首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Meiotic recombination is not random in the proximal region of the mouse major histocompatibility complex (MHC). It is clustered at four restricted positions, so-called hotspots. Some of the MHC haplotypes derived from Asian wild mice enhance recombination at the hotspots in genetic crosses with standard MHC haplotypes of laboratory mouse strains. In particular, the wm7 haplotype derived from Japanese wild mouse indicated an approximately 2% recombination frequency within a 1.2 kb fragment of DNA in the interval between the Pb and Ob genes. Interestingly, this enhancement of recombination was observed only in female meiosis but not in male meiosis. Mating experiments demonstrated that the wm7 haplotype carries a genetic factor in the region proximal to the hotspot, which instigates recombination. In addition, the wm7 haplotype has a genetic factor located in the region distal to the hotspot, which suppresses recombination. From the molecular characterization of the two hotspots located in the Eb gene and the Pb-Ob interval, it appeared that there are several common molecular elements, the consensus of the middle repetitive MT-family, TCTG or CCTG tetramer repeats, and the solitary long terminal repeat (LTR) of mouse retrovirus.  相似文献   

2.
The mechanism determining which parental haplotype is selected in (CBA × 1310) (k × b)F1 female mice for major histocompatibility complex (H-2) restricted, male-specific (H-Y), immune, cytotoxic T-cell (Tc-cell) responses, was investigated. The data show that haplotype preference is variable, and may be directed towards one, both, or neither of the parental haplotypes. This preference is reflected in the precursor frequency of memory Tc cells as measured by limiting dilution assays. It was further shown that maternal influence, antigen dose, route of immunization, and a feedback mechanism on the stimulator cells in vivo could not influence haplotype preference or its observed variability. Evidence for cross-reactive killing by H-2k and H-2b H-Y immune Tc cells on H-2b and H-2k allogeneic targets, respectively, (i. e., the independent haplotype of the other parent of the F1 mice), provide evidence for natural tolerance as a possible mechanism to explain haplotype preference.  相似文献   

3.
The sites of meiotic recombination in the proximal region of the mouse major histocompatibility complex (MHC) are clustered at hotspots. Some MHC haplotypes derived from Asian wild mice increase the frequency of recombination at such hotspots when heterozygous with standard laboratory haplotypes. The wm7 and cas3 haplotypes, have a hotspot close to the Lmp-2 gene (Lmp-2 hotspot), and the cas4 haplotype has a hotspot about 100 kilobase (kb) proximal, close to the Pb gene (Pb hotspot). To examine the effect of a double dose of hotspots, we estimated the rate of recombination and determined the location of the breakpoints in crosses of wm7/cas3 and wm7/cas4. In 3570 backcross progeny we identified 29 new recombinants in the H-2K to Ab interval, at a frequency of 0.81%. This frequency is 40-fold higher than in crosses between laboratory haplotypes and very similar to those previously obtained in crosses between these wild and standard laboratory haplotypes. Thus, a double dose of hotspots has no additive effect on the frequency of meiotic recombination. The site-specificity of recombination was also conserved. Twenty-three breakpoints were confined within 5.4 kb in the Lmp-2 hotspot, and six breakpoints from the cas4 cross were located in the Pb hotspot, which we have now confined to a 15 kb segment. Correspondence to: T. Shiroishi.  相似文献   

4.
The molecular mapping of recombinational breakpoints in the proximal region of the mouse MHC has revealed four hotspots at which breakpoints are clustered. A direct comparison of the nucleotide sequences of two independent hotspots revealed common molecular elements: a consensus sequence of the middle-repetitive MT-family, a repeat of tetramer sequences and a sequence homologous to a solitary LTR of mouse retroviruses. Extremely high frequency of recombination is observed at these hotspots when particular MHC haplotypes are used in genetic crosses. Wild mouse-derived wm7 haplotype instigates recombination at the hotspot located at the 3′-end of the Lmp-2 gene only during female meiosis. Fine genetic analysis demonstrated that the wm7 haplotype carries a genetic factor to instigate recombination and another factor to suppress recombination specifically during male meiosis. In addition, there is no dose effect of the hotspot on frequency of recombination. Finally, we described an attempt to establish an efficient in vitro assay system for monitoring recombination using plasmid DNAs that contain the Lmp-2 hotspot and nuclear extracts prepared from mouse testis.  相似文献   

