首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about what determines patterns of host association of horizontally transmitted parasites over evolutionary timescales. We examine the evolution of associations between mushroom-feeding Drosophila flies (Diptera: Drosophilidae), particularly in the quinaria and testacea species groups, and their horizontally transmitted Howardula nematode parasites (Tylenchida: Allantonematidae). Howardula species were identified by molecular characterization of nematodes collected from wild-caught flies. In addition, DNA sequence data is used to infer the phylogenetic relationships of both host Drosophila (mtDNA: COI, II, III) and their Howardula parasites (rDNA: 18S, ITS1; mtDNA: COI). Host and parasite phylogenies are not congruent, with patterns of host association resulting from frequent and sometimes rapid host colonizations. Drosophila-parasitic Howardula are not monophyletic, and host switches have occurred between Drosophila and distantly related mycophagous sphaerocerid flies. There is evidence for some phylogenetic association between parasites and hosts, with some nematode clades associated with certain host lineages. Overall, these host associations are highly dynamic, and appear to be driven by a combination of repeated opportunities for host colonization due to shared breeding sites and large potential host ranges of the nematodes.  相似文献   

2.
Maturation time is a pivotal life-history trait of parasitic nematodes, determining adult body size, as well as daily and total fecundity. Recent theoretical work has emphasized the influence of prematurational mortality on the optimal values of age and size at maturity in nematodes. Eosinophils are a family of white blood cells often associated with infections by parasitic nematodes. Although the role of eosinophils in nematode resistance is controversial, recent work has suggested that the action of these immune effectors might be limited to the larval stages of the parasite. If eosinophils act on larval survival, one might predict, in line with theoretical models, that nematode species living in hosts with large eosinophil numbers should show reduced age and size at maturity. We tested this prediction using the association between the pinworms (Oxyuridae, Nematoda) and their primate hosts. Pinworms are highly host specific and are expected to be involved in a coevolutionary process with their hosts. We found that the body size of female parasites was negatively correlated with eosinophil concentration, whereas the concentration of two other leucocyte families-neutrophils and lymphocytes-was unrelated to female body size. Egg size of parasites also decreased with host eosinophil concentration, independently of female size. Male body size was unrelated to host immune parameters. Primates with the highest immune defence, therefore, harbour small female pinworms laying small eggs. These results are in agreement with theoretical expectations and suggest that life histories of oxyurid parasites covary with the immune defence of their hosts. Our findings illustrate the potential for host immune defence as a factor driving parasite life-history evolution.  相似文献   

3.
Parasitic nematodes show levels of genetic diversity comparable to other taxa, but the functional consequences of this are not understood. Thus, a large body of theoretical work highlights the potential consequences of parasite genetic diversity for the epidemiology of parasite infections and its possible implications for the evolution of host and parasite populations. However, few relevant empirical data are available from parasites in general and none from parasitic nematodes in particular. Here, we test two hypotheses. First, that different parasitic nematode genotypes vary in life-history traits, such as survivorship and fecundity, which may cause variation in infection dynamics. Second, that different parasitic nematode genotypes interact within the host (either directly or via the host immune system) to increase the mean reproductive output of mixed-genotype infections compared with single-genotype infections. We test these hypotheses in laboratory infections using genetically homogeneous lines of Strongyloides ratti. We find that nematode genotypes do vary in their survivorship and fecundity and, consequently, in their dynamics of infection. However, we find little evidence of interactions between genotypes within hosts under a variety of trickle- and single-infected infection regimes.  相似文献   

4.
Parasite co-infection and interaction as drivers of host heterogeneity   总被引:1,自引:0,他引:1  
We examined the hypothesis that the interaction between concomitant infecting parasites modifies host susceptibility, parasite intensity and the pattern of parasite distribution within the host population. We used a 26 year time series of three common parasites in a natural population of rabbits: two gastrointestinal nematodes (Trichostrongylus retortaeformis and Graphidium strigosum) and the immunosuppressive myxoma virus. The frequency distribution of nematodes in the host population and the relationship between host age and nematode intensity were explored in rabbits with either single or dual nematode infections and rabbits infected with the nematodes and myxoma virus. The aggregation of T. retortaeformis and G. strigosum among the rabbits varied with the nature of the co-infection both in male and female hosts. The two nematodes exhibited different age-intensity profiles: G. strigosum intensity increased exponentially with host age while T. retortaeformis intensity exhibited a convex shape. The presence of a secondary infection did not change the age-intensity profile for G. strigosum but for T. retortaeformis co-infection (either both nematodes or myxoma-nematodes) resulted in significantly greater intensities in adult hosts. Results suggest that multi-species infections contributed to aggregation of parasites in the host population and to seasonal variation in intensity, but also enhanced differences in parasitism between sexes. This effect was apparent for T. retortaeformis, which appears to elicit a strong acquired immune response but not for G. strigosum which does not produce any evident immune reaction. We concluded that concomitant infections mediated by host immunity are important in modifying host susceptibility and influencing heterogeneity amongst individual hosts.  相似文献   

