首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Brown ghost knife fish, Apteronotus leptorhynchus, produce sexually dimorphic, androgen-sensitive electrocommunication signals termed chirps. The androgen regulation of chirping has been studied previously by administering exogenous androgens to females and measuring the chirping response to artificial electrical signals. The present study examined the production of chirps during dyadic interactions of fish and correlated chirp rate with endogenous levels of one particular androgen, 11-ketotestosterone (11KT). Eight males and four females were exposed to short-term (5-min) interactions in both same-sex and opposite-sex dyads. Twenty-four hours after all behavioral tests, fish were bled for determination of plasma 11KT levels. Males and females differed in both their production of chirps and their ability to elicit chirps from other fish: males chirped about 20-30 times more often than females and elicited 2-4 times as many chirps as females. Among males, chirp rate was correlated positively with plasma 11KT, electric organ discharge frequency, and body size. Combined with results from experimental manipulation of androgen levels, these results support the hypothesis that endogenous 11KT levels influence electrocommunication behavior during interactions between two male fish.  相似文献   

2.
When animals are under stress, glucocorticoids commonly inhibit adult neurogenesis by acting through glucocorticoid receptors (GRs). However, in some cases, conditions that elevate glucocorticoids promote adult neurogenesis, and the role of glucocorticoid receptors in these circumstances is not well understood. We examined the involvement of GRs in social enhancement of brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. In this species, long-term social interaction simultaneously elevates plasma cortisol, enhances brain cell addition and increases production of aggressive electrocommunication signals (“chirps”). We implanted isolated and paired fish with capsules containing nothing (controls) or the GR antagonist, RU486, recorded chirp production and locomotion for 7 d, and measured the density of newborn cells in the periventricular zone. Compared to isolated controls, paired controls showed elevated chirping in two phases: much higher chirp rates in the first 5 h and moderately higher nocturnal rates thereafter. Treating paired fish with RU486 reduced chirp rates in both phases to those of isolated fish, demonstrating that GR activation is crucial for socially induced chirping. Neither RU486 nor social interaction affected locomotion. RU486 treatment to paired fish had a partial effect on cell addition: paired RU486 fish had less cell addition than paired control fish but more than isolated fish. This suggests that cortisol activation of GRs contributes to social enhancement of cell addition but works in parallel with another GR-independent mechanism. RU486 also reduced cell addition in isolated fish, indicating that GRs participate in the regulation of cell addition even when cortisol levels are low.  相似文献   

3.
The weakly electric fish, Apteronotus leptorhynchus, produces a wave-like electric organ discharge (EOD) utilized for electrolocation and communication. Both sexes communicate by emitting chirps: transient increases in EOD frequency. In males, chirping behavior and the jamming avoidance response (JAR) can be evoked by an artificial EOD stimulus delivered to the water at frequencies 1–10 Hz below the animal's own EOD. In contrast, females rarely chirp in response to this stimulus even though they show consistent JARs. To investigate whether this behavioral difference is hormone dependent, we implanted females with testosterone (T) and monitored their chirping activity over a 5 week period. Our findings indicate that elevations in blood levels of T cause an enhancement of chirping behavior and a lowering of basal EOD frequency in females. Elevated blood levels of T also appear to modulate the quality of chirps produced by hormone treated females. The effects of T on female chirping behavior and basal EOD frequency appear specific, since the magnitude of the JAR was not affected by the hormonal treatment. These findings suggest that seasonal changes in circulating concentrations of T may regulate behavioral changes in female chirping behavior and basal EOD frequency.Abbreviations DHT dihydrotestosterone - E estradiol - EOD elecdric organ discharge - GSI gonadal size index - JAR jamming avoidance response - PPn prepacemaker nucleus - T testosterone  相似文献   

