首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Increases in dietary protein have been reported to increase the rate of citrulline synthesis and the level of N-acetylglutamate in liver. We have confirmed this effect of diet on citrulline synthesis in rat liver mitochondria and show parallel increases in N-acetylglutamate concentration. The magnitude of the effect of arginine in the suspending medium on citrulline synthesis was also dependent on dietary protein content. Mitochondria from rats fed on a protein-free diet initially contained low levels of N-acetylglutamate, and addition of arginine increased the rate of its synthesis. Citrulline synthesis and acetylglutamate content in these mitochondria increased more than 5-fold when 1 mM-arginine was added. A diet high in protein results in mitochondria with increased N-acetylglutamate and a high rate of citrulline synthesis; 1 mM-arginine increased citrulline synthesis in such mitochondria by only 36%. The concentration of arginine in portal blood was 47 microM in rats fed on a diet lacking protein, and 182 microM in rats fed on a diet containing 60% protein, suggesting that arginine may be a regulatory signal to the liver concerning the dietary protein intake. The rates of citrulline synthesis were proportional to the mitochondrial content of acetylglutamate in mitochondria obtained from rats fed on diets containing 0, 24, or 60% protein, whether incubated in the absence or presence of arginine. Although the effector concentrations are higher than the Ka for the enzymes, these results support the view that concentrations of both arginine and acetylglutamate are important in the regulation of synthesis of citrulline and urea. Additionally, the effects of dietary protein level (and of arginine) are exerted in large part by way of modulation of the concentration of acetylglutamate.  相似文献   

2.
Rats were fed the following diets: standard (20% protein), high-protein (80%), protein-free, standard plus ammonium and protein-free plus ammonium for six weeks. The standard plus ammonium diet was prepared to contain ammonia equivalent to that supplied by the high-protein diet. Addition of ammonium acetate (20% by mass) to the 20% protein or protein-free diets results in 2.3- and 10-fold increases of urea excretion respectively, without increase of carbamoyl-phosphate synthase. Supplementation of the standard diet with ammonium increases the mitochondrial content of acetylglutamate from 830 to 1590 pmol/mg protein, and of the protein-free diet from 130 to 1040 pmol/mg. However, ingestion of ammonium did not increase the activity of acetylglutamate synthase. Therefore the efflux of acetylglutamate from mitochondria was determined. After 30 min at 37 degrees C liver mitochondria from rats on standard diet released 61% of the initial acetylglutamate while mitochondria from animals on standard plus ammonium diet released only 20%. These results indicate that ingestion of ammonium increases the content of acetylglutamate in rat liver by decreasing its efflux from mitochondria. This effect is similar to that produced in mice by a high protein diet [Morita et al. (1982) J. Biochem. (Tokyo) 91, 563-569]. However, while the high-protein diet increases carbamoylphosphate synthase content, the ammonium diet does not.  相似文献   

3.
1. Male rats were fed for 14 days on powdered diets containing (by weight) 53% of starch, or on diets in which 20g of starch per 100g of diet was replaced by lard or corn oil. They were then fed acutely by stomach tube with a single dose of glucose, fructose or ethanol of equivalent energy contents, or with 0.15m-NaCl. The serum concentrations of corticosterone, insulin, glucose, glycerol, triacylglycerol and cholesterol were measured up to 6h after this treatment. 2. Feeding saline (0.9% NaCl) acutely to the rats maintained on the three powdered diets produced a small transient increase in circulating corticosterone that was similar to that in rats maintained on the normal 41B pelleted diet. 3. Feeding glucose acutely to the rats on the powdered diets produced peak concentrations of corticosterone that were 2–3-fold higher than those seen in rats maintained on the 41B diet. The duration of this response increased in the order starch diet<lard diet<corn-oil diet. This abnormal corticosterone response to glucose feeding appeared to be responsible for an increased activity in phosphatidate phosphohydrolase in the livers of rats fed the starch and lard diets of 2.9- and 4.9-fold respectively. The latter increase was similar to that produced by ethanol, whereas glucose did not increase the phosphohydrolase activity in the liver of rats maintained on the 41B diet. 4. Feeding fructose acutely produced even more marked increases than glucose in the concentrations of circulating corticosterone in rats given the powdered diets, but unlike glucose did not increase circulating insulin. The duration of the corticosterone response again increased in the order starch diet<lard diet<corn-oil diet. The concentrations of circulating glucose were increased by fructose feeding in rats maintained on these diets, but they were not altered in the rats maintained on the 41B pellets. A prolonged increase in serum corticosterone concentrations was also observed when fructose was fed to rats maintained on pelleted diets enriched with corn oil or beef tallow rather than with starch or sucrose. However, these effects were less marked than those seen with rats fed on the powdered diets. 5. These results are discussed in relation to the mechanism whereby high dietary fat exaggerates the effects of ethanol, fructose and sorbitol in stimulating triacylglycerol synthesis in the liver.  相似文献   