5.
Associations between mycophagous Drosophila and nematode parasites occur throughout the temperate and boreal regions of North America, Europe, and Asia. The nematode Howardula aoronymphium has substantial adverse effects on host survival and fertility on North American Drosophila. Long-term data show that rainy summers lead to a high prevalence of parasitism in the fall and the following spring, resulting in up to a 1-yr time lag between present rainfall and increased prevalence of H. aoronymphium parasitism. A biogeographic analysis of the relative abundance of different Drosophila species has shown that H. aoronymphium may facilitate the coexistence of different species of Drosophila that compete for larval food resources. The actual host range of parasites in nature is determined by the intrinsic suitability of potential hosts for parasite infection and reproduction and various ecological factors. For H. aoronymphium in eastern North America, intrinsically suitable hosts fall within a restricted clade within the genus Drosophila. However, the temperature sensitivity of H. aoronymphium prevents it from using several host species that occur outside the geographical range of the nematodes. Finally, the host range, virulence, and geographical range of Drosophila-parasitic nematodes appear to be highly dynamic over evolutionary timescales.  相似文献   

6.
Per Arneberg 《Ecography》2001,24(3):352-358
Epidemiological models predict a positive relationship between host population density and abundance of macroparasites. Here I lest these by a comparative study. I used data on communities of four groups of parasites inhabiting the gastrointestinal tract of mammals, nematodes of the orders Oxyurida. Ascarida. Enoplida and Spirurida. respectively. The data came from 44 mammalian species and represent examination of 16886 individual hosts. I studied average prevalence of all nematodes within an order in a host species, a measure of community level abundance, and considered the potential confounding effects of host body weight, fecundity, age at maturity and diet. Host population density was positively correlated with parasite prevalence within the order Oxyurida, where all species have direct life cycles. Considering the effects of other variables did not change this. This supports the assumption that parasite transmission rate generally is a positive function of host population density: It also strengthens the hypothesis that host densities generally act as important determinants of species richness among directly transmitted parasites and suggests that negative influence of such parasites on host population growth rate increase with increasing host population density among host species. Within the other three nematode orders, where a substantial number of the species have indirect life cycles, no relationships between prevalence and host population density were seen, Again. considering the effects of other variables did not affect this conclusion. This suggests that host population density is a poor predictor of species richness of indirectly transmitted parasites and that effects of such parasites on host population dynamics do not scale with host densities among species of hosts.  相似文献   

7.
Mixed infections are thought to have a major influence on the evolution of parasite virulence. During a mixed infection, higher within‐host parasite growth is favored under the assumption that it is critical to the competitive success of the parasite. As within‐host parasite growth may also increase damage to the host, a positive correlation is predicted between virulence and competitive success. However, when parasites must kill their hosts in order be transmitted, parasites may spend energy on directly attacking their host, even at the cost of their within‐host growth. In such systems, a negative correlation between virulence and competitive success may arise. We examined virulence and competitive ability in three sympatric species of obligately killing nematode parasites in the genus Steinernema. These nematodes exist in a mutualistic symbiosis with bacteria in the genus Xenorhabdus. Together the nematodes and their bacteria kill the insect host soon after infection, with reproduction of both species occurring mainly after host death. We found significant differences among the three nematode species in the speed of host killing. The nematode species with the lowest and highest levels of virulence were associated with the same species of Xenorhabdus, indicating that nematode traits, rather than the bacterial symbionts, may be responsible for the differences in virulence. In mixed infections, host mortality rate closely matched that associated with the more virulent species, and the more virulent species was found to be exclusively transmitted from the majority of coinfected hosts. Thus, despite the requirement of rapid host death, virulence appears to be positively correlated with competitive success in this system. These findings support a mechanistic link between parasite growth and both anti‐competitor and anti‐host factors.  相似文献   