5.
We have already developed nine B10.MOL congenic strains carrying H-2 haplotypes derived from Japanese wild mice, Mus musculus molossinus, with the C57BL/10 genetic background. To obtain monoclonal antibodies against the H-2 antigen of the Japanese wild mouse, we carried out cell fusion using spleen cells from the animal immunized with one of the B10.MOL strains, B10.MOL-SGR (H-2 wm7). As a result, 19 hybridomas producing monoclonal antibodies were produced. Analysis with the intro-H-2 recombinants derived from B10.MOL-SGR indicated that 8 of them reacted with the class I and II with the class II molecule. The class I antibodies were tested for their cross -reactivities on wild mice and on the panels of standard inbred and B10.MOL strains. Most of the antibodies reacted with both the Japanese wild mice and the other subspecies, including standard inbred, while two antibodies highly specific for the donor H-2K region reacted with only three wild-derived mice, two M. m. molossinus from Anj o and Shizuoka, Japan, and one M. m. domesticus from Pigeon, Canada. In addition, all of the other four antibodies reactive with the K antigen of B10.MOL-SGR also reacted with the same three wild mice. The wild mice belonging to different subspecies might share very similar H-2K antigenic determinants in spite of their genetic and geographical remoteness.  相似文献   

6.
The Eb gene of the mouse contains a recombinational hotspot which plays a predominant role in meiotic crossing-over within the I region of the mouse major histocompatibility complex (MHC). The nucleotide sequences of five recombinants derived from H-2 k /H-2 b heterozygotes at the Eb locus placed the sites of recombination in each recombinant haplotype within a 2.9 kilobase (kb) segment located fully within the second intron of the Eb gene. Further resolution of the crossover sites was not possible since the nucleotide sequences of the parental and recombinant haplotypes are identical within this segment. The molecular characterization of these five recombinants considered in conjunction with three previously reported intra-Eb recombinants indicates that there are at least two distinct sites of recombination within the Eb recombinational hotspot. In a related study, an examination of the nucleotide sequence of the H-2 p allele of the Eb gene revealed a major genetic rearrangement in the 5' half of the intron in this haplotype. A 597 base pair (bp) nucleotide sequence found in the H-2 p haplotype is replaced by a 1634 bp segment found in the H-2 b and H-2 k haplotypes. Sequence analysis of this 1634 bp segment shows strong nucleotide sequence similarity to retroposon long terminal repeat (LTR), env, and pol genes indicating that this segment of the second intron has evolved through retroposon insertion. The location of these retroposon sequences within the 2.9 kb recombination segment defined by the five H-2 k /H-2 b recombinant haplotypes suggests a possible relationship between these retroviral elements and site-specific recombination within the second intron of the Eb gene. Offprint requests to: H. C. Passmore  相似文献   

7.
Meiotic recombination within the proximal region of the major histocompatibility complex (MHC) of the mouse is not random but occurs in clusters at certain restricted sites, so-called recombinational hotspots. The wm7 haplotype of the MHC, derived from the wild mouse, enhances recombination specifically during female meiosis within a fragment of 1.3 kb of DNA located between the A beta 3 and A beta 2 genes in genetic crosses with laboratory haplotypes. Previous studies revealed no significant strain differences in nucleotide sequences around the hotspot, irrespective of the ability of the strain to enhance the recombination. It appeared that a distant genetic element might, therefore, control the rate of recombination. In the present study, original recombinants whose breakpoints were defined by direct sequencing of PCR-amplified DNAs were tested for the rate of secondary recombination in the crosses with laboratory strains in order to determine the location of such a genetic element. The results clearly demonstrated that the chromosomal segment proximal to the hotspot is essential for enhancement of recombination. Moreover, the male recombination is suppressed by a segment distal to the hotspot.  相似文献   

8.
Male liver was grafted to kidney beds in syngeneic female mice. Relative influences ofH-2 haplotype, genetic background or interaction ofH-2 haplotype with genetic background on anti-H-Y response were evaluated using 27 inbred strains carrying eightH-2 haplotypes of independent origin and three naturally occurring recombinants. Females ofH-2 b haplotype acutely rejected the male graft as is reported for other tissue graft systems. AnH-2 haplotype influence was found for all haplotypes studied, with a greater variation of immunologic response revealed by histological analysis of liver grafts than is demonstrated by skin grafts. Strains carryingH-2 k ,H-2 j andH-2 p haplotypes expressed the greatest range of immunological variability with responses ranging from graft proliferation to graft rejection. Strains carrying theH-2 d haplotype had the most consistent responses with little reaction to the graft. The strong immune response by SJL/J (H-2 s ) female mice to the H-Y antigen is not typical of otherH-2 s strains, but is compatible with the reported hyperresponsiveness of this strain to alloantigens.  相似文献   

