首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Paks (p21-activated kinases) Pak1, Pak2 and Pak3 are among the most studied effectors of the Rho-family GTPases, Rac, Cdc42 (cell division cycle 42) and Chp (Cdc42 homologous protein). Pak kinases influence a variety of cellular functions, but the process of Pak down-regulation, following activation, is poorly understood. In the present study, we describe for the first time a negative-inhibitory loop generated by the small Rho-GTPases Cdc42 and Chp, resulting in Pak1 inhibition. Upon overexpression of Chp, we unexpectedly observed a T-cell migration phenotype consistent with Paks inhibition. In line with this observation, overexpression of either Chp or Cdc42 caused a marked reduction in the level of Pak1 protein in a number of different cell lines. Chp-induced degradation was accompanied by ubiquitination of Pak1, and was dependent on the proteasome. The susceptibility of Pak1 to Chp-induced degradation depended on its p21-binding domain, kinase activity and a number of Pak1 autophosphorylation sites, whereas the PIX- (Pak-interacting exchange factor) and Nck-binding sites were not required. Together, these results implicate Chp-induced kinase autophosphorylation in the degradation of Pak1. The N-terminal domain of Chp was found to be required for Chp-induced degradation, although not for Pak1 activation, suggesting that Chp provides a second function, distinct from kinase activation, to trigger Pak degradation. Collectively, our results demonstrate a novel mechanism of signal termination mediated by the Rho-family GTPases Chp and Cdc42, which results in ubiquitin-mediated degradation of one of their direct effectors, Pak1.  相似文献   

3.
The p21-activated protein kinases (Paks) regulate cellular proliferation, differentiation, transformation, and survival through multiple downstream signals. Paks are activated directly by the small GTPases Rac and Cdc42 and several protein kinases including Akt and PDK-1. We found that Akt phosphorylated and modestly activated Pak1 in vitro. The major site phosphorylated by Akt on Pak1 mapped to serine 21, a site originally shown to be weakly autophosphorylated on Pak1 when Cdc42 or Rac activates it. A peptide derived from the region surrounding serine 21 was a substrate for Akt but not Pak1 in vitro, and Akt stimulated serine 21 phosphorylation on the full-length Pak1 much better than Rac did. The adaptor protein Nck binds Pak near serine 21, and its association is regulated by phosphorylation of this site. We found that either treatment of Pak1 in vitro with Akt or coexpression of constitutively active Akt with Pak1 reduced Nck binding to Pak1. In HeLa cells, green fluorescent protein-tagged Pak1 was concentrated at focal adhesions and was released when Akt was cotransfected. A peptide containing the Nck binding site of Pak1 fused to a portion of human immunodeficiency virus Tat to allow it to enter cells was used to test the functional importance of Nck/Pak binding in Akt-stimulated cell migration. This Tat-Nck peptide reduced Akt-stimulated cell migration. Together, these data suggest that Akt modulates the association of Pak with Nck to regulate cell migration.  相似文献   

4.
The p21-activated kinases (Paks) serve as effectors of the Rho family GTPases Rac and Cdc42. The six human Paks are divided into two groups based on sequence similarity. Group I Paks (Pak1 to -3) phosphorylate a number of substrates linking this group to regulation of the cytoskeleton and both proliferative and anti-apoptotic signaling. Group II Paks (Pak4 to -6) are thought to play distinct functional roles, yet their few known substrates are also targeted by Group I Paks. To determine if the two groups recognize distinct target sequences, we used a degenerate peptide library method to comprehensively characterize the consensus phosphorylation motifs of Group I and II Paks. We find that Pak1 and Pak2 exhibit virtually identical substrate specificity that is distinct from that of Pak4. Based on structural comparisons and mutagenesis, we identified two key amino acid residues that mediate the distinct specificities of Group I and II Paks and suggest a structural basis for these differences. These results implicate, for the first time, residues from the small lobe of a kinase in substrate selectivity. Finally, we utilized the Pak1 consensus motif to predict a novel Pak1 phosphorylation site in Pix (Pak-interactive exchange factor) and demonstrate that Pak1 phosphorylates this site both in vitro and in cultured cells. Collectively, these results elucidate the specificity of Pak kinases and illustrate a general method for the identification of novel sites phosphorylated by Paks.  相似文献   