8.
Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a reduction in size, caused by crowding, virtually nothing is known about longer-lasting effects after transmission to the definitive host. This study is the first to use in vitro cultivation with feeding of adult trematodes to investigate how numbers of parasites in the intermediate host affect the size and fecundity of adult parasites. For this purpose, we examined two different infracommunities of parasites in crustacean hosts. Firstly, we used experimental infections of Maritrema novaezealandensis in the amphipod, Paracalliope novizealandiae, to investigate potential density-dependent effects in single-species infections. Secondly, we used the crab, Macrophthalmus hirtipes (Ocypodidae), naturally infected by the trematodes, M. novaezealandensis and Levinseniella sp., the acanthocephalan, Profilicollis spp., and an acuariid nematode. These four helminths all develop and grow in their crustacean host before transmission to their bird definitive host by predation. In experimental infections, we found an intensity-dependent establishment success, with a decrease in the success rate of cercariae developing into infective metacercariae with an increasing dose of cercariae applied to each amphipod. In natural infections, we found that M. novaezealandensis-metacercariae achieved a smaller volume, on average, when infrapopulations of this parasite were large. Small metacercariae produced small in vitro-adult worms, which in turn produced fewer eggs. Crowding effects in the intermediate host thus were expressed at the adult stage in spite of the worms being cultured in a nutrient-rich medium. Furthermore, excystment success and egg-production in M. novaezealandensis in naturally infected crabs were influenced by the number of co-occurring Profilicollis cystacanths, indicating interspecific interactions between the two species. Our results thus indicate that the infracommunity of larval helminths in their intermediate host is interactive and that any density-dependent effect in the intermediate host may have lasting effects on individual parasite fitness.  相似文献   

9.
In natural host populations, parasitism is considered to be omnipresent and to play an important role in shaping host life history and population dynamics. Here, we study parasitism in natural populations of the zooplankton host Daphnia magna investigating their individual and population level effects during a 2-year field study. Our results revealed a rich and highly prevalent community of parasites, with eight endoparasite species (four microsporidia, one amoeba, two bacteria and one nematode) and six epibionts (belonging to five different taxa: Chlorophyta, Bacillariophyceae, Ciliata, Fungi and Rotifera). Several of the endoparasites were associated with a severe overall fecundity reduction of the hosts, while such effects were not seen for epibionts. In particular, infections by Pasteuria ramosa, White Fat Cell Disease and Flabelliforma magnivora were strongly associated with a reduction in overall D. magna fecundity. Across the sampling period, average population fecundity of D. magna was negatively associated with overall infection intensity and total endoparasite richness. Population density of D. magna was negatively correlated to overall endoparasite prevalence and positively correlated with epibiont richness. Finally, the reduction in host fecundity caused by different parasite species was negatively correlated to both parasite prevalence and the length of the time period during which the parasite persisted in the host population. Consistent with epidemiological models, these results indicate that parasite mediated host damages influence the population dynamics of both hosts and parasites.  相似文献   

10.
The ratio of male to female Reesimermis nielseni Tsai and Grundmann, a nematode parasite of mosquito larvae, increased as the number of parasites per host increased. Hosts with a single nematode produced 9% males compared with essentially 100% males in hosts with more than 7 parasites; hosts with 3 nematodes produced about equal numbers of males and females. Males of R. nielseni generally emerged before females because of the earlier death of multiple-infected mosquitoes. The species of the host mosquito influenced the sex ratio, but the size of a specific host at the time of invasion did not. Host diet also had a noticeable influence on the sex ratio of the nematode: singly infected hosts from a starved population produced 92% males compared with 13% in the normally fed group. The importance of these factors in the mass rearing of R. nielseni is discussed.  相似文献   

11.
On the capacity of macroparasites to control insect populations   总被引:1,自引:0,他引:1  
A graphical model of the population dynamics of macroparasites and their hosts is developed. Three principal means by which the parasites can be regulated are considered: reduction in host density as a result of parasite-induced host mortality, reduction in host density as a result of parasite-induced host sterility, and competition among parasites within multiply-infected hosts. The means by which parasites are regulated has a major effect on the degree to which they can depress host population densities. In particular, a parasite that sterilizes its host is expected to reduce host density more than one that causes an equivalent decline in host fitness through increased mortality. A special case of the model is developed for herbivorous insects that, in the absence of parasites, are limited by larval food resources. Parasites that are regulated via parasite-induced host sterility will control the insect populations below the level set by larval resources if the threshold host density for the parasites (N(T)) is less than the ratio of carrying capacity to net reproductive rate of the insects (K/R). Data are presented showing that all three means of parasite regulation, but especially parasite-induced host sterility, can operate in Howardula aoronymphium, a nematode parasite of mycophagous Drosophila flies. Data from a field cage experiment show that, if these nematodes are regulated primarily via reductions in host density due to this sterility, the parameters N(T), K, and R are such that Howardula is likely to play an important role in controlling Drosophila populations. However, this conclusion must be tempered by the fact that these nematodes also cause increased host mortality and experience within-host competition, making the conditions for parasite control of the flies more stringent.  相似文献   