9.
The genetic control of natural resistance in vivo to four natural killer (NK) cell-resistant H-2 homozygous lymphoid tumor cell lines was investigated by following the survival and organ distribution of cells prelabeled with radioactive iododeoxyuridine. Backcross mice derived from DBA/2J and CBA/J parents were injected with H-2 dtumor cells and tumor cell elimination was lowest in H-2 dhomozygotes. Natural killer cell activity was also reduced in mice with the H-2 dhaplotype, but no direct correlation between NK cell levels against YAC-1 or SL2-5 lymphoma cells and natural resistance in vivo was demonstrable. Analysis of 23 BXD recombinant inbred strains indicated that natural resistance to H-2 dtumors was restricted to H-2 bstrains. There was no direct association of NK cell activity with H-2 type in the BXD strains and NK cell levels did not correlate with tumor survival in vivo. By comparing natural resistance to H-2 dand H-2 btumors in DBA/2, C57BL/6, B6D2F1, and B10.D2 mice we found that H-2 nonidentity between the tumor and the host, rather than the host H-2 haplotype, determined whether natural resistance occurred. Again, NK cell activity against YAC-1 cells was not predictive of tumor survival in these strains. These results provide genetic evidence that NK cells alone cannot account for natural resistance to H-2 nonidentical cells of hemopoietic origin.  相似文献   

10.
Individual mice were tested for their proliferative T-cell response to H-Y- and H-3-incompatible stimulator cells in secondary mixed lymphocyte culture. Responders expressing the H-2 bhaplotype were restricted in their response to stimulators presenting H-Y and H-3 in the context of H-2 b. Lymphocytes from individual B10 females proliferated in response to H-Y presented with I-A band D b. The ratio of I-A b/D b-restricted responses varied between individual responders, indicating significant qualitative variation between genetically identical responders. The majority of the proliferative response in all tested mice was restricted to the entire H-2 bhaplotype suggesting complementation of I-A b- and D b-region genes in presenting the H-Y antigen. Similar observations were made in the response of individual B10.LP mice to the H-3 antigen. H-3-specific, proliferating T cells were restricted to H-3 antigen presented with K bAband D bwith significant variation between individuals in their preference for H-3 plus K bAband D b. In contrast to the response to H-Y, the proliferative response to H-3 plus H-2 bcould be accounted for by the summation of the proliferative responses to H-3. plus K bAband D b. These observations demonstrate that the proliferative response to non-H-2 H antigens in the context of I-region determinants is not a sine qua non for the T-cell response to these antigens. Further, the individual qualitative and quantitative variation observed with individual genetically identical mice has strong implications for our knowledge of intrastrain variation in immune responsiveness and the characterization of inbred strains for immune responsiveness.  相似文献   

11.
The genetic control of delayed-type hypersensitivity in mice was investigated by contact sensitization with picryl chloride. Distribution patterns of contact sensitivity in 11 inbred strains of mice showed significant differences among strains. Comparison of levels of response between congenic-resistant lines and their inbred partners, at 9 to 11 weeks of age, revealed a clear association betweenH-2 haplotype and the magnitude of response. Testing ofH-2 recombinants further suggested the influence of two genes mapping at either end of theH-2 complex. While theH-2K d andH-2D k alleles were associated with a high response, theH-2K k ,H-2K b ,H-2D d , andH-2D b alleles were associated with a low response. Analysis of the ontogeny of response suggested that theH-2 haplotype manifests its effect through the maturation of contact sensitivity. On both the C57BL/6By and C57BL/10Sn backgrounds, theH-2 d haplotype was associated with early maturation of response, while theH-2 b haplotype was associated with late maturation. Analysis of the response of congenic lines with different genetic backgrounds and of CXB recombinant-inbred lines further revealed the marked effects of yet other genes on this trait.  相似文献   