5.
The Pak kinases are effectors for the small GTPases Rac and Cdc42 and are divided into two subfamilies. Group I Paks possess an autoinhibitory domain that can suppress their kinase activity in trans. In Drosophila, two Group I kinases have been identified, dPak and Pak3. Rac and Cdc42 participate in dorsal closure of the embryo, a process in which a hole in the dorsal epidermis is sealed through migration of the epidermal flanks over a tissue called the amnioserosa. Dorsal closure is driven in part by an actomyosin contractile apparatus at the leading edge of the epidermis, and is regulated by a Jun amino terminal kinase (JNK) cascade. Impairment of dPak function using either loss-of-function mutations or expression of a transgene encoding the autoinhibitory domain of dPak led to disruption of the leading edge cytoskeleton and defects in dorsal closure but did not affect the JNK cascade. Group I Pak kinase activity in the amnioserosa is required for correct morphogenesis of the epidermis, and may be a component of the signaling known to occur between these two tissues. We conclude that dorsal closure requires Group I Pak function in both the amnioserosa and the epidermis.  相似文献   

6.
Activation of p21-activated kinases (Paks) is achieved through binding of the GTPases Rac or Cdc42 to a conserved domain in the N-terminal regulatory region of Pak. Additional signaling components are also likely to be important in regulating Pak activation. Recently, a family of Pak-interacting guanine nucleotide exchange factors (Pix) have been identified and which are good candidates for regulating Pak activity. Using an active, truncated form of alphaPix (amino acids 155-545), we observe stimulation of Pak1 kinase activity when alphaPix155-545 is co-expressed with Cdc42 and wild-type Pak1 in COS-1 cells. This activation does not occur when we co-express a Pak1 mutant unable to bind alphaPix. The activation of wild-type Pak1 by alphaPix155-545 also requires that alphaPix155-545 retain functional exchange factor activity. However, the Pak1(H83,86L) mutant that does not bind Rac or Cdc42 is activated in the absence of GTPase by alphaPix155-545 and by a mutant of alphaPix155-545 that no longer has exchange factor activity. Pak1 activity stimulated in vitro using GTPgammaS-loaded Cdc42 was also enhanced by recombinant alphaPix155-545 in a binding-dependent manner. These data suggest that Pak activity can be modulated by physical interaction with alphaPix and that this specific effect involves both exchange factor-dependent and -independent mechanisms.  相似文献   

7.
p21-activated kinases (Pak)/Ste20 kinases are regulated in vitro and in vivo by the small GTP-binding proteins Rac and Cdc42 and lipids, such as sphingosine, which stimulate autophosphorylation and phosphorylation of exogenous substrates. The mechanism of Pak activation by these agents remains unclear. We investigated Pak kinase activation in more detail to gain insight into the interplay between the GTPase/sphingosine binding, an intramolecular inhibitory interaction, and autophosphorylation. We present biochemical evidence that an autoinhibitory domain (ID) contained within amino acid residues 67-150 of Pak1 interacts with the carboxyl-terminal kinase domain and that this interaction is regulated in a GTPase-dependent fashion. Cdc42- and sphingosine-stimulated Pak1 activity can be inhibited in trans by recombinant ID peptide, indicating similarities in their mode of activation. However, Pak1, which was autophosphorylated in response to either GTPase or sphingosine, is highly active and is insensitive to inhibition by the ID peptide. We identified phospho-acceptor site threonine 423 in the kinase activation loop as a critical determinant for the sensitivity to autoinhibition and enzymatic activity. Phosphorylation studies suggested that the stimulatory effect of both GTPase and sphingosine results in exposure of the activation loop, making it accessible for intermolecular phosphorylation.  相似文献   

8.
Extracellular signals regulate actin dynamics through small GTPases of the Rho/Rac/Cdc42 (p21) family. Here we show that p21-activated kinase (Pak1) phosphorylates LIM-kinase at threonine residue 508 within LIM-kinase's activation loop, and increases LIM-kinase-mediated phosphorylation of the actin-regulatory protein cofilin tenfold in vitro. In vivo, activated Rac or Cdc42 increases association of Pak1 with LIM-kinase; this association requires structural determinants in both the amino-terminal regulatory and the carboxy-terminal catalytic domains of Pak1. A catalytically inactive LIM-kinase interferes with Rac-, Cdc42- and Pak1-dependent cytoskeletal changes. A Pak1-specific inhibitor, corresponding to the Pak1 autoinhibitory domain, blocks LIM-kinase-induced cytoskeletal changes. Activated GTPases can thus regulate actin depolymerization through Pak1 and LIM-kinase.  相似文献   