4.
1. The activity of ornithine decarboxylase in the liver and kidneys of rats maintained on a cyclical regimen of protein-free and protein-containing diets was investigated. There was a daily activation of the enzyme in response to the feeding of protein after 3 days feeding of protein-free diet. 2. The activation of ornithine decarboxylase in the liver and kidneys of rats re-fed on protein was demonstrable throughout 16 cycles of alternating 3-day periods of protein-free and protein-containing diets. The magnitude of the activation in the kidneys diminished from 20-fold stimulation in the first cycle to 5-fold stimulation (compared with animals fed with protein-free diet) in the later cycles of protein re-feeding. The activation of the enzyme in liver was decreased from 20-fold stimulation in the first cycle to approx. 10-fold stimulation in later cycles. 3. The concentration of spermidine was increased by approx. 50% in the liver of animals during cycling from protein-free to protein-containing diets. Spermine was unchanged, and putrescine was maintained at a low concentration approx. one-fifth to one-tenth that of spermidine after protein re-feeding. 4. The incorporation of [(3)H]thymidine into liver DNA was increased 10-fold in animals re-fed with protein compared with animals receiving protein-free diets. 5. The activation of ornithine decarboxylase by re-feeding of protein was inhibited 90% by the injection of propane-1,3-diamine during re-feeding. The stimulation of DNA synthesis was inhibited 60% by multiple injections of propane-1,3-diamine during the re-feeding of protein.  相似文献   

5.
The effect of ingesting isocaloric and isonitrogenous diets with increasing amounts of lipid (0-30%) and consequently decreasing amounts of carbohydrates (68.7-1.25%) on the exocrine pancreas was studied in adult male Wistar rats. Pancreatic contents of chymotrypsin, lipase and colipase activity, as well as synthesis of amylase, lipase, procarboxypeptidases and individual serine proteases were examined. Lipid-free diets and diets containing 1% lipid were found to have little effect on pancreatic proteins as compared with lipid-rich diets where two distinct patterns of response were observed. Ingestion of diets containing 3-20% lipid resulted in a progressive increase in the activity of lipase, colipase and chymotrypsin up to 2-fold in the first case and 1.6-fold in the two other cases when animals were fed the 20% fat diet. Under the latter conditions, the relative synthesis of secretory proteins, as expressed as percentage of the radioactivity incorporated into individual proteins compared to that incorporated into the total mixture of exocrine proteins, was unchanged for procarboxypeptidases, whereas it was stimulated for lipase (2-fold) and serine proteases (1.6-fold). Amylase relative synthesis progressively decreased as the lipid content of diets increased. Consumption of hyperlipidic diets containing 25% and 30% fat resulted in a further enhancement in the activity of lipase and colipase in the gland in contrast with chymotrypsin activity which was unchanged as compared to the control diet (3% lipid). As far as biosynthesis was concerned, a plateau in the relative synthesis of lipase and serine protease was reached. Amylase relative synthesis further decreased down to 2.2-fold when rats were fed the 30% fat-rich diet whereas that of procarboxypeptidases was markedly increased (about 1.7-fold). Absolute rates of synthesis of total pancreatic secretory proteins, as expressed with regard to the DNA content of the tissue, indicated that biosynthesis of all secretory pancreatic proteins was stimulated by hyperlipidic diets (at least 2-fold with the 30% lipid diet). Consequently, when such an increase was taken into consideration, the absolute synthesis of amylase was found to be unchanged throughout the dietary manipulations, whereas that of lipase, procarboxypeptidases and serine proteases were stimulated by 4.0-fold, 3.4-fold and 3.2-fold, respectively.  相似文献   

