首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of DNA cytosine methylation on promoter activity was assessed using a transient expression system employing pHrasCAT. This 551 bp Ha-ras-1 gene promoter region is enriched with 84 CpG dinucleotides, six functional GC boxes, and is prototypic of many genes possessing CpG islands in their promoter regions. Bacterial modification enzymes HhaI methyl transferase (MTase) and HpaII MTase, alone or in combination with a human placental DNA methyltransferase (HP MTase) that methylates CpG sites in a generalized manner, including asymmetric elements such as GC box CpG's, were used to methylate at different types of sites in the promoter. Methylation of HhaI and HpaII sites reduced CAT expression by approximately 70%-80%, whereas methylation at generalized CpG sites with HP MTase inactivated the promoter by greater than 95%. The inhibition of H-ras promoter activity was not attributable to methylation-induced differences in DNA uptake or stability in the cell, topological form of the plasmid, or methylation effects in non-promoter regions.  相似文献   

3.
4.
Activity of the cat gene driven by the cauliflower mosaic virus 35S promoter has been assayed by transfecting petunia protoplasts with the pUC8CaMVCAT plasmid. In vitro methylation of this plasmid with M.HpaII (methylates C in CCGG sites) and M.HhaI (methylates GCGC sites) did not affect bacterial chloramphenicol acetyltransferase (CAT) activity. It should be noted, however, that no HpaII or HhaI sites are present in the promoter sequence. In contrast, in vitro methylation of the plasmid with the spiroplasma methylase M.SssI, which methylates all CpG sites, resulted in complete inhibition of CAT activity. The promoter sequence contains 16 CpG sites and 13 CpNpG sites that are known to be methylation sites in plant DNA. In the light of this fact, and considering the results of the experiments presented here, we conclude that methylation at all CpG sites leaving CpNpG sites unmethylated is sufficient to block gene activity in a plant cell. Methylation of CpNpG sites in plant cells may, therefore, play a role other than gene silencing.  相似文献   

5.
6.
7.
8.
9.
Methylation pattern of mouse mitochondrial DNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
The pattern of methylation of mouse mitochondrial DNA (mtDNA) was studied using several techniques. By employing a sensitive analytical procedure it was possible to show that this DNA contains the modified base 5-methylcytosine (m5Cyt). This residue occurred exclusively at the dinucleotide sequence CpG at a frequency of 3 to 5%. The pattern of methylation was further investigated by determining the state of methylation of several MspI (HpaII) sites. Different sites were found to be methylated to a different extent, implying that methylation of mtDNA is nonrandom. Based on the known base composition and nucleotide sequence of mouse mtDNA, the dinucleotide sequence CpG was found to be underrepresented in this DNA. The features of mtDNA methylation (CpG methylation, partial methylation of specific sites and CpG underrepresentation) are also characteristic of vertebrate nuclear DNA. This resemblance may reflect functional relationship between the mitochondrial and nuclear genomes.  相似文献   

10.
11.
12.
13.
14.
Maintenance of dosage compensation for housekeeping genes on the human X chromosome is mediated through differential methylation of clustered CpG nucleotides associated with these genes. To determine if methylation has a role in maintaining inactivity of X-linked genes which show tissue-specific expression, we examined the locus for blood clotting Factor IX. The analysis encompassed 91% of the HpaII and HhaI sites in the 41-kb region that includes the presumed promoter region, 5 kb of 5'- and 4 kb of 3'-flanking sequences. Although there are sex differences in methylation of the locus in leukocytes, the methylation pattern in liver, where the gene is expressed, is essentially the same for loci on the active and inactive X chromosome. The lack of differences in methylation of active and inactive genes makes it unlikely that methylation within the locus has a role in expression of the Factor IX gene. These findings, along with the absence of clustered CpG dinucleotides within the Factor IX locus, suggest that functional differences in DNA methylation related to X chromosome dosage compensation may be limited to CpG clusters. In any event, dosage compensation seems to be maintained regionally, rather than locus by locus.  相似文献   

15.
16.
17.
18.
We studied the relation between LTR methylation and expression of the family of endogenous retrovirus-like elements related to mouse intracisternal A-particles (IAP). Comparative HpaII/MspI and HhaI restriction analysis of genomic DNA's showed that in cells and tissues with a low level of IAP gene expression, HpaII and HhaI sites within the 5' LTR were heavily methylated, while in cells abundantly expressing IAP's 20 to 30% of the 5' LTRs were demethylated at these sites. The effects of methylation on the promoter activity of a cloned IAP 5' LTR was studied directly, using the plasmid pMIA5' L-cat in which this LTR was linked to the chloramphenicol acetyl transferase (CAT) gene. In vitro methylation of three HhaI sites located between -137 and -205 bp from the RNA start site of this LTR completely inactivated the promoter activity of pMIA5' L-cat transfected into COS7 cells. Methylation of a HpaII site located 94 bp downstream from the RNA start site reduced the promoter activity by 75%. The results show that methylation at sites both upstream and downstream from the RNA start site profoundly effects the promoter activity of this LTR and suggest that methylation within the 5' LTR can serve to regulate IAP gene expression in vivo.  相似文献   

19.
20.
Bovine papillomavirus (BPV) was methylated in vitro at either the 29 HpaII sites, the 27 HhaI sites, or both. Methylation of the HpaII sites reduced transformation by the virus two- to sixfold, while methylation at HhaI sites increased transformation two- to fourfold. DNA methylated at both HpaII and HhaI sites did not differ detectably from unmethylated DNA in its efficiency of transformation. These results indicate that specific methylation sites, rather than the absolute level of methylated cytosine residues, are important in determining the effects on transformation and that the negative effects of methylation at some sites can be compensated for by methylation at other sites. BPV molecules in cells transformed by methylated BPV DNA contained little or no methylation, indicating that the pattern of methylation was not faithfully retained in these extrachromosomally replicating molecules. Methylation at the HpaII sites (but not the HhaI sites) in the cloned BPV plasmid or in pBR322 also inhibited transformation of the plasmids into Escherichia coli HB101 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号