9.
Pak2, a member of the p21-activated protein kinase (Pak) family, is activated in response to a variety of stresses and is directly involved in the induction of cytostasis. At the molecular level Pak2 binds Cdc42(GTP), translocating Pak2 to the endoplasmic reticulum where it is autophosphorylated and activated. Pak2 is autophosphorylated at eight sites; Ser-141 and Ser-165 in the regulatory domain and Thr-402 in the activation loop are identified as key sites in activation of the protein kinase. The function of phosphorylation of Ser-141 and Ser-165 on the activation was analyzed with wild-type (WT) and mutants of Pak2. With S141A, the level of autophosphorylation was reduced to 65% as compared with that of WT and S141D with a concomitant 45% reduction in substrate phosphorylation, indicating that phosphorylation at Ser-141 is required for optimal activity. Autophosphorylation inhibited the interaction between WT Pak2 and Cdc42(GTP). In 293T cells, WT Pak2, S141A, and S141D formed a stable complex with the constitutively active mutant Cdc42 L61, but not with the dominant negative Cdc42 N17. As shown in glutathione S-transferase pull-down assays, S141A bound to Cdc42(GTP) at a 6-fold higher level than that of S141D. In contrast, the S165A and S165D mutants had no effect on autophosphorylation, binding to Cdc42, or activation of Pak2. In summary, autophosphorylation of Ser-141 was required for activation of Pak2 and down-regulated the interaction of Pak2 with Cdc42. A model is proposed suggesting that binding of Cdc42 localizes Pak2 to the endoplasmic reticulum, where autophosphorylation alters association of the two proteins.  相似文献   

10.
11.
12.
p21-activated kinases (Paks) have been identified in a variety of eukaryotic cells as key effectors of the Cdc42 family of guanosine triphosphatases. Pak kinases play important roles in regulating the filamentous actin cytoskeleton. In this study, we describe a function for the Schizosaccharomyces pombe Pak-related protein Pak1p/Orb2p in cytokinesis. Pak1p localizes to the actomyosin ring during mitosis and cytokinesis. Loss of Pak1p function leads to accelerated cytokinesis. Pak1p mediates phosphorylation of myosin II regulatory light chain Rlc1p at serine residues 35 and 36 in vivo. Interestingly, loss of Pak1p function or substitution of serine 35 and serine 36 of Rlc1p with alanines, thereby mimicking a dephosphorylated state of Rlc1p, leads to defective coordination of mitosis and cytokinesis. This study reveals a new mechanism involving Pak1p kinase that helps ensure the fidelity of cytokinesis.  相似文献   

13.
Pak5 is a member of the Group B p21‐activated kinases, which are effectors of the Rho family GTPases Cdc42 and Rac. Pak5 has been shown to promote cytoskeletal reorganization, inducing filopodia formation and neurite outgrowth in neuroblastoma cells. In this study, we used affinity chromatography followed by SDS–PAGE and mass spectrometry to identify potential downstream effectors of Pak5. Using this approach, we isolated p120‐catenin (p120), a known regulator of cytoskeletal reorganization and Rho GTPases. Using co‐immunoprecipitation assays we found that p120 preferentially interacts with Pak5 among the Group B Paks. Results from immunofluorescence studies revealed that Pak5 and p120 co‐localize in cells. Both Pak5 and constitutively active Pak4, the founding member of the Group B Paks, directly phosphorylate p120 in vitro. The phosphorylation was shown by Western blot and immunofluorescence to take place specifically on serine 288. This study is the first report of an upstream serine/threonine kinase that phosphorylates p120. J. Cell. Biochem. 110: 1244–1254, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

14.
A STE20/p65pak homolog was isolated from fission yeast by PCR. The pak1+ gene encodes a 72 kDa protein containing a putative p21-binding domain near its amino-terminus and a serine/threonine kinase domain near its carboxyl-terminus. The Pak1 protein autophosphorylates on serine residues and preferentially binds to activated Cdc42p both in vitro and in vivo. This binding is mediated through the p21 binding domain on Pak1p and the effector domain on Cdc42p. Overexpression of an inactive mutant form of pak1 gives rise to cells with markedly abnormal shape with mislocalized actin staining. Pak1 overexpression does not, however, suppress lethality associated with cdc42-null cells or the morphologic defeat caused by overexpression of mutant cdc42 alleles. Gene disruption of pak1+ establishes that, like cdc42+, pak1+ function is required for cell viability. In budding yeast, pak1+ expression restores mating function to STE20-null cells and, in fission yeast, overexpression of an inactive form of Pak inhibits mating. These results indicate that the Pak1 protein is likely to be an effector for Cdc42p or a related GTPase, and suggest that Pak1p is involved in the maintenance of cell polarity and in mating.  相似文献   