6.
We investigated potential sex differences in bone resorption and the conservation of whole body bone mass in 24-week-old Sprague-Dawley rats maintained on a 1.0% calcium diet and then fed diets containing 0.02, 0.5, 1.0, or 1.75% calcium for 31 days. Lowering dietary calcium from 1.00% to 0.02% doubled whole skeleton bone resorption (urinary 3H-tetracycline loss). Female rats were more sensitive to calcium stress, exhibiting the maximal resorptive response when fed the 0.5% calcium diet, whereas the 0.02% calcium diet was required to elicit this response in males. Despite the evidence of increased bone resorption, whole skeleton mass was unchanged in females and was significantly increased in males, indicating that switching to even the 0.02% calcium diet did not result in an overt loss of total body bone mass. Compared with controls, the skeleton mass of females (97+/-1.4%) maintained on the 0.02% calcium diet was significantly lower than males (107+/-2.4%), again suggesting a greater impact of calcium deficiency in females. The calculation of the average percentage growth of selected individual bones in male rats indicated a proportional increase in bone mass between the axial and appendicular skeleton of approximately +4% and +18% in animals maintained on 0.02 and 1.75% diets, respectively. By comparison, female rats consuming the 0.02% calcium diet showed an average 14% loss in axial bone and 7.5% gain in appendicular bone mass. The results indicate increased sensitivity to dietary calcium deficiency in female rats which involves a significant loss in axial bone mass not observed in male rats maintained under similar dietary conditions.  相似文献   

7.
Carbamoyl phosphate synthetase I (CPS-I) is the most abundant protein of rat liver mitochondria. Biochemical measurements in liver homogenates have shown that the liver from rats fed a high-protein diet contains more CPS-I per gram tissue protein than controls. However, there is no information on changes in the intact tissue at the cellular and mitochondrial level. Therefore, monoclonal antibodies to beef liver CPS-I were produced by the hybridoma technique. Four clones, C-241/1A, B, C, and D secreted immunogammaglobulin (IgG) IgG1. Using C-241/C, we measured by electron microscopy immunogold procedures the labeling of CPS-I in mitochondria from liver of rats fed high protein (casein, 50 and 80% of total food intake) diets. CPS-I (expressed as gold particles/micron2 of mitochondrial cross-sectional area) was greater than in mitochondria from control rats (20% casein diet), whether the rats were fed for 1, 6, or 14 months on the high-protein diets. The immunocytochemical measurements shown here demonstrate that the increase in the level of CPS-I in high-protein diets is a reflection of both the larger number of CPS-I molecules per mitochondrial area and the larger proportion of the total hepatocyte volume occupied by mitochondria. Similar measurements were carried out with glutamate dehydrogenase (GDH) using previously characterized monoclonal antibodies. No differences in GDH labeling were found with high-protein diets. Interestingly, when mitochondria from hepatocytes of rats fed a high-protein diet were divided into two subpopulations on the basis of mitochondrial cross-sectional size (i.e., greater or less than 0.7 micron2), the large mitochondria had 1.2 times more CPS-I and 0.8 times less GDH than the small mitochondria nearby.  相似文献   

8.
This study was carried out to test the hypothesis that diet-induced nephrocalcinosis causes enhanced loss of albumin in urine, irrespective of the composition of the nephrocalcinogenic diet. Female rats were fed various purified diets for 28 days. There was a control diet (0.5% Ca, 0.04% Mg, 0.4% P, 15.1% protein, wt/wt), a low Mg (0.01% Mg), a high protein (30.2% protein) and a high P diet (0.6% P). The low Mg and high P diet induced nephrocalcinosis as demonstrated histologically and by markedly increased concentrations of kidney Ca. In rats fed the high protein diet, nephrocalcinosis was essentially absent. Group mean values of urinary excretion of albumin and plasma concentrations of urea were increased in rats fed either the low Mg or high P diet. The high protein diet did not affect urinary albumin but caused lysozymuria which was not seen in the other groups. Plasma urea was increased in rats fed the high protein diet. In individual rats, the concentration of Ca in kidney and urinary albumin excretion were positively correlated. It is suggested that nephrocalcinosis in female rats induced by either low Mg or high P intake causes kidney damage which in turn leads to increased concentrations of albumin in urine and urea in plasma.  相似文献   

