 4,5-di-O-caffeoylquinic, 3,5-di-O-caffeoylquinic, and 3,4-di-O-caffeoylquinic acids by NMR analysis. Cell growth inhibitory activity of these caffeoylquinic acids was found in HL-60 cell, which was mainly attributed to the induction of apoptosis. Furthermore, the potency of caffeoylquinic acid derivatives to induce granulocytic differentiation was examined in HL-60 cells. Caffeic, quinic, and chlorogenic acids had no effects on the NBT-reducing activity, while 3,4,5-tri-O-caffeoylquinic acid induced more than 30% of NBT-positive cells. These results suggest that the number of the caffeoyl groups bound to quinic acid plays an important role in the potency of the caffeoylquinic acid derivatives to induce granulocytic differentiation. This is the first report demonstrating that the caffeoylquinic acid derivatives induce granulocytic differentiation of HL-60 cells.  相似文献   

10.
Histamine, through H(2) receptors, triggers a prominent rise in intracellular free Ca(2+) concentration ([Ca(2+)](i)) in addition to an elevation of cAMP level in HL-60 promyelocytes. Here we show that the histamine-induced [Ca(2+)](i) rise was due to influx of Ca(2+) from the extracellular space, probably through nonselective cation channels, as incubation of the cells with SKF 96365 abolished the histamine-induced [Ca(2+)](i) rise, Na(+) influx, and membrane depolarization. The Ca(2+) influx was specifically inhibited by pretreatment of the cells with PMA or extracellular ATP with 50% inhibitory concentrations of 0.12 +/- 0.03 nM and 185 +/- 17 microM, respectively. Western blot analysis of protein kinase C (PKC) isoforms revealed that PMA (< or =1 nM) and ATP (300 microM) caused selective translocation of PKC-delta to the particulate/membrane fraction. Costimulation of the cells with histamine and SKF 96365 partially reduced histamine-induced granulocytic differentiation, which was evaluated by looking at the extent of fMet-Leu-Phe-induced [Ca(2+)](i) rise and superoxide generation. In conclusion, nonselective cation channels are opened by stimulation of the H(2) receptor, and the channels are at least in part involved in the induction of histamine-mediated differentiation processes. Both effects of histamine were selectively inhibited probably by the delta isoform of PKC in HL-60 cells.  相似文献   

11.
Many sesquiterpene lactone compounds either induce or enhance the cell differentiation of human leukemia cells. However, we reported in a previous study that santonin, a eudesmanolide sesquiterpene lactone, exerts no effects on the differentiation of leukemia cells. In this report, to evaluate the possibility of chemically modifying santonin into its derivatives with differentiation inducing activity, we synthesized a series of santonin derivatives, and determined their effects on cellular differentiation in the human promyelocytic leukemia HL-60 cell system. A diacetoxy acetal derivative of santonin (DAAS) was found to induce significant HL-60 cell differentiation in a dose-dependent manner, whereas santonin in its original form did not. The HL-60 cells were differentiated into a granulocytic lineage when exposed to DAAS. In addition, the observed induction in cell differentiation closely correlated with the levels of NF-kappaB DNA binding activity inhibited by DAAS. Both Western blot analyses and kinase inhibitor studies determined that protein kinase C, ERK, and phosphatidylinositol 3-kinase were upstream components of the DAAS-mediated inhibition of NF-kappaB binding activity in HL-60 leukemia cells. The results of this study indicate that santonin can, indeed, be chemically modified into a derivative with differentiation inducing abilities, and suggest that DAAS might prove useful in the treatment of neoplastic diseases.  相似文献   

12.
Previous results have shown that the human promyelocytic leukemia HL-60 cell line responds to either proliferating or differentiating stimuli. When these cells are induced to proliferate, protein kinase C (PKC)-beta II migrates toward the nucleus, whereas when they are exposed to differentiating agents, there is a nuclear translocation of the alpha isoform of PKC. As a step toward the elucidation of the early intranuclear events that regulate the proliferation or the differentiation process, we show that in the HL-60 cells, a proliferating stimulus (i.e., insulin-like growth factor-I [IGF-I]) increased nuclear diacylglycerol (DAG) production derived from phosphatidylinositol (4,5) bisphosphate, as indicated by the inhibition exerted by 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine and U-73122 (1-[6((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione), which are pharmacological inhibitors of phosphoinositide-specific phospholipase C. In contrast, when HL-60 cells were induced to differentiate along the granulocytic lineage by dimethyl sulfoxide, we observed a rise in the nuclear DAG mass, which was sensitive to either neomycin or propranolol, two compounds with inhibitory effect on phospholipase D (PLD)-mediated DAG generation. In nuclei of dimethyl sulfoxide-treated HL-60 cells, we observed a rise in the amount of a 90-kDa PLD, distinct from PLD1 or PLD2. When a phosphatidylinositol (4,5) bisphosphate-derived DAG pool was generated in the nucleus, a selective translocation of PKC-beta II occurred. On the other hand, nuclear DAG derived through PLD, recruited PKC-alpha to the nucleus. Both of these PKC isoforms were phosphorylated on serine residues. These results provide support for the proposal that in the HL-60 cell nucleus there are two independently regulated sources of DAG, both of which are capable of acting as the driving force that attracts to this organelle distinct, DAG-dependent PKC isozymes. Our results assume a particular significance in light of the proposed use of pharmacological inhibitors of PKC-dependent biochemical pathways for the therapy of cancer disease.  相似文献   