15.
p21-activated kinase 1 (Pak1) is an effector for the small GTPases Cdc42 and Rac. Because Pak1 binds to and is activated by both these GTPases, it has been difficult to precisely delineate the signaling pathways that link extracellular stimuli to Pak1 activation. To separate activation of Pak1 by Cdc42 versus activation by Rac, we devised a genetic screen in yeast that enabled us to create and identify Pak1 mutants that selectively couple to Cdc42 but not Rac1. We recovered several such Pak1 mutants and found that the residues most often affected lie within the p21 binding domain, a region previously known to mediate Pak1 binding to GTPases, but that several mutations also map outside the borders of the p21 binding domain. Pak1 mutants that associate with Cdc42 but not Rac1 were also activated by Cdc42 but not Rac1. In rat 3Y1 cells expressing oncogenic Ha-Ras, the Pak1 mutants defective in Rac1 binding are not activated, suggesting that Ras signals through a GTPase other than Cdc42 to activate Pakl. Similar results were obtained when epidermal growth factor was used to activate Pak1. However, Pak1 mutants that are unable to bind Rac are nonetheless well activated by calf serum, implying that this stimulus may induce Pak activation independent of Rac.  相似文献   

16.
Genetic Evidence for Pak1 Autoinhibition and Its Release by Cdc42   总被引:10,自引:6,他引:4       下载免费PDF全文
Pak1 protein kinase of Schizosaccharomyces pombe, a member of the p21-GTPase-activated protein kinase (PAK) family, participates in signaling pathways including sexual differentiation and morphogenesis. The regulatory domain of PAK proteins is thought to inhibit the kinase catalytic domain, as truncation of this region renders kinases more active. Here we report the detection in the two-hybrid system of the interaction between Pak1 regulatory domain and the kinase catalytic domain. Pak1 catalytic domain binds to the same highly conserved region on the regulatory domain that binds Cdc42, a GTPase protein capable of activating Pak1. Two-hybrid, mutant, and genetic analyses indicated that this intramolecular interaction rendered the kinase in a closed and inactive configuration. We show that Cdc42 can induce an open configuration of Pak1. We propose that Cdc42 interaction disrupts the intramolecular interactions of Pak1, thereby releasing the kinase from autoinhibition.  相似文献   

17.
Atypical RhoV GTPase (Chp/Wrch-2) is a member of the human Rho GTPase family, which belongs to the superfamily of Ras-related small GTPases. The biological functions of RhoV, regulation of its activity, and mechanisms of its action remain largely unexplored. Rho GTPases regulate a wide range of cellular processes by interacting with protein targets called effectors. Several putative RhoV effectors have been identified, including protein kinases of the Pak (p21-activated kinase) family: Pak1, Pak2, Pak4, and Pak6. RhoV GTPase activates Pak1 protein kinase and simultaneously induces its ubiquitin-dependent degradation. Pak1 regulates E-cadherin localization at adherens junctions downstream of RhoV during gastrulation in fish. The effector domain of RhoV mediates its binding to the CRIB (Cdc42/Rac1 interactive binding) motif in the N-terminal p21-binding domain (PBD) of Pak6 protein kinase. The role of the RhoV effector domain in mediating interaction with Pak1 has not been studied. This study has identified mutations in the effector domain of RhoV GTPase (Y60K, T63A, L65A, and D66A) that impair its interaction with Pak1 in the GST-PAK-PBD pull-down assay and coimmunoprecipitation. Our results suggest that the effector domain of RhoV mediates its binding to Pak1, complementing the current view of the molecular basics of RhoV binding to effectors of the Pak family. These data lay the basis for further studies on the role of Pak1 in RhoV-activated signaling pathways and cellular processes.  相似文献   