4.
Serotonin modulates agonistic and reproductive behavior across vertebrate species. 5HT1A and 5HT1B receptors mediate many serotonergic effects on social behavior, but other receptors, including 5HT2 receptors, may also contribute. We investigated serotonergic regulation of electrocommunication signals in the weakly electric fish Apteronotus leptorhynchus. During social interactions, these fish modulate their electric organ discharges (EODs) to produce signals known as chirps. Males chirp more than females and produce two chirp types. Males produce high-frequency chirps as courtship signals; whereas both sexes produce low-frequency chirps during same-sex interactions. Serotonergic innervation of the prepacemaker nucleus, which controls chirping, is more robust in females than males. Serotonin inhibits chirping and may contribute to sexual dimorphism and individual variation in chirping. We elicited chirps with EOD playbacks and pharmacologically manipulated serotonin receptors to determine which receptors regulated chirping. We also asked whether serotonin receptor activation generally modulated chirping or more specifically targeted particular chirp types. Agonists and antagonists of 5HT1B/1D receptors (CP-94253 and GR-125743) did not affect chirping. The 5HT1A receptor agonist 8OH-DPAT specifically increased production of high-frequency chirps. The 5HT2 receptor agonist DOI decreased chirping. Receptor antagonists (WAY-100635 and MDL-11939) opposed the effects of their corresponding agonists. These results suggest that serotonergic inhibition of chirping may be mediated by 5HT2 receptors, but that serotonergic activation of 5HT1A receptors specifically increases the production of high-frequency chirps. The enhancement of chirping by 5HT1A receptors may result from interactions with cortisol and/or arginine vasotocin, which similarly enhance chirping and are influenced by 5HT1A activity in other systems.  相似文献   

5.
Gymnotiform electric fish emit an electric organ discharge that, in several species, is sexually dimorphic and functions in gender recognition. In addition, some species produce frequency modulations of the electric organ discharge, known as chirps, that are displayed during aggression and courtship. We report that two congeneric species (Apteronotus leptorhynchus and A. albifrons) differ in the expression of sexual dimorphism in these signals. In A. leptorhynchus, males chirp more than females, but in A. albifrons chirping is monomorphic. The gonadosomatic index and plasma levels of 11-ketotestosterone were equivalent in both species, suggesting that they were in similar reproductive condition. Corresponding to this difference in dimorphism, A. leptorhynchus increases chirping in response to androgens, but chirping in A. albifrons is insensitive to implants of testosterone, dihydrotestosterone or 11-ketotestosterone. Species also differ in the sexual dimorphism and androgen sensitivity of electric organ discharge frequency. In A. leptorhynchus, males discharge at higher frequencies than females, and androgens increase electric organ discharge frequency. In A.␣albifrons, males discharge at lower frequencies than females, and androgens decrease electric organ discharge frequency. Thus, in both chirping and electric organ discharge frequency, evolutionary changes in the presence or direction of sexual dimorphism have been accompanied and perhaps caused by changes in the androgen regulation of the electric organ discharge. Accepted: 18 February 1998  相似文献   

6.
Serotonin regulates aggressive behavior. The production or release of serotonin is sexually dimorphic and related to social rank in many species. We examined serotonin expression in the central posterior/prepacemaker nucleus (CP/PPn) of the electric fish Apteronotus leptorhynchus. The CP/PPn is a thalamic nucleus that controls agonistic and reproductive electrocommunication signals known as chirps and gradual frequency rises. In parts of the CP/PPn that control chirping, females had more than twice as many serotonergic fibers and terminals as did males. Serotonin immunoreactivity in chirp-controlling areas of the CP/PPn was also negatively correlated with two indicators of dominance: electric organ discharge (EOD) frequency and body mass. Within sexes, the negative correlation between EOD frequency and serotonergic innervation of the PPn was significant in females, but not in males. Females with higher EOD frequencies had less serotonin in the CP/PPn than did females with lower EOD frequencies. Thus, the CP/PPn contained more serotonin in females than in males, and in particular, more serotonin in females with EOD frequencies typical of social subordinates than in females with EOD frequencies typical of social dominants. These results, combined with previous findings that serotonin inhibits chirping and that females chirp much less than males, suggest that serotonin may link sex, social rank, and the production of agonistic communication signals. The relative simplicity of the neural circuits that control the EOD and chirping make the electromotor system well-suited for studying the cellular, physiological, and behavioral mechanisms by which serotonin modulates agonistic communication.  相似文献   

