首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Phloem versus xylem water and carbon flow between a developingdaughter cladode (flattened stem segment) and the underlyingbasal cladode of Opuntia ficus-indica was assessed using netCO2 uptake, transpiration, phloem sap concentration, and waterpotential of both organs as well as phloem and apoplastic tracers.A 14-d-old daughter cladode was a sink organ with a negativedaily net CO2 uptake; its water potential was higher than thatof the underlying basal cladode, implicating a non-xylem pathwayfor the water needed for growth. Indeed, the relatively dilutephloem sap (7.44% dry weight) of a basal cladode can supplyall the water (7.1 gd–1) along with photosynthate neededfor the growth of a 14-d-old daughter cladode; about 3% of theimported water flowed back to the basal cladode via the xylem.In contrast, a 28-d-old daughter cladode was a source organwhose water potential was lower than that of its basal cladode,so the xylem can supply the water needed (25.7 g d–1)for its growth; about 6% of the imported water flowed back tothe basal cladode along with photosynthate via the phloem. Thephloem tracer carboxyfluorescein occurred in the phloem of 14-d-olddaughter cladodes after its precursor was applied to basal cladodes.When applied to basal cladodes, the apoplastic tracers sulphorhodamineG (SR) and trisodium 8-hydroxy-1,3,6-pyrenetrisulphonate (PTS)failed to move into 14-d-old daughter cladodes within 5 h, butmoved into 28-d-old daughter cladodes within 2 h. SR and PTSmoved into basal cladodes within 2 h when applied to 14-d-olddaughter cladodes, but not within 5-6 h when applied to 28-d-olddaughter cladodes. The tracer experiments therefore confirmedthe patterns of water flow determined using water and carbonbudgets. Key words: Carboxyfluorescein, phloem-xylem water flow, source-sink water relations, suiphorhodamine G, trisodium 8-hydroxy-1,3,6-pyrenetnsulphonate  相似文献   

2.
Carbon and water balances for young fruits of platyopuntias   总被引:1,自引:0,他引:1  
Questions relating to transpired versus retained water for fruits, the xylem versus the phloem as water supplier to the fruits, and the importance of fruit photosynthesis for fruit dry mass gain were examined in the field for 6 species of platyopuntias ( Nopalea cochenillifera , Opuntia ficus-indica , O. megacantha , O. robusta , O. streptacantha and O. undulata ), cacti with flattened stem segments (cladodes). For plants with fruits midway between floral bud appearance and fruit maturation, transpiration was greater at night for the cladodes, as expected for Crassulacean acid metabolism (CAM) plants, but greater during the daytime for the fruits of all 6 species. Nevertheless, net CO2 uptake by fruits of these platyopuntias occurred predominantly at night, as expected for CAM plants. The water potential of the young fruits (average of −0.41 MPa) was higher than that of the cladodes (average of −0.60 MPa), indicating that water entered the fruits via the phloem rather than via the xylem. Solution entry into the fruits via the phloem supplied the water lost by transpiration and allowed for increases in fruit fresh mass (daily transpiration averaged 3.2-fold higher than daily water content increases), while the accumulating solutes were apparently polymerized to account for the higher water potentials of the fruits compared with the cladodes. The phloem thus acts as the sole supplier of water and the main supplier of dry mass (90%) to such young fruits of platyopuntias.  相似文献   

3.
A method was devised for collecting phloem sap from the CAMspecies Opuntia ficus-indica using severed stylets of a scaleinsect (Dactylopius opuntiae), for which exudation could continuefor up to 5 d. For both basal (planted) cladodes and first-orderdaughter cladodes, the concentrations of sucrose and total aminoacids in the phloem exudate were virtually constant over 24-hperiods whereas the chlorenchyma osmolality had sizeable increasesduring the night under both current and doubled atmosphericCO2 concentrations. Sucrose, total amino acids, and potassiumaccounted for 56, 21, and 9%, respectively, of the osmolalityof the phloem exudate, which was about 350 mOsm at the two CO2concentrations; valine, isoleucine, leucine, tyrosine, glutamine,and lysine accounted for about 70% of the total amino acids.Doubling the CO2 concentration led to approx. 5% more sucrose,560% more mannose and 17% less amino acids in the phloem exudateand also significantly increased mannose, starch and glucomannanin the chlorenchyma. Atmospheric CO2 concentrations thus affectedvarious solute properties in the phloem and the chlorenchymaof O. ficus-indica.Copyright 1995, 1999 Academic Press Dactylopius opuntiae, Opuntia ficus-indica, cladode, CO2 concentrations, Crassulacean acid metabolism, phloem exudate  相似文献   