9.
To characterise the effects of dietary protein content on threonine metabolism during pregnancy, rats were fed diets containing 18% or 9% protein and then killed at different stages of gestation. Serum threonine concentrations fell significantly faster in the animals fed the diet containing 9% protein when compared to those fed the diet containing 18% protein. On day 4 of gestation the rate of threonine oxidation was higher in maternal liver homogenates prepared from the animals fed the diet containing 18% protein. The rate of threonine oxidation by liver homogenates fell as gestation proceeded in both diet groups. The activity of threonine dehydrogenase in the maternal liver was unaffected by dietary protein content at all stages of gestation. Serine-threonine dehydratase activity in homogenates of the maternal liver was transiently increased during the early stages of gestation in the animals fed high protein diets but was unchanged in the low protein groups. There was an increase in serine-threonine dehydratase activity in the kidney during the later stages of gestation but this was unaffected by the protein content of the maternal diet. These data show that the changes in free threonine concentrations cannot be accounted for through changes in the oxidation rate and suggest that some other factor influences the unusual metabolism of this amino acid during gestation.  相似文献   

10.
Ingestion of large amounts of ammonium increases markedly the content of tubulin in brain. The effect on tubulin induction of ammonium ingestion for up to 100 days was investigated. Brain tubulin content showed a rapid initial increase (28%) at 2 days and reached 50% after 100 days on the diet. To discern if ammonia, the increase in urea synthesis, or both was responsible for tubulin induction, rats were maintained at several levels of uremia (by administering diets containing 0 to 80% protein) or in hyperammonemia (by urease treatment). Only ammonium administration in the diet and urease injection induced tubulin in brain. Tubulin was quantified in three different brain regions. There was a regional selectivity of tubulin induction by ammonia in rat brain. Whereas the cerebellum remained unaltered, the paleencephalon showed the highest increase, and the cerebral cortex exhibited only a modest increase.  相似文献   

11.
Natriuresis and diuresis occur in experimental animals after release of bilateral ureteral obstruction. Accumulation of urea and/or other natriuretic factors during the interval of complete obstruction may play a role in the ensuing postobstructive diuresis. The present experiments examine the potential role of dietary protein intake in conditioning the magnitude of the postobstructive diuresis after unilateral release of bilateral ureteral obstruction of 24-hr duration in the rat. Rats were fed isocaloric diets containing high (40% casein) or low (6% casein) protein for 4 weeks prior to obstruction. Rats fed a high protein diet had greater urine flows and fractional excretion of sodium and potassium after relief of obstruction than rats fed a low protein diet. Increased excretion of urea accounted for only part of the greater diuresis seen in rats fed a high protein diet. Hence, greater accumulation of other natriuretic factors during the period of obstruction in rats fed a high protein diet must play a role in the increased diuresis seen in this group of animals after release of obstruction.  相似文献   

12.
Immediately following unilateral nephrectomy the remaining kidney of juvenile male Sprague-Dawley rats was sham irradiated or irradiated to doses of 14-30 Gy. Following irradiation the animals were placed on isocaloric diets of either 20 or 4% protein. Median life spans for the animals on the low protein diet were significantly increased compared to the median life spans on the 20% protein diet. Serum urea nitrogen (SUN) levels were periodically measured in rats from each of the experimental groups. SUN levels in the irradiated rats fed the 20% protein diet increased significantly over unirradiated controls as a function of time. In contrast animals fed the 4% protein diet showed no significant changes in SUN levels irrespective of the size of radiation dose and time post irradiation. Renal protective factors calculated as the ratio of 80% survival times for animals fed the 20% protein diet compared to animals fed the 4% protein diet can be calculated to be 2.3 at 18 Gy and 2.8 at 22 Gy. Likewise, a SUN protective factor calculated as the ratio of percentage of nonirradiated control SUN values for the two diets (SUN 20% irradiated) (SUN 20% nonirradiated) (SUN 4% irradiated) (SUN 4% nonirradiated) is 2.4 for 18 Gy and 3.9 for 22 Gy.  相似文献   