7.
In this study we examined electrocommunication behavior in Sternarchogiton nattereri (Apteronotidae), a weakly electric fish from South America. We focused on variation between females and males lacking external dentition and used playbacks of simulated conspecifics to elicit chirps (modulations of their electric organ discharge, EOD). Chirp responses were not affected by the frequency of the playback stimulus. EOD frequency, chirp rate, and chirp duration were not sexually dimorphic; however, the amount of chirp frequency modulation was significantly greater in toothless males than in females. These results reinforce that sex differences in chirp structure are highly diverse and widespread in the Apteronotidae.  相似文献   

8.
1. Weakly electric fish generate around their bodies low-amplitude, AC electric fields which are used both for the detection of objects and intraspecific communication. The types of modulation in this signal of which the high-frequency wave-type gymnotiform, Apteronotus, is capable are relatively few and stereotyped. Chief among these is the chirp, a signal used in courtship and agonistic displays. Chirps are brief and rapid accelerations in the normally highly regular electric organ discharge (EOD) frequency. 2. Chirping can be elicited artificially in these animals by the use of a stimulus regime identical to that typically used to elicit another behavior, the jamming avoidance response (JAR). The neuronal basis for the JAR, a much slower and lesser alteration in EOD frequency, is well understood. Examination of the stimulus features which induce chirping show that, like the JAR, there is a region of frequency differences between the fish's EOD and the interfering signal that maximally elicits the response. Moreover, the response is sex-specific with regard to the sign of the frequency difference, with females chirping preferentially on the positive and most males on the negative Df. These features imply that the sensory mechanisms involved in the triggering of these communicatory behaviors are fundamentally similar to those explicated for the JAR. 3. Additionally, two other modulatory behaviors of unknown significance are described. The first is a non-selective rise in EOD frequency associated with a JAR stimulus, occurring regardless of the sign of the Df. This modulation shares many characteristics with the JAR. The second behavior, which we have termed a 'yodel', is distinct from and kinetically intermediate to chirping and the JAR. Moreover, unlike the other studied electromotor behaviors it is generally produced only after the termination of the eliciting stimulus.  相似文献   

9.
In electric fish, Apteronotus leptorhynchus, both long-term social interaction and cortisol treatment potentiates chirping, an electrocommunication behavior that functions in aggression. Chirping is controlled by the diencephalic prepacemaker nucleus (PPn-C) located just lateral to the ventricle. Cells born in adult proliferative zones such as the periventricular zone (PVZ) can migrate along radial glial fibers to other brain regions, including the PPn-C. We examined whether social interactions or cortisol treatment influenced cell addition and radial glia fiber formation by (1) pairing fish (4 or 7 days) or (2) implanting fish with cortisol (7 or 14 days). Adult fish were injected with bromodeoxyuridine 3 days before sacrifice to mark cells that were recently added. Other fish were sacrificed after 1 or 7 days of treatment to examine vimentin immunoreactivity (IR), a measure of radial glial fiber density. Paired fish had more cell addition than isolated fish at 7 days, coinciding temporally with the onset of socially induced increase in chirping behavior. Paired fish also had higher vimentin IR at 1 and 7 days. For both cell addition and vimentin IR, the effect was regionally specific, increasing in the PVZ adjacent to the PPn-C, but not in surrounding regions. Cortisol increased cell addition at 7 days, correlating with the onset of cortisol-induced changes in chirping, and in a regionally specific manner. Cortisol for 14 days increased cell addition, and cortisol for 7 days increased vimentin IR but in a regionally non-specific manner. The correlation between treatment-induced changes in chirping and regionally specific increases in cell addition, and radial glial fiber formation suggests a causal relationship between such behavioral and brain plasticity in adults, but this hypothesis will require further testing.  相似文献   