4.
Mucilage content in the stems of four sympatric cactus speciesvaried from none for Ferocactus acanthodes, 19% by dry weightfor Opuntia basilaris, 26% for Opuntia acanthocarpa, and 35%for Echinocereus engelmannii. Although the mucilage differedchemically among the species (the arabinose content ranged from17% to 51% of the sugar monomers), its relative capacitance(change in relative water content per unit change in water potential)remained about 15 Mpa–1. The relative capacitance of thewater-storage parenchyma averaged 1·04 Mpa–1 andwas consistent with the mucilage content, being lowest for F.acanthodes and highest for E. engelmannii. Mucilage isolatedfrom hydrated tissue was accompanied by solutes with an osmoticpressure of about 0·2 MPa. Such associated solutes influencethe water-release characteristics of mucilage and hence itsrole as an apoplastic capacitor. In particular, extracellularsolutes can facilitate the release of appreciable mucilage-boundwater to the cells at tissue water potentials occurring duringthe initial phases of drought. Key words: Echinocereus engelmannii, Ferocactus acanthodes, Opuntia acanthocarpa, Opuntia basilaris, water potential isotherms  相似文献   

5.
The effects of root age, temperature, and soil water statuson root hydraulic conductivity (LP) were investigated for twocactus species, Ferocactus acanthodes and Opuntia ficus-indica.The volumetric flux density of water was measured for excisedroot segments, either using negative hydrostatic pressures appliedto the proximal end or using reverse flow of water from theroot to the soil. For both species, LP at 20 ?C increased withroot age, average values reaching a maximum of 3.9 ? 10–7m s–1 MPa–1 for F. acanthodes and 5.2 ? 10–7m s–1 MPa–1 for O.ficus-indica at 11 to 17 weeksof age; LP subsequently declined with increasing root age forboth species. LP was maximal at a temperature of about 10 ?Cfor the youngest roots (1–3 weeks), this optimum shiftingto 40 ?C for 8-week-old roots of both species. For older roots(up to 1.5-years-old), LP increased with temperature from 0?C to 50 ?C, with a Q10 of 1.3 between 20 ?C and 30 ?C. At asoil water potential (soil) of –0.016 MPa, root LP wasindependent of the direction of water flow for both species.Depending on root age, LP declined 45- to 500-fold for F. acanthodesand 90- to 800-fold for O.ficus-indica as soil was reduced from–0.016 to –1.06 MPa, consistent with a rectifier-likebehaviour with respect to water movement between soil and roots.Incorporation of such responses into water uptake models shouldlead to a better understanding of root function. Key words: Ferocactus acanthodes, Opuntia ficus-indica, water potential, tension, reverse flow  相似文献   

6.
Fluctuations in mineral elements id xylem (tracheal) sap, fruitphloem sap, leaflets and dmloping fruits were studied in a fieldpopulation of Lupinus angustifolius L. by three-hourly samplingover a 39 h period. Elements usually reached maximum contentsor concentrations at or near noon, minimum levels during thenight. Amplitudes of diurnal fluctuations in minerals lay withinthe range ±4–33 per cent of the mean content ofleaflets, and ±17–157 per cent of the mean concentrationsin xylem and phloem sap. Most minerals elements fluctuatcd inphase with daily changes in sugar level of phloem sap and drymatter and carbohydrate fluctuations of leaflets, suggestinga coupling of translocation of photosynthate and minerals fromthe leaflets. Rates of import of minerals by shoots wereestimatedfrom shoot transpiration and mineral concentrations in trachealsap. Average day time rates of import of most elements were12–25 times those at night. Translocation of minerals,nitrogen and carbon to fruits also exhibited diurnal periodicity,average rates of import king three to seven times higher inthe day than at night. A model of transport based on the carbonand water economy of the fruit suggested that P, K, Fe, Zn,Mn and Cu were imported predominantly by phloem. Estimates ofvascular import accounted for 87–104 per cent of the fruit'sactual increment of these elements. Na and Ca were gauged tobe imported mainly by xylem, Mg almost equally by xylem andphloem. However, large discrepancies existed for these threeelements between estimated vascular import and actual intakeby the fruit. Lupinus angustifolius L., mineral transport, accumulation, fruits, xylem sap, phloem sap, transpiration  相似文献   