13.
This study investigates the phosphorus (P) homeostasis in the process of an altered parathyroid hormone (PTH) action in the kidney of rats fed a high P diet. Four-week-old male Wistar strain rats were fed diets containing five different P levels (0.3, 0.6, 0.9, 1.2 and 1.5%) for 21 days. The serum PTH concentration and urinary excretion of P were elevated with increasing dietary P level. Compared to rats fed the 0.3% P diet, the serum calcium (Ca) concentration remained unchanged, while the serum 1,25(OH)(2)D(3) concentration and urinary excretion of cAMP were elevated with increasing dietary P level in rats fed the high P diets containing 0.6-0.9% P. On the other hand, a lower serum Ca concentration was observed in rats fed the high P diets containing 1.2% or greater P. The serum 1,25(OH)(2)D(3) concentration remained unchanged in rats fed the high P diets containing 1.2% or greater P, comparison with rats fed the 0.3% P diet. The urinary excretion of cAMP and PTH/PTH-related peptide (PTHrP) receptor and type II sodium-dependent phosphate transporter (NaPi-2) mRNA in the kidney were both decreased in rats fed the high P diets containing 1.2% or greater P. In conclusion, a high P diet with subsequent decrease in serum Ca concentration suppressed the PTH action in the kidney due to PTH/PTHrP receptor mRNA down-regulation. Furthermore, an increase in the urinary excretion of P might have been caused by decreased NaPi-2 mRNA expression without the effects of PTH and 1,25(OH)(2)D(3).  相似文献   

14.
Skeletal muscle growth, muscle nucleic acids and muscle protein synthesis capacity, were measured to evaluate the protein requirement of adult rats. Wistar rats were fed on diets containing 4%, 10% or 20% casein + D,L-methionine. All diets were provided for 21 days beginning at 90 days of age. Body weight, food efficiency and net weight change increased as the casein content of the diet increased. Muscle DNA, RNA and RNA/protein were lost, but protein and protein/DNA increased on the 4% and 20% protein diet. This fact involves an aplasia phenomenon although the hypertrophic growth is maintained. Alterations of the insulin and GH plasma levels were observed. These findings indicate that for adult rats the 4% and 20% protein diets are not adequate for the period of adult maintenance.  相似文献   

15.
  • 1.1. Pyruvate dehydrogenase complex (PDC) activity was measured in several tissues of rats fed for 7 or 15 days on control, or high-sucrose or high-fat diets.
  • 2.2. Total activity in adipose tissue increased in the three groups 3–4-fold as compared with chow-fed animals in the first week. Total activity was 60% lower in rats fed the diet containing 22% corn oil for 2 weeks.
  • 3.3. Hepatic total and PDCa activities were 50–80% higher in rats fed the sucrose diet for 7 or 15 days and decreased 30–40% in those fed on the high-fat diet for 2 weeks.
  相似文献   

16.
Young growing rats, chicks and pigs were fed diets containing graded levels of 1,3-butanediol (BD). Replacement of up to 20% of the dietary carbohydrate energy with BD did not affect body weight gain or food efficiency in these species. Blood beta-hydroxybutyrate levels were markedly elevated when BD was added to the diet. Plasma triglyceride response varied with species. In the rat, plasma triglyceride levels were decreased when BD was added to a high-carbohydrate diet. Plasma triglyceride levels were increased when BD-containing diets were fed to pigs and unchanged when chicks consumed diets containing BD. The hepatic lactate:pyruvate ratio was increased in rats fed BD and decreased in chicks fed BD. Hepatic long-chain acyl CoA levels were increased in rats, but not in chicks, fed BD. Addition of BD to a high-carbohydrate diet markedly decreased the rate of fatty acid synthesis, as measured in vitro or in vivo, in rat liver but not in rat or pig adipose tissue. Hepatic fatty acid synthesis in the chick was not affected by replacement of up to 18% of the dietary carbohydrate with BD. We propose that the hepatic conversion of BD to beta-hydroxybutyrate in the rat shifts the cytoplasmic redox state, reduces the glycolytic rate, and reduces substrate availability for fatty acid synthesis. Further, the concomitant shift in the mitochondrial redox state allows long-chain acyl CoA levels to increase. The overall effect is a decrease in the rate of fatty acid synthesis in livers of rats fed BD.  相似文献   