10.
Sexually dimorphic signaling is widespread among animals and can act as an honest indicator of mate quality. Additionally, differences in signaling and morphology within a sex can be associated with different strategies for acquiring mates. Weakly electric fish communicate via self-generated electrical fields that transmit information about sex, reproductive state, and social status. The weakly electric knifefish Parapteronotus hasemani exhibits sexual dimorphism in body size as well as substantial within-male variation in body size and jaw length. We asked whether P. hasemani exhibits hormonally mediated sexual dimorphism in electrocommunication behavior. We also asked whether males with short versus long jaws differed significantly from each other in morphology, behavior, hormone levels, or reproductive maturity. Males produced longer chirps than females, but other signal parameters (electric organ discharge frequency; chirp rate and frequency modulation) were sexually monomorphic. Pharmacologically blocking androgen receptors in males reduced chirp duration, suggesting that this sexually dimorphic trait is regulated at least in part by the activational effects of androgens. Males sorted into two distinct morphological categories but did not differ in circulating 11-ketotestosterone or testosterone. Short-jawed males and long-jawed males also did not differ in any aspects of signaling. Thus, chirping and high levels of 11-ketotestosterone were reliably associated with reproductively active males but do not necessarily indicate male type or quality. This contrasts with other alternative male morph systems in which males that differ in morphology also differ in androgen profiles and signaling behavior.  相似文献   

11.
Some gymnotiform electric fish modulate their electric organ discharge for intraspecific communication. In Apteronotus leptorhynchus, chirps are usually rapid (10-30 ms) modulations that are activated through non- N-methyl- d-aspartate (non-NMDA) glutamate receptors in the hindbrain pacemaker nucleus. Males produce longer chirp types than females and chirp at higher rates. In Apteronotus albifrons, chirp rate is sexually monomorphic, but chirp structure (change in frequency and amplitude during a chirp) was unknown. To better understand the neural regulation and evolution of chirping behavior, we compared chirp structure in these two species under identical stimulus regimes. A. albifrons, like A. leptorhynchus, produced distinct types of chirps that varied, in part, by frequency excursion. However, unlike in A. leptorhynchus, chirp types in A. albifrons varied little in duration, and chirps were all longer (70-200 ms) than those of A. leptorhynchus. Chirp type production was not sexually dimorphic in A. albifrons, but within two chirp types males produced longer chirps than females. We suggest that species differences in chirp duration might be attributable to differences in the relative proportions of fast-acting (non-NMDA) and slow-acting (NMDA) glutamate receptors in the pacemaker. Additionally, we map species difference onto a phylogeny and hypothesize an evolutionary sequence for the diversification of chirp structure.  相似文献   

12.
In the protogynous stoplight parrotfish (Sparisoma viride), large males defend territories that encompass the home-ranges of several mature females. However, high-quality habitat is in short supply, such that smaller, competitively inferior males do not defend territories. We investigated the role of 11-ketotestosterone (11KT) and testosterone (T) in the regulation of territorial behavior in a wild population of a protogynous reef fish, the stoplight parrotfish, at Glover's Reef, Belize. Radioimmunoassay of plasma samples from individuals of known social status revealed that nonterritorial males have lower levels of T and 11KT than territorial males. Nonterritorial males allowed access to vacant territories underwent pronounced increases in T and 11KT. When sampled 1 week after territory acquisition, levels of T and 11KT in new territorial males were significantly higher than the levels in established territorial males, but by 3 weeks after territory acquisition, there was no significant difference. We further investigated the hypothesis that such short-term increases in androgen levels are a response to intense male-male interactions during territory establishment. Simulated territorial intrusion promoted increased plasma levels of both T and 11KT while access to vacant territories without neighboring territorial males did not. These findings suggest that the endocrine system plays a role in fine-tuning the levels of territorial aggression exhibited by male stoplight parrotfish. We discuss these results in light of recent theory in behavioral endocrinology.  相似文献   

13.
While systemic steroid hormones are known to regulate reproductive behaviour, the actual mechanisms of steroidal regulation remain largely unknown. Steroidogenic enzyme activity can rapidly modulate social behaviour by influencing neurosteroid production. In fish, the enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) synthesizes 11-ketotestosterone (KT, a potent teleost androgen) and deactivates cortisol (the primary teleost glucocorticoid), and both of these steroid hormones can regulate behaviour. Here, we investigated the role of neurosteroidogenesis in regulating parenting in a haremic bidirectionally hermaphroditic fish, Lythrypnus dalli, where males provide all requisite parental care. Using an in vitro assay, we found that an 11β-HSD inhibitor, carbenoxolone (CBX), reduced brain and testicular KT synthesis by 90% or more. We modulated neurosteroid levels in parenting males via intracerebroventricular injection of CBX. Within only 20 min, CBX transiently eliminated parenting behaviour, but not other social behaviour, suggesting an enzymatic mechanism for rapid neurosteroidal regulation of parenting. Consistent with our proposed mechanism, elevating KT levels rescued parenting when paired with CBX, while cortisol alone did not affect parenting. Females paired with the experimental males opportunistically consumed unattended eggs, which reduced male reproductive success by 15%, but some females also exhibited parenting behaviour and these females had elevated brain KT. Brain KT levels appear to regulate the expression of parenting behaviour as a result of changes in neural 11β-HSD activity.  相似文献   