7.
Under well-watered conditions, chlorenchyma acidity in cladodes of Opuntia ficus-indica increased substantially at night, fully accounting for the 0.26-megapascal nocturnal increase in osmotic pressure in the outer 2 millimeters. Osmotic pressure in the inner part of the chlorenchyma and in the water-storage parenchyma did not change significantly over 24-hour periods. Three months of drought decreased nocturnal acid accumulation by 73% and essentially abolished transpiration; also, 27% of the chlorenchyma water and 61% of the parenchyma water was lost during such drought, but the average tissue osmotic pressure was little affected. Turgor pressure was maintained in the chlorenchyma after 3 months of drought, although it decreased sevenfold in the water-storage parenchyma compared with the well-watered condition. Moreover, the nocturnal increases in turgor pressure of about 0.08 megapascal in the outer part of the chlorenchyma was also unchanged by such drought. The water potential magnitudes favored water movement from the parenchyma to the chlorenchyma at the end of the night and in the reverse direction during the late afternoon. Experiments with tritiated water support this pattern of water movement, which is also in agreement with predictions based on electric-circuit analog models for Crassulacean acid metabolism plants.  相似文献   

8.
Hordeum vulgare cv. California Mariout was established in sandculture at two different NaCl concentrations (0.5 mol m–3‘control’ and 100 mol m–3) in the presenceof 6.5 mol m–3 K +. Between 16 and 31 d after germination,before stem elongation started, xylem sap was collected by useof a pressure chamber. Collections were made at three differentsites on leaves 1 and 3: at the base of the sheath, at the baseof the blade, i.e. above the ligule, and at the tip of the blade.Phloem sap was collected from leaf 3 at similar sites throughaphid stylets. The concentrations of K +, Na+, Mg2+ and Ca2+were measured. Ion concentrations in xylem sap collected at the base of leaves1 and 3 were identical, indicating there was no preferentialdelivery of specific ions to older leaves. All ion concentrationsin the xylem decreased from the base of the leaf towards thetip; these gradients were remarkably steep for young leaves,indicating high rates of ion uptake from the xylem. The gradientsdecreased with leaf age, but did not disappear completely. In phloem sap, concentrations of K+ and total osmolality declinedslightly from the tip to the base of leaves of both controland salt-treated plants. By contrast, Na+ concentrations inphloem sap collected from salt-treated plants decreased drasticallyfrom 21 mol m–3 at the tip to 7.5 mol m–3 at thebase. Data of K/Na ratios in xylem and phloem sap were used to constructan empirical model of Na+ and K+ flows within xylem and phloemduring the life cycle of a leaf, indicating recirculation ofNa+ within the leaf. Key words: Hordeum vulgare, xylem transport, phloem transport, NaCl-stress  相似文献   

9.
HOCKING  P. J. 《Annals of botany》1980,45(6):633-643
The composition of xylem sap and exudate from stem incisionsof Nicotiana glauca Grah. was compared in detail. Exudationfrom stem incisions occurred over a 5 min period in certainplants, enabling collection of 5–30 µl of sap. Therate of exudation showed an exponential decline. Exudate hada high dry matter content (170–196 mg ml–1) andhigh sugar (sucrose) levels. Xylem sap had a low pH (5.8) andexudate a pH of 7.9. Glutamine dominated the amino compoundsin xylem sap and exudate, and K+ was the major cation. Totalamino compounds in stem exudate reached 10.8 mg ml–1 whereasxylem sap contained much lower levels (0.28 mg ml–1).All mineral elements and amino compounds with the exceptionof calcium were more concentrated in stem exudate than in xylemsap. Sucrose was labelled heavily in stem exudate following pulsingof an adjacent leaf with 14CO2. A concentration gradient ofsugar (2.1 bar m–1) was recorded for stems. Levels ofsucrose, amino compounds and K+ ions in stem exudate showeda diurnal periodicity. Each commodity reached maximum concentrationat or near noon and minimum concentration about dawn. The evidencesuggests that exudate from stem incisions of N. glauca is arepresentative sample of solutes translocated in the phloem. Nicotiana glauca Grah., phloem sap, xylem sap, sucrose, amino compounds, mineral ions  相似文献   