17.
Rats were fed standard (20% protein), protein-free or high protein (80%) diets for 15 days and then injected intraperitoneally with ammonium acetate (7 mmol/Kg). Survival was 6%, 75% and 100%, respectively, for rats fed standard, protein-free and high protein diets. After injection of 6 mmol/Kg of ammonium acetate, blood ammonia reached a peak (at ca. 2 mM) after 7, 25 and 30 min for rats fed high protein, protein-free and standard diets, respectively. The results presented indicate that protection in the high protein group is due to faster detoxication of ammonia via a more active urea cycle while the tolerance of the protein-free group to higher levels of ammonia remains to be clarified.  相似文献   

18.
Albino rats (Sprague-Dawley) of mean weight 100 g were divided into four groups and given for 7 days a balanced diet. They were then placed in metabolic cages for fifteen days and fed diets containing different quantities of casein: 18% (D18), 36% (D36), 50% (D50) and 72% (D72). The levels of total calcium, inorganic phosphorus, alkaline phosphatase activity, total proteins and urea were determined. The urinary and fecal excretion of calcium were determined on specimens of urine and stool collected every two days. The metabolic balance of nitrogen was also estimated. The results show there is not a linear relationship between a high protein diet and plasma protein levels, but a progressive body calcium loss was observed with the increase of casein in the diet, which confirms what other workers have already suggested.  相似文献   

19.
Induction of cytosolic aspartate aminotransferase (glutamic oxaloacetic transaminase) was observed in rat liver on administration of a high-protein diet. The enzyme activity in the liver of rats given 60% and 80% protein diet increased to 1.8- and 1.9-fold that in the liver of rats maintained on 20% protein diet, with about 2-fold increases in the levels of functional sGOT mRNA, measured by in vitro translation. Whereas the activity of mitochondrial aspartate aminotransferase did not increase. Induction of cytosolic aspartate aminotransferase was also detected immunocytochemically.  相似文献   

20.
A radioimmunoassay for liver fructose-1,6-diphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrlase, EC 3.1.3.11) has been developed based on maintenance of its tetrameric structure and immunologic integrity after iodination by the Bolton-Hunter technique. The assay detected as little as 2 ng of standard enzyme. Nonspecific interference by tissue components did not occur. Enzyme concentration (mumol/1000 g tissue wet weight) was measured in tissue extracts of 49 rabbits subjected to a variety of conditions. In animals fed a 'balanced' diet containing 50--60% carbohydrate (by weight), the concentration in liver was 3.4 microM +/- 0.3. After fasts of 48, 72, or 96 h, the concentration in liver increased approximately 1.4-fold. A high-fat diet did not alter the concentration significantly but a high-protein diet caused an increase of 2.1-fold to 7.2 microM +/- 1.4. The greatest concentrations, 8.7 microM +/- 1.9, were observed in the livers of severely diabetic rabbits. The increase paralleled the increasing severity of diabetes and provides one explanation for the augmented gluconeogenesis which occurs in the diabetic state. Changes were less marked in kidney. The greatest apparent incrase, from 2.6 microM +/- 1.1 in the normal fed rabbit to 4.7 microM +/- 2.8, occurred in the severely diabetic animal. However, variation was sufficiently great in kidney to render apparent increases during fasting, protein feefing and diabetes statistically insignificant. For the most part changes in assayable activity followed changes in enzyme concentration except in the rabbits maintained on high-protein diets. In these, liver enzyme concentration increased by 2.4-fold whereas activity increased by only 1.3-fold, and the kidney enzyme concentration increased 1.3-fold whereas activity decreased by 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号