12.
This report confirms and expands on the original preliminary observations made by Bonner and Slavkin that corticosteroid-induced cleft palate in mice is associated with H-2 haplotype. Using three congenic strains, B10, B10.A, and B10.D2, our studies demonstrate that B10.A (H-2 b) is most susceptible and B10.D2 (H-2 d) is least susceptible, B10 (H-2 b) being intermediate. Variation in fetal loss among strains accounts for less than 1 percent of the variation in cleft-palate frequency among strains; variation in H-2 haplotype, however, accounts for more than 60 percent of the variation in cleft-palate frequency. With regard to all possible reciprocal F1 hybrids, our results indicate that while there is a significant maternal effect, maternal haplotype can account for only 11 percent of the variation in cleft-palate frequency among crosses. Embryonic haplotype accounts for 17 percent of the variation, which is indicative of an important embryonic effect. Finally, our studies suggest that susceptibility to corticosteroid-induced cleft palate is associated with the K end of the H-2 complex.  相似文献   

13.
Genetic polymorphism in the expression of the GM1(NeuGc) ganglioside has been shown in the liver of inbred strains of mice. Through analysis of the gangliosides of H-2 congenic and recombinant strains, this polymorphism was demonstrated to be controlled by a locus mapped left outside of the H-2 complex on chromosome 17, and the locus was assumed to control the level of the activity of GM1(NeuGc) synthetase, UDP-galactose:GM2(NeuGc) galactosyltransferase (E.C.2.4.1.62) [Hashimotoet al., J Biochem (1983) 94:2049-54].In the present study we analyzed the genetic linkage between the activity of the galactosyltransferase and the H-2 haplotype. For this purpose, we selected two inbred strains of mice, WHT/Ht and BALB/c, because they have different levels of the transferase activity and show different H-2 haplotypes; the specific activity of the transferase obtained with BALB/c was one-eighth of that with WHT/Ht, and BALB/c expressed the la.7 antigen as one of the products encoded in their H-2d complex, whereas WHT/Ht did not. To analyze the linkage between these two phenotypes, WHT/Ht were mated with BALB/c to obtain the F1 mice, and the female F1 mice were then backcrossed to WHT/Ht. It was found that one half of the backcross generation expressed the la.7 antigen derived from BALB/c and had a significantly lower specific activity of the transferase than that of WHT/Ht, while the other half did not express the la.7 antigen but had the same specific activity of the transferase as that obtained with WHT/Ht.These results suggest that the locus controlling the level of the transferase activity in mouse liver is linked to the H-2 complex on chromosome 17.Abbreviations NeuGc N-glycolylneuraminic acid The ganglioside nomenclature is based on the system of Svennerholm, J Neurochem (1963) 10:613-23. The sialic acid species present is shown in parentheses after the ganglioside abbreviation.  相似文献   

14.
Immunization of inbred mouse strains lacking the Slp allotype results in the production of Slp antibodies in some strains but elicits no detectable response in other strains. Analysis of standard inbred and congenic resistant strains reveals that both the qualitative and quantitative ability to respond to the Slp allotype is associated with theH-2 haplotype of the recipient. Three different response phenotypes can be identified utilizing complement fixation and quantitative immunodiffusion tests. Strains which carry theH-2 q haplotype are high responders,H-2 k strains are intermediate in response, whileH-2 b andH-2 v strains produce no detectable antibody. The characteristic response patterns of high and intermediate responders were manifest by day 35 of immunization and continued as discrete response types after a second booster. Quantitative data in the immune response of the intra-H-2 recombinant B10.A(4R) suggest that the recombination event which established theH-2 h4 chromosome disturbs the proper function of the genetic determinant controlling response to Slp.  相似文献   

15.
The development of a mouse acquired immunodeficiency syndrome (MAIDS) induced following LP-BM5 MuLV infection depends on host genetic factors. Susceptible mice, such as C57BL/6J mice, develop a profound impairment of lymphoproliferative response to mitogens and hyperplasia of lymphoid organs and succumb to infection within 6 months. These changes do not occur in resistant mice, such as A/J mice. Resistance to MAIDS is a dominant trait since (C57BL/6JxA/J)F1 hybrid mice did not develop any immune dysfunctions following infection. Genetic regulation of the trait of resistance/susceptibility to MAIDS was determined in AXB/BXA recombinant inbred (RI) mouse strains (derived from resistant A/J and susceptible C57BL/6J progenitors). Two different criteria were used to determine their resistance or susceptibility to developing MAIDS: the gross pathologic evaluation of lymphoid organs at 13–15 weeks of infection, and survival. RI mouse strains segregated into two non-overlapping groups. The first group did not develop any significant pathology, and these mouse strains were considered as resistant to MAIDS. The second group showed the virus-induced pathological changes as well as an immunological dysfunction as seen in C57BL/6J progenitor mice, and these strains were thus considered as susceptible to MAIDS. This bimodal strain distribution pattern of resistance/susceptibility to MAIDS among the RI strains suggests that this phenotype is controlled by a single gene. Linkage analysis with other allelic markers showed a strong association between resistance/susceptibility to MAIDS and theH-2 complex. Possession of theH-2 b haplotype derived from C57BL/6J mice was associated with susceptibility to MAIDS, while theH-2 a haplotype conferred resistance to the disease. This finding was confirmed by demonstrating thatH-2 a congenics on the susceptible C57BL/10 background were as resistant to MAIDS as A/J mice which donated theH-2 a locus. Gene(s) within theH-2 complex thus represent the major regulatory mechanism of resistance/susceptibility to MAIDS.  相似文献   