10.
A morphologically explicit numerical model for analysing wateruptake by individual roots was developed based on a conductornetwork, with specific conductors representing axial or radialconductivities for discrete root segments. Hydraulic conductivity(Lp; m s–1 MPa–1) was measured for roots of Agavedeserti Engelm. and Opuntia ficus-indica (L.) Miller by applyinga partial vacuum to the proximal ends of excised roots in solution.Lp was also measured for 40- to 80-mm segments along a root,followed by measurements of axial conductivity and calculationof radial conductivity. Predicted values of Lp for entire rootsbased on two to ten segments per root averaged 1.04±0.07(mean±s.e. mean for n = 3) of the measured Lp for A.deserti and 1.06±0.10 for O. ficus-indica. The modelalso closely predicted the drop in water potential along theroot xylem (xylem); when a tension of 50 kPa was applied tothe proximal ends of 0.2 m-long roots of A. deserti and O. ficus-indica,the measured xylem to midroot averaged 30 kPa compared witha predicted decrease of 36 kPa. Such steep gradients in xylemsuggest that the driving force for water movement from the soilto young distal roots may be relatively small. The model, whichagreed with an analytical solution for a simple hypotheticalsituation, can quantify situations without analytical solutions,such as when root and soil properties vary arbitrarily alonga root. Agave deserti, electrical circuit analog, hydraulic conductivity, Opuntia ficus-indica, water potential  相似文献   

11.
Water movement to and from a root depends on the soil hydraulicconductivity coefficient (Lsoil), the distance across any root-soilair gap, and the hydraulic conductivity coefficient of the root(LP). After analytical equations for the effective conductanceof each part of the pathway are developed, the influences ofsoil drying on the soil water potential and Lsoil are describedduring a 30 d period for a loamy sand in the field. The influencesof soil drying on LP for three desert succulents, Agave deserti,Ferocactus acanthodes, and Opuntia ficus-indica, are also describedfor a 30 d period. To quantify the effects of soil drying onthe development of a root-soil air gap, diameters of 6-week-oldroots of the three species were determined at constant watervapour potentials of –1.0 MPa and –10 MPa as wellas with the water vapour potential decreasing at the same rateas soil drying during a 30 d period. The shrinkage observedfor roots initially 2·0 mm in diameter averaged 19% duringthe 30d period. The predominant limiting factor for water movementwas LP of the root for the first 7 d of soil drying, the root-soilair gap for the next 13 d, and Lsoil thereafter. Compared withthe ease of water uptake from a wet soil, the decrease in conductancesduring soil drying, especially the decrease in Lsoil causedthe overall conductance to decrease by 3 x 103-fold during the30 d period for the three species considered, so relativelylittle water was lost to the dry soil. Such rectifier-like behaviourof water movement in the soil-root system resulted primarilyfrom changes in Lsoil and, presumably, is a general phenomenonamong plants, preventing water loss during drought but facilitatingwater uptake after rainfall. Key words: Agave deserti, Ferocactus acanthodes, Opuntia ficus-indica, rectification, soil water potential, water movement  相似文献   

12.
An experimentally-based modelling technique was developed todescribe quantitatively the uptake, flow, storage and utilizationof NO3-N over a 9 d period in mid-vegetative growth of sandcultured castor bean (Ricinus communis L.) fed 12 mol m–3nitrate and exposed to a mean salinity stress of 128 mol m–3NaCl. Model construction used information on increments or lossesof NO3-N or total reduced N in plant parts over the study periodand concentration data for NO3-N and reduced (amino acid) Nin phloem sap and pressure-induced xylem exudates obtained fromstem, petiole and leaf lamina tissue at various levels up ashoot. The resulting models indicated that the bulk (87%) of incomingnitrate was reduced, 51% of this in the root, the remainderprincipally in the laminae of leaves. The shoot was 60% autotrophicfor N through its own nitrate assimilation, but was oversuppliedwith surplus reduced N generated by the root and fed to theshoot through the xylem. The equivalent of over half (53%) ofthis N returned to the root as phloem translocate and, mostly,then cycled back to the shoot via xylem. Nitrate comprised almosthalf of the N of most xylem samples, but less than 1% of phloemsap N. Laminae of leaves of different age varied greatly inN balance. The fully grown lower three leaves generated a surplusof reduced N by nitrate assimilation and this, accompanied byreduced N cycling by xylem to phloem exchange, was exportedfrom the leaf. Leaf 4 was gauged to be just self-sufficientin terms of nitrate reduction, while also cycling reduced N.The three upper leaves (5–7) met their N balance to varyingextents by xylem import, phloem import (leaves 6 and 7 only)and assimilation of nitrate. Petioles and stem tissue generallyshowed low reductase activities, but obtained most of theirN by abstraction from xylem and phloem streams. The models predictedthat nodal tissue of lower parts of the stem abstracted reducedN from the departing leaf traces and transferred this, but notnitrate, to xylem streams passing further up the shoot. As aresult, xylem sap was predicted to become more concentratedin N as it passed up the shoot, and to decrease the ratio ofNO3-N to reduced N from 0·45 to 0·21 from thebase to the top of the shoot. These changes were reflected inthe measured N values for pressure-induced xylem exudates fromdifferent sites on the shoot. Transfer cells, observed in thexylem of leaf traces exiting from nodal tissue, were suggestedto be involved in the abstraction process. Key words: Ricinus communis, nitrogen, nitrate, nitrate reduction, partitioning, phloem, xylem, flow models  相似文献   