12.
Drosophila falleni belongs to the quinaria species group, whose species vary considerably in patterns of wing and abdominal pigmentation. Drosophila falleni itself exhibits substantial variation among wild flies in abdominal spotting patterns. A selection experiment revealed that natural populations of D. falleni harbor high levels of genetic variation for spot number: in 10 generations of selection modal spot number within populations declined from 18 (the modal number in wild-caught females) to as low as zero. Rearing flies at different temperatures shows that some of the variation among wild flies is likely to reflect variation in the environmental conditions under which they developed. Fitness assays did not reveal any cost of reduced spot number with respect to development time, adult survival, or female fecundity. However, spotless flies were almost twice as susceptible to infection by the nematode parasite Howardula aoronymphium. Thus, selection exerted by nematode parasites may influence pigmentation patterns and other, genetically correlated traits in natural populations D. falleni.  相似文献   

13.
1. Long‐term control of insects by parasites is possible only if the parasite populations persist. Because parasite transmission rate depends on host density, parasite populations may go extinct during periods of low host density. Vertical transmission of parasites, however, is independent of host density and may therefore provide a demographic bridge through times when their insect hosts are rare. 2. The nematode Howardula aoronymphium, which parasitises mycophagous species of Drosophila, can experience both horizontal and effectively vertical transmission, relative rates of which depend, in theory at least, on the density of hosts at breeding sites. 3. A nine‐generation experiment was carried out in which nematodes were transmitted either exclusively vertically or primarily horizontally. This experiment revealed that these parasites can persist and exhibit positive population growth even when there is only vertical transmission. 4. Assays at the end of the experiment revealed that the vertically transmitted nematodes had suffered no inbreeding depression and that they were similar to the horizontally transmitted nematodes in terms of virulence, infectivity, within‐host growth rate, and fecundity. Thus, vertical transmission of H. aoronymphium did not appear to compromise the ability of these parasites to control Drosophila populations.  相似文献   

14.
Drosophila recens is parasitized in the wild by two nematodes, Howardula aoronymphium , a host generalist, and Parasitylenchus nearcticus , a host specialist known only from D .  recens . In order to understand how these two parasite species coexist, we compared their ability to infect and grow in D .  recens , their effects on host fecundity and survival, and whether one parasite species was competitively superior in double infections. The specialist nematode P. nearcticus had greater rates of infection and reproduction than the generalist H. aoronymphium , and completely sterilized females in single and mixed infections. The specialist was competitively superior in mixed infections, as generalist motherworms were significantly smaller than in single infections. These results suggest that P. nearcticus might competitively exclude H. aoronymphium if D. recens were the only host available. It is likely that H. aoronymphium persists in D. recens by transmission from other, more suitable host species.  相似文献   

15.
Traldi G 《Parassitologia》2006,48(3):415-418
Strategic parasite control programmes of ruminant gastrointestinal nematodes requires the knowledge of parasite population dynamics. In natural conditions, ruminants, in particular sheep and goats, are infected by different species of gastrointestinal nematodes. The life cycle of these parasites is influenced by a number of factors which include climatic variations. Therefore, it is important to utilise appropriate methods to identify the parasite population both in the host and from the pasture. In this paper faecal larval cultures and pasture larval counts used for herd health monitoring of nematode infections are discussed.  相似文献   

16.
Most hosts are concurrently or sequentially infected with multiple parasites; thus, fully understanding interactions between individual parasite species and their hosts depends on accurate characterization of the parasite community. For parasitic nematodes, noninvasive methods for obtaining quantitative, species‐specific infection data in wildlife are often unreliable. Consequently, characterization of gastrointestinal nematode communities of wild hosts has largely relied on lethal sampling to isolate and enumerate adult worms directly from the tissues of dead hosts. The necessity of lethal sampling severely restricts the host species that can be studied, the adequacy of sample sizes to assess diversity, the geographic scope of collections and the research questions that can be addressed. Focusing on gastrointestinal nematodes of wild African buffalo, we evaluated whether accurate characterization of nematode communities could be made using a noninvasive technique that combined conventional parasitological approaches with molecular barcoding. To establish the reliability of this new method, we compared estimates of gastrointestinal nematode abundance, prevalence, richness and community composition derived from lethal sampling with estimates derived from our noninvasive approach. Our noninvasive technique accurately estimated total and species‐specific worm abundances, as well as worm prevalence and community composition when compared to the lethal sampling method. Importantly, the rate of parasite species discovery was similar for both methods, and only a modest number of barcoded larvae (n = 10) were needed to capture key aspects of parasite community composition. Overall, this new noninvasive strategy offers numerous advantages over lethal sampling methods for studying nematode–host interactions in wildlife and can readily be applied to a range of study systems.  相似文献   