16.
A random-bred strain (Q) was established and divided into six replicates. Each replicate was divergently selected for 6-week weight (for over 30 generations) and each had an unselected control. We have investigated the H-2 haplotype of individual mice of the 18 selected Q strains to determine whether selection for size had also selected for H-2 or H-2-linked genes. From the results it appeared that only the H-2 b and H-2 q haplotypes were present in the foundation stock. A large number of individuals of the six small sublines were of H-2 bhaplotype, while the majority of those of the six large sublines were of the H-2 q haplotype. Individuals in the six control strains were H-2 b , H-2 q or both (i. e., H-2 heterozygotes and/or H-2 recombinants). These results suggest that control of body size is associated with H-2 or an H-2-linked gene(s).  相似文献   

17.
Genetically anemic W/W c mice and lethally irradiated wild-type mice were cured and populated by grafted marrow cells from donor mice of three congenic lines that differed at non-H-2 histocompatibility loci. Tail skin from mice of the same congenic lines was grafted 3–4 weeks later. In two cases, the recipients behaved as expected, no longer rejecting skin syngeneic with the marrow graft that had repopulated them. However, B6-H-24 c skin was rejected by WBB6F1-W/W mice that were cured with B6-H-24 c marrow showing a mean survival time of 9.9 weeks. It was rejected somewhat faster, with a mean survival time of 5.9 weeks, by W/W mice cured with marrow from other types of donors. Results were more variable in lethally irradiated WBB6F1-+/+ recipients of B6-H-24 c marrow, but they also rejected B6-H-24 c skin. Both types of recipients remained chimeras after the skin was rejected, showing more than 90% of the B6-H-24 c hemoglobin type. This is the first report of a Skn gene in a congenic line.  相似文献   

18.
Rejection of tailskin grafts exchanged between two male hybrids of the cross B10.M × B10.RIII(71NS) revealed a mutation in theH-2 f haplotype from the B10.M congenic line. Complementation studies with skin grafting and cell-mediated lympholysis showed the mutant, namedH-2 fb , to be different from anotherH-2 f mutant,H-2 fa , and further, that the HH-2 fb mutation occurred in theD end of theH-2 complex. Reciprocal skin grafts exchanged between mutant and normal mice were rejected. Hemagglutinating antibody reactive with B10.M cells was raised in the mutant mice. Mutant spleen cells responded weakly, but significantly, to wild-type cells in a mixed lymphocyte culture and in a graftversus-host assay, but no response was seen in the opposite direction. However, cytotoxic effector cells were generated against target cells in both directions in a cell-mediated lympholysis assay.  相似文献   

19.
Two new double congenic strains, B10-H-2 a H-7 b /Wts and B10-H-2 d H-7 b /Wts, were selected to differ from B10.A and B10.D2/o, respectively, at theH-7 locus. The survival time ofH-7-incompatible skin grafts is dependent upon theH-2 haplotype of recipient and donor.  相似文献   

20.
Results of immunizations of recombinant inbred and congenic strains of mice with the random polymers poly(glu57 lys38ala5) or GLA5 and poly(glu54lys36ala10) or GLA10 indicate that there is an association of the responsiveness with theH-2 haplotype. Although the C57BL/6J mice (H-2 b haplotype) are “non responders”, the C57BL/6By originally derived from mice of the same haplotype are responders. The immune response pattern of recombinant strains carrying haplotypes derived by crossing over within theH-2 complex indicate that the responsiveness is under control of anIr gene which maps to the left of theIB subregion. Studies with the backcross mice indicated multigenic control of the responsiveness, with one locus beingH-2 linked and another locus segregating independently ofH-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号