13.
Summary Thickness, relative water content (RWC), osmotic pressure, water potential isotherms, and mucopolysaccharide content were measured for the photosynthetic chlorenchyma and the water-storage parenchyma of the winter hardy cactus, Opuntia humifusa, after shifting from day/night air temperatures of 25° C/15° C to 5° C/–5° C. After 14 d at 5° C/–5° C, the average fraction of water contained in the symplast decreased from 0.92 to 0.78, the water potential of saturated (fully hydrated) tissue was essentially unchanged, but the osmotic pressure of saturated tissue decreased (by 0.15 MPa for the chlorenchyma and 0.12 MPa for the water-storage parenchyma). After 7 weeks at 5° C/–5° C, tissue thickness was reduced by 61% for the chlorenchyma and 65% for the water-storage parenchyma, and the RWC decreased by 42% and 68%, respectively; these changes contributed to an osmotic pressure increase of 0.55 MPa for the chlorenchyma and 0.34 MPa for the water-storage parenchyma. During the 7 week acclimation to low temperature, mucopolysaccharide increased by 114% for the chlorenchyma and by 89% for the water-storage parenchyma. The water potential of the extracted mucopolysaccharide was relatively constant for an RWC between 1.00 and 0.30, decreasing abruptly below 0.30. Changes in water relations parameters and in mucopolysaccharide content during low-temperature acclimation may reduce water efflux from the cells, and thus reduce damage due to rapid dehydration during extracellular freezing.  相似文献   

14.
Smith, J. A. C. and Nobel, P. S. 1986. Water movement and storagein a desert succulent: anatomy and rehydration kinetics forleaves of Agave deserti.—J. exp. Bot. 37: 1044–1053. Anatomic and kinetic aspects of water storage were investigatedfor the succulent leaves of the desert CAM plant, Agave deserti.An approximately linear relationship was found between the numberof vascular bundles and leaf surface area, both for leaves ofdifferent sizes and also along the length of a single leaf.The bundles, which were distributed throughout the leaf cross-section,were separated from each other by about eight water-storagecells. Even though the cell walls of the water-storage groundtissue made up only 2?5% of the cell volume, they provided about10% of the total cross-sectional area available for water transportradial to the xylem because cell-cell contact in such a directionaveraged 25% of the cell surface area. The rehydration kineticsof partially dehydrated leaf segments were resolved into threephases: (1) a relatively rapid movement into the vascular tissue(half-time of 2 min); (2) water movement into storage in theground tissue (half-time of 59 min); and (3) water movementinto the intercellular air spaces (half-time of about 10 h).Using the observed kinetics for water movement into the storagetissue and standard diffusion theory, the bulk-averaged diffusivityof water in the relatively homogeneous ground tissue (D1) was2?0 ? 10–10 m2 s–1 Using this (D1) and pathway analysis,most of the water moving from the xylem into storage in themassive leaves of A. deserti apparently occurred from cell tocell across the cell membranes rather than through the cellwalls. Key words: Agave deserti, capacitance, diffusivity, leaf anatomy, succulence, water storage  相似文献   