14.
Weakly electric fish from the family Mormyridae produce pulsatile electric organ discharges (EODs) for use in communication. For many species, male EODs are seasonally longer in duration than those of females, and among males, there are also individual differences in EOD duration. While EOD elongation can be induced by the administration of exogenous androgens, androgen levels have never before been assessed under natural or seminatural conditions. By simulating the conditions occurring during the breeding season in the laboratory, we provide evidence of a sex difference in EOD duration as well as document levels of circulating androgens in males. In this study, we analyzed the nature of social influences on male EOD duration and plasma androgen levels in Brienomyrus brachyistius. Individual males, first housed with a single female and then placed into social groups consisting of three males and three females, showed status-dependent changes in EOD duration. Top-ranking males experienced a relatively large increase in EOD duration. Second-ranking males experienced a more modest increase, and low-ranking males experienced a decrease in EOD duration. These changes were paralleled by differences in circulating levels of plasma 11-ketotestosterone (11-KT), but not testosterone, suggesting that the changes in EOD duration may have been mediated by changes in plasma 11-KT levels. Thus, it appears that EOD duration is an accurate indicator of male status, which is under social and hormonal control.  相似文献   

15.
The communication signals of electric fish can be dynamic, varying between the sexes on a circadian rhythm and in response to social and environmental cues. In the gymnotiform fish Brachyhypopomus gauderio waveform shape of the electric organ discharge (EOD) is regulated by steroid and peptide hormones. Furthermore, EOD amplitude and duration change on different timescales and in response to different social stimuli, suggesting that they are regulated by different mechanisms. Little is known about how androgen and peptide hormone systems interact to regulate signal waveform. We investigated the relationship between the androgens testosterone (T) and 11-ketotestosterone (11-KT), the melanocortin peptide hormone α-MSH, and their roles in regulating EOD waveform of male B. gauderio. Males were implanted with androgen (T, 11-KT, or blank), and injected with α-MSH before and at the peak of androgen effect. We compared the effects of androgen implants and social interactions by giving males a size-matched male stimulus with which they could interact electrically. Social stimuli and both androgens increased EOD duration, but only social stimuli and 11-KT elevated amplitude. However, no androgen enhanced EOD amplitude to the extent of a social stimulus, suggesting that a yet unidentified hormonal pathway regulates this signal parameter. Additionally, both androgens increased response of EOD duration to α-MSH, but only 11-KT increased response of EOD amplitude to α-MSH. Social stimuli had no effect on EOD response to α-MSH. The finding that EOD amplitude is preferentially regulated by 11-KT in B. gauderio may provide the basis for independent control of amplitude and duration.  相似文献   

16.
1. The weakly electric gymnotiform fish, Apteronotus leptorhynchus, can be induced to perform a variety of modulations of its quasi-sinusoidal, electric organ discharge (EOD) in acute physiological preparations. These modulations, many of which are communicatory in function, include the jamming avoidance response (JAR). We have recorded intracellularly from neurons of the medullary pacemaker nucleus which is responsible for maintaining the ongoing EOD frequency during these modulatory behaviors. 2. We have used dye-filled microelectrodes to characterize single cell morphology of the two types of cells in the pacemaker nucleus (relay and pacemaker cells) and to localize anatomically the site of the differing responses we see during frequency modulations. We have also recorded with KCl-filled electrodes and attributed these data to cell type and location on the basis of characteristic behavior during these modulations. 3. Much of our data deals with chirps, brief accelerations of the EOD frequency lasting 10 to 14 ms. We see distinct patterns of activity in the pacemaker nucleus corresponding to different anatomical locations: the relay cell soma and axon, and the pacemaker cell soma and axon. Most of these loci show a marked rise in baseline voltage during the acceleration in spike frequency. The most unusual of these is the pacemaker cell axon which displays an often extreme decline in spike amplitude concurrent with the chirp (Fig. 7A). 4. 'Yodeling' (Dye 1987) appears to involve similar, characteristic changes in the pattern of firing as those seen during chirping. Similar quantitative analyses suggest that the JAR involves a different mechanism, however.  相似文献   