17.
In many natural populations, hosts are found to be infected by more than one parasite species. When these parasites have different host exploitation strategies and transmission modes, a conflict among them may arise. Such a conflict may reduce the success of both parasites, but could work to the benefit of the host. For example, the less‐virulent parasite may protect the host against the more‐virulent competitor. We examine this conflict using the waterflea Daphnia magna and two of its sympatric parasites: the blood‐infecting bacterium Pasteuria ramosa that transmits horizontally and the intracellular microsporidium Octosporea bayeri that can concurrently transmit horizontally and vertically after infecting ovaries and fat tissues of the host. We quantified host and parasite fitness after exposing Daphnia to one or both parasites, both simultaneously and sequentially. Under conditions of strict horizontal transmission, Pasteuria competitively excluded Octosporea in both simultaneous and sequential double infections, regardless of the order of exposure. Host lifespan, host reproduction and parasite spore production in double infections resembled those of single infection by Pasteuria. When hosts became first vertically (transovarilly) infected with O. bayeri, Octosporea was able to withstand competition with P. ramosa to some degree, but both parasites produced less transmission stages than they did in single infections. At the same time, the host suffered from reduced fecundity and longevity. Our study demonstrates that even when competing parasite species utilize different host tissues to proliferate, double infections lead to the expression of higher virulence and ultimately may select for higher virulence. Furthermore, we found no evidence that the less‐virulent and vertically transmitting O. bayeri protects its host against the highly virulent P. ramosa.  相似文献   

18.
Genetically specific interactions between hosts and parasites can lead to coevolutionary fluctuations in their genotype frequencies over time. Such fluctuating selection dynamics are, however, expected to occur only under specific circumstances (e.g., high fitness costs of infection to the hosts). The outcomes of host–parasite interactions are typically affected by environmental/ecological factors, which could modify coevolutionary dynamics. For instance, individual hosts are often infected with more than one parasite species and interactions between them can alter host and parasite performance. We examined the potential effects of coinfections by genetically specific (i.e., coevolving) and nonspecific (i.e., generalist) parasite species on fluctuating selection dynamics using numerical simulations. We modeled coevolution (a) when hosts are exposed to a single parasite species that must genetically match the host to infect, (b) when hosts are also exposed to a generalist parasite that increases fitness costs to the hosts, and (c) when coinfecting parasites compete for the shared host resources. Our results show that coinfections can enhance fluctuating selection dynamics when they increase fitness costs to the hosts. Under resource competition, coinfections can either enhance or suppress fluctuating selection dynamics, depending on the characteristics (i.e., fecundity, fitness costs induced to the hosts) of the interacting parasites.  相似文献   

19.
20.
Abstract.— Virulence is of central importance in host-parasite interactions, yet little is known about how it changes over extended evolutionary periods. In this study, all four species in the testacea species group of Drosophila were experimentally infected with sympatric and allopatric nematodes in the Howardula aoronymphium species complex, and the effect of parasite infection on three components of host fitness was determined. The Drosophila species show striking differences in their responses to infection, with reductions reaching 80% in adult lifespan, 100% in female fertility, and 90% in male fertility. Female sterility appears to be determined by the host; species that are sterilized by their local nematodes are also sterilized by the other allopatric nematodes in the H. aoronymphium complex. Host species that are not sterilized by their local parasite are not sterilized by other nematodes in the complex. In contrast, reductions in host adult lifespan and male fertility depend on both the host and the parasite. Whereas all nematodes reduced the survival of their local host species equally (about 40–45%), survival of two host species was drastically reduced (about 80%) when infected with an allopatric parasite. Thus, virulence is evolutionarily labile in associations between Drosophila testacea group species and their Howardula parasites. The data suggest that changes in the sterility component of virulence are due primarily to host evolution, whereas changes in the host mortality component are due in large part to parasite evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号