15.
Opuntia ficus-indica, a Crassulacean acid metabolism plant cultivated for its fruits and cladodes, was used to examine chemical and physiological events accompanying low-temperature acclimation. Changes in osmotic pressure, water content, low molecular weight solutes, and extracellular mucilage were monitored in the photosynthetic chlorenchyma and the water-storage parenchyma when plants maintained at day/night air temperatures of 30/20°C were shifted to 10/0°C. An increase in osmotic pressure of 0.13 megapascal occurred after 13 days at 10/0°C. Synthesis of glucose, fructose, and glycerol accounted for most of the observed increase in osmotic pressure during the low-temperature acclimation. Extracellular mucilage and the relative apoplastic water content increased by 24 and 10%, respectively, during exposure to low temperatures. These increases apparently favor the extracellular nucleation of ice closer to the equilibrium freezing temperature for plants at 10/0°C, which could make the cellular dehydration more gradual and less damaging. Nuclear magnetic resonance studies helped elucidate the cellular processes during ice formation, such as those revealed by changes in the relaxation times of two water fractions in the chlorenchyma. The latter results suggested a restricted mobility of intracellular water and an increased mobility of extracellular water for plants at 10/0°C compared with those at 30/20°C. Increased mobility of extracellular water could facilitate extracellular ice growth and thus delay the potentially lethal intracellular freezing during low-temperature acclimation.  相似文献   

16.
The economy of carbon, nitrogen, water and mineral elementsin fruits of Lupinus albus L. was studied by measuring accumulationof these quantities in the developing fruit and estimating itstranspirational losses and CO2 exchanges. Combining this informationwith data on levels of mineral elements in the xylem sap andphloem sap supplying the fruit, it was possible to test whethertransport based on mass inflow through xylem and phloem wouldaccount for the observed intake of elements. A model of transportbased on water and carbon intake suggested that vascular intakeduring the fruit's life matched the recorded increment for mineralsto within ± 15 per cent for N, Na, Zn, Fe and Cu, andto within ± 23 per cent for P, K and S. However, estimatedvascular intake of Ca, Mg and Mn accounted for less than one–thirdof the recorded intake by the fruit, inadequacy of vascularintake being especially great early in growth. Transport inphloem accounted for more than 80 per cent of the fruit's vascularintake of C, N and S, and 70–80 per cent of its P, K,Mg and Zn. Xylem contributed 68 per cent of the vascular inputof Ca, 59 per cent of the Na, and 34–38 per cent of theFe, Mn and Cu. Enclosure and darkening of fruits reduced levelsof Ca and Fe but increased levels of N, P, K and Zn in fruitdry matter relative to unenclosed, illuminated fruits. Resultswere related to previous observations on fruit functioning. Lupinus albus, legume fruit, mineral supply, phloem, xylem  相似文献   

17.
Daughter cladodes (flattened stem segments) of Opuntia ficus-indica (L.) Miller at 14-18 d after appearance on the underlying basal cladodes were sinks, requiring carbohydrate import for growth. Import stopped at 25-36 d, and the daughter cladodes became sources at 27-28 d. The activities of Rubisco, PEPCase, and sucrose-Pi synthase as well as the chlorophyll content at 14 d were not less than those at 28 d, suggesting that photosynthetic or sucrose synthesis capacity was not limiting carbon assimilation for sink cladodes. Sucrose synthase (SS) activity was three times higher than that of alkaline invertase, indicating that SS is the major enzyme for cytoplasmic sucrose hydrolysis. The SS activity was correlated with cladode growth, the highest activity coinciding with the highest growth rate. The sink-to-source transition for daughter cladodes was correlated with increases in malate and H+ concentrations in the vacuoles of chlorenchyma cells, with 5-fold higher nocturnal malate production and 10-fold higher H+ concentration in 28- than in 14-d-old daughter cladodes. The vacuolar H+ increase during cladode development would lower cytoplasmic pH, which may trigger metabolic events affecting the sink-to-source transition.  相似文献   