17.
The South American weakly-electric knifefish (Apteronotidae) produce highly diverse and readily quantifiable electrocommunication signals. The electric organ discharge frequency (EODf), and EOD modulations (chirps and gradual frequency rises (GFRs)), vary dramatically across sexes and species, presenting an ideal opportunity to examine the proximate and ultimate bases of sexually dimorphic behavior. We complemented previous studies on the sexual dimorphism of apteronotid communication signals by investigating electric signal features and their hormonal correlates in Apteronotus bonapartii, a species which exhibits strong sexual dimorphism in snout morphology. Electrocommunication signals were evoked and recorded using a playback paradigm, and were analyzed for signal features including EOD frequency and the structure of EOD modulations. To investigate the androgenic correlates of sexually dimorphic EOD signals, we measured plasma concentrations of testosterone and 11-ketotestosterone. A. bonapartii responded robustly to stimulus playbacks. EODf was sexually monomorphic, and males and females produced chirps with similar durations and amounts of frequency modulation. However, males were more likely than females to produce chirps with multiple frequency peaks. Sexual dimorphism in apteronotid electrocommunication signals appears to be highly evolutionarily labile. Extensive interspecific variation in the magnitude and direction of sex differences in EODf and in different aspects of chirp structure suggest that chirp signals may be an important locus of evolutionary change within the clade. The weakly-electric fish represent a rich source of data for understanding the selective pressures that shape, and the neuroendocrine mechanisms that underlie, diversity in the sexual dimorphism of behavior.  相似文献   

18.
1. Sternopygus macrurus were collected in Venezuela during the period of gonadal recrudescence in early or late dry season. Electric organ discharge (EOD) frequencies were recorded, blood samples were taken for analysis of steroid titers, and gonads were taken for determination of reproductive condition. 2. Mean EOD frequencies were significantly lower in males than in females in all samples. EOD frequency was inversely correlated with body length in males in late, but not early, dry season, and these parameters were never correlated in females. 3. Plasma levels of testosterone (T) and 11-ketotestosterone (11-KT), but not estradiol-17 beta (E2), were inversely correlated with EOD frequency in males. No 11-KT was observed in plasma of females, and plasma levels of T and E2 in females were comparable to those of males. Neither T nor E2 were correlated with EOD frequency in females. 4. Testes collected in late dry season were more mature than those from early dry season; androgen levels and EOD frequency were correlated with testicular maturity. Ovaries collected in early dry season were immature, while those from late dry season were more mature. There was no relationship between EOD frequency and stage of ovarian development. 5. These results suggest that plasma androgens modulate EOD frequency in males during the reproductive season and that plasma E2 has little relationship to EOD frequency in either sex.  相似文献   

19.
Brown ghost knife fish, Apteronotus leptorhynchus, produce a continuous electric organ discharge (EOD) that they use for communication. While interacting aggressively, males also emit brief EOD modulations termed chirps. The simplicity of this behaior and its underlying neural circuitry has made it an important model system in neuroethology. Chirping is typically assayed by confining a fish in a tube (‘chirp chamber’) and presenting it with sine wave electrical stimuli that partially mimic EODs of other fish. We presented male fish with progressively more realistic social stimuli to examine whether some of the stimulus complexities during dyadic interaction influence the production of chirps. In a chirp chamber, fish chirped less to a recording of an EOD containing chirps than to a recording of an EOD alone and to sine wave stimuli. Free‐swimming fish chirped more to stimulus fish than to sine wave stimuli presented through electrodes. Fish chirped more when interacting directly than when interacting across a perforated barrier. Together, these studies demonstrate that the presence of chirps, electric field complexity, and/or non‐electric social stimuli are important in eliciting chirp production in brown ghosts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号