18.
The p21-activated kinases (PAKs) contain an N-terminal Cdc42/Rac interactive binding domain, which in the group 1 PAKs (PAK1, 2, and 3) regulates the activity of an adjacent conserved autoinhibitory domain. In contrast, the group 2 PAKs (PAK4, 5, and 6) lack this autoinhibitory domain and are not activated by Cdc42/Rac binding, and the mechanisms that regulate their kinase activity have been unclear. This study found that basal PAK6 kinase activity was repressed by a p38 mitogen-activated protein (MAP) kinase antagonist and could be strongly stimulated by constitutively active MAP kinase kinase 6 (MKK6), an upstream activator of p38 MAP kinases. Mutation of a consensus p38 MAP kinase target site at serine 165 decreased PAK6 kinase activity. Moreover, PAK6 was directly activated by MKK6, and mutation of tyrosine 566 in a consensus MKK6 site (threonine-proline-tyrosine, TPY) in the activation loop of the PAK6 kinase domain prevented activation by MKK6. PAK6 activation by MKK6 was also blocked by mutation of an autophosphorylated serine (serine 560) in the PAK6 activation loop, indicating that phosphorylation of this site is necessary for MKK6-mediated activation. PAK4 and PAK5 were similarly activated by MKK6, consistent with a conserved TPY motif in their activation domains. The activation of PAK6 by both p38 MAP kinase and MKK6 suggests that PAK6 plays a role in the cellular response to stress-related signals.  相似文献   

19.
Endothelial cells are normally non-motile and quiescent; however, endothelial cells will become permeable and invade and proliferate to form new blood vessels (angiogenesis) in response to wounding, cancer, diabetic retinopathy, age-related macular degeneration, or rheumatoid arthritis. p21-activated kinase (Pak), an effector for the Rho GTPases Rac and Cdc42, is required for angiogenesis and regulates endothelial cell permeability and motility. Although Pak is primarily activated by Rac and Cdc42, there are additional proteins that regulate Pak activity and localization, including three AGC protein kinase family members, Akt-1, PDK-1, and cAMP-dependent protein kinase. We describe phosphorylation and regulation of Pak localization by a fourth AGC kinase family member, cGMP-dependent protein kinase (PKG). Using in vitro mapping, a phosphospecific antibody, co-transfection assays, and untransfected bovine aortic endothelial cells we determined that PKG phosphorylates Pak at serine 21. Phosphorylation was accompanied by changes in proteins associated with Pak. The adaptor protein Nck was released, whereas a novel complex with vasodilator-stimulated phosphoprotein was stimulated. Furthermore Ser-21 phosphorylation of Pak appears to be important for regulation of cell morphology. In both human umbilical vein endothelial cells and HeLa cells, activation of PKG in the presence of Pak stimulated tail retraction and cell polarization. However, in cells expressing S21A mutant Pak1, PKG activation or treatment with a peptide that blocks Nck/Pak binding caused aberrant cell morphology, blocked cell retraction, and mislocalized Pak, producing uropod (tail-like) structures. These data suggest that PKG regulates Pak and that the interaction plays a role in tail retraction.  相似文献   

20.
The Saccharomyces cerevisiae kinase Ste20 is a member of the p21-activated kinase (PAK) family with several functions, including pheromone-responsive signal transduction. While PAKs are usually activated by small G proteins and Ste20 binds Cdc42, the role of Cdc42-Ste20 binding has been controversial, largely because Ste20 lacking its entire Cdc42-binding (CRIB) domain retains kinase activity and pheromone response. Here we show that, unlike CRIB deletion, point mutations in the Ste20 CRIB domain that disrupt Cdc42 binding also disrupt pheromone signaling. We also found that Ste20 kinase activity is stimulated by GTP-bound Cdc42 in vivo and this effect is blocked by the CRIB point mutations. Moreover, the Ste20 CRIB and kinase domains bind each other, and mutations that disrupt this interaction cause hyperactive kinase activity and bypass the requirement for Cdc42 binding. These observations demonstrate that the Ste20 CRIB domain is autoinhibitory and that this negative effect is antagonized by Cdc42 to promote Ste20 kinase activity and signaling. Parallel results were observed for filamentation pathway signaling, suggesting that the requirement for Cdc42-Ste20 interaction is not qualitatively different between the mating and filamentation pathways. While necessary for pheromone signaling, the role of the Cdc42-Ste20 interaction does not require regulation by pheromone or the pheromone-activated G beta gamma complex, because the CRIB point mutations also disrupt signaling by activated forms of the kinase cascade scaffold protein Ste5. In total, our observations indicate that Cdc42 converts Ste20 to an active form, while pathway stimuli regulate the ability of this active Ste20 to trigger signaling through a particular pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号