13.
Human promyelocytic leukemia cells (HL-60) were treated with several differentiation inducers, then the changes in the activity of cytosolic protein kinase C (PKC) isoforms were examined by hydroxylapatite chromatography and the species of the isoforms were determined immunologically. In three undifferentiated HL-60 cell lines examined, PKC alpha and beta isoforms were present, but PKC gamma isoform was not detected. When the cells were induced by dimethylsulfoxide, dibutyryl cAMP, or nicotinamide to differentiate into granulocytes, these two PKC isoforms each increased to about 2- to 3-fold. When retinoic acid was used as the inducer, in addition to PKC alpha and beta, a third PKC isoform appeared. This isoform was clearly distinct from rat PKC alpha, beta, and gamma, immunologically. This isoform showed a distinctly lower Ca(2+)-requirement (3 microM) than that of PKC alpha or beta (100 microM) and was more dependent on cardiolipin and phosphatidylethanolamine, compared with PKC alpha, beta, and gamma. These results suggest that while the increases in the activities of PKC alpha and beta isoforms are common in the differentiation program initiated by several inducers, including retinoic acid, the emergence of an unclassified PKC isoform is a retinoic acid-specific process.  相似文献   

14.
Neolacto-series gangliosides having linear poly-N-acetyl-lactosaminyl oligosaccharide structure have been demonstrated to be increased characteristically during granulocytic differentiation of human promyelocytic leukemia cell line HL-60 cells induced by dimethyl sulfoxide or retinoic acid (Nojiri, H., Takaku, F., Tetsuka, T., Motoyoshi, K., Miura, Y., and Saito, M. (1984) Blood 64, 534-541). When HL-60 cells were cultured in the presence of neolacto-series gangliosides prepared from mature granulocytes, the cells were found to be differentiated into mature granulocytes on the basis of the changes of morphology, surface membrane antigens, nonspecific esterase activity, and the activity of phagocytosis and respiratory burst. The differentiation of cells was dependent on the concentration of gangliosides and accompanied with inhibition of cell growth. These findings suggest that the particular ganglioside molecules play an important role in regulation of cell differentiation and that the appearance of neolacto-series gangliosides on cell surface membrane not only triggers the differentiation but also determines the direction of differentiation in HL-60 cells.  相似文献   

15.
16.
We have recently reported that neolacto series gangliosides (NeuAc-nLc) are increased during granulocytic differentiation of human myelogenous leukemia cell line HL-60 cells induced by retinoic acid and that HL-60 cells are differentiated into mature granulocytes when the cells are cultivated with NeuAc-nLc (Nojiri, H., Kitagawa, S., Nakamura, M., Kirito, K., Enomoto, Y., and Saito, M. (1988) J. Biol. Chem. 263, 7443-7446). In contrast to these wild-type-HL-60 cells, HL-60 cells resistant to differentiation induction by retinoic acid showed a markedly decreased content of gangliosides, especially NeuAc-nLc, and did not show any increase in the content of gangliosides when cultivated with retinoic acid. Neutral glycosphingolipids, the precursors of gangliosides, were not accumulated in these resistant cells. When retinoic acid-resistant HL-60 cells were cultivated in the presence of NeuAc-nLc, the cells were found to be differentiated into mature granulocytes on morphological and functional criteria. The differentiation of cells was dependent on the concentration of gangliosides and was accompanied by inhibition of cell growth. Wild-type HL-60 cells differentiated by NeuAc-nLc showed the changes in ganglioside composition, which were similar to those in wild-type HL-60 cells differentiated by retinoic acid; among the gangliosides changed, 2----3 sialylparagloboside and 2----3 sialylnorhexaosylceramide were increased. These findings suggest (a) that the synthesis of particular NeuAc-nLe molecules is an important step for retinoic acid-induced granulocytic differentiation and this step could be bypassed or replaced by exogenous NeuAc-nLc, and (b) that the defective synthesis of particular NeuAc-nLc molecules is responsible for the failure of differentiation induction in retinoic acid-resistant HL-60 cells by retinoic acid.  相似文献   

17.
18.
19.
20.
The human HL-60 acute leukemia cell line harbors double minutes (dmins) during early passages. During its continuous culture for a long term, a single marker chromosome with a homogeneously staining region (HSR) replaces the dmins. The both structures harbor amplified c-MYC sequences. Here we ask how the cellular phenotype is altered by the c-MYC integration into a HSR. Treatment with dimethyl sulfoxide induces granulocytic differentiation in the both types of cells. In contrast to HL-60/dmin cells, however, no apoptosis followed differentiation and the differentiation phenotype was reverted upon withdrawal of the drug in HL-60/HSR cells. Terminal differentiation and loss of DNase I hypersensitivity sites at c-MYC P2 promoter appeared to be unlinked in the both types of cells. By comparison with HL-60/dmin cells, we conclude that the integration into a HSR of an extrachromosomal gene(s) but not c-MYC likely leads to the loss of irreversibility of the differentiation phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号