18.
Patterns of transport and accumulation of manganese were studiedin Lupinus albus L. and Lupinus angustifolius L. in a wide rangeof availability levels in the rooting medium. The recently described‘split seed’ disorder, involving discolouration,splitting, and deformity of seeds, was reproduced in sand cultureusing critically low levels of manganese. The disorder was preventedby maintaining adequate manganese in the medium and its incidencein field and glasshouse was quantitatively related to the managneselevel in seed and fruit phloem sap. The use of phloem sap analysisfor early diagnosis of the disorder is suggested. High levelsof manganese in parent seed is suggested to afford protectionagainst the disorder by improving early vegetative growth ina manganese deficient situation. Direct carry-over of manganesefrom one seed generation to the next was insignificant. Manganese proved to be fully mobile in xylem but only sparinglymobile in phloem from vegetative structures to seed. It wasaccumulated in massive amounts in leaves and fruits when availabilitywas high. Seed manganese content increased 80–100 foldas the level in the rooting medium was increased from 0•1to 500 mg Mn 1–1. L. albus was superior to L. angustifoliusin accumulating manganese in leaves and pods, and more efficientin translocating the element to its seeds. These differenceswere greatest at low or moderate manganese levels. Xylem intakeby a fruit was small relative to phloem intake when manganeseavailability was low, but became increasingly important as thesupply in the rooting medium was raised.  相似文献   

19.
Hordeum vulgare cv. California Mariout was grown for 50 d insand culture at 100 mol m–3 NaCl. Xylem sap was collectedthrough incisions at the base of individual leaves along thestem axis by applying pressure to the root system. K+ concentrationsin the xylem sap reaching individual leaves increased towardsthe apex, while concentrations of Na+, NO3, and Cldeclined. Phloem exudate was obtained by collecting into Li2EDTAfrom the base of excised leaves. K/Na ratios of phloem exudatesincreased from older to younger leaves. K/Na ratios in xylem sap and phloem exudate were combined withchanges in ion content between two harvests (38 and 45 d aftergermination) and the direction of phloem export from individualleaves, to construct an empirical model of K+ and Na+ net flowswithin the xylem and phloem of the whole plant. This model indicatesthat in old leaves, phloem export of K+ greatly exceeded xylemimport. In contrast, Na+ export was small compared to importand Na+ once imported was retained within the leaf. The direction of export strongly depended on leaf age. Old,basal leaves preferentially supplied the root, and most of theK+ retranslocated to the roots was transferred to the xylemand subsequently became available to the shoot. Upper leavesexported to the apex. Young organs were supplied by xylem andphloem, with the xylem preferentially delivering Na+ , and thephloem most of the K+ . For the young ear, which was still coveredby the sheath of the flag leaf, our calculation predicts phloemimport of ions to such an extent that the surplus must havebeen removed by an outward flow in the xylem. Within the culm,indications for specific transfers of K+ and Na+ between xylemand phloem and release or absorption of these ions by the tissuewere obtained. The sum of these processes in stem internodes and leaves ledto a non-uniform distribution of Na+ and K+ within the shoot,Na+ being retained in old leaves and basal stem internodes,and K+ being available for growth and expansion of young tissues. Key words: Hordeum vulgare L., K+, Na+, stem, salt stress  相似文献   

20.
Solute composition of root xylem sap of common native hostsof quandong (Santalum acuminatum) was compared with that ofcorresponding xylem sap and ethanolic extracts of endophytictissues of haustoria of the hemiparasite. Each host transporteda characteristic set of organic nitrogenous solutes, but littleor no nitrate, and the data indicated only limited direct flowof amino compounds between xylem streams of hosts and parasite.Proline predominated in the haustorium and xylem ofSantalum,but was at negligible levels in the xylem of most hosts. Sucrose,fructose, glucose, malate and citrate were at high levels inall saps, and fructose especially prominent inSantalum. Chloride,sulphate and phosphate were the principal inorganic anions ofthe xylem. Based on C:N ratios of xylem and dry matter ofSantalumandassuming a 70% or more dependence on the host for N, it wasestimated thatSantalumwould gain approximately one third ofits C requirement for dry matter production heterotrophicallyfrom the xylem of its hosts. Infiltration of xylem of haustoria-bearingroot segments of a major host (Acacia rostellifera) with a rangeof15N labelled substrates resulted in 40–80% of the15Nof endophytes of the attached haustoria being received as proline.Nitrate reductase activity was induced in haustoria followinghost xylem feeding of nitrate. The study concludes that haustoriaofSantalumact as a major site of synthesis and export of prolineand might therefore play an important role in osmotic adjustmentof the parasite and its related acquisition of water from hosts. Root hemiparasite; Santalum acuminatum; 15N labelled substrates; xylem transport; proline; osmoregulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号