首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulatory role of viruses on population dynamics of the prymnesiophyte Phaeocystis globosa was studied during a mesocosm experiment in relation to growth and loss by microzooplankton grazing and cell lysis. The mesocosms were conducted under varying light conditions (20 and 150 μmol photons m−2 s−1) and nutrient regime (inorganic nitrogen to phosphorus ratios of 4, 16 and 44). Overall, viruses infecting P. globosa (PgV) were found to be an important cause of cell lysis (30–100% of total lysis) and a significant loss factor (7–67% of total loss). We demonstrate that the morphology of P. globosa cells (solitary versus colonial) differently regulated viral control of P. globosa bloom formation. Reduced irradiance (20 μmol photons m−2 s−1) was provided for 11 days to select for the solitary cell morphotype. Viruses were able to restrict P. globosa bloom formation even after irradiance became saturating again (150 μmol photons m−2 s−1). Saturating light conditions from the start of the experiment allowed colony formation and because the colony-morphotype acted as a mechanism reducing viral infection bloom formation succeeded. Nutrient depletion, however, affected specifically the colonies that disintegrated while releasing single cells. Virus infection of these solitary cells resulted in the termination of the bloom. The nature of phytoplankton growth-limiting nutrient (nitrate and/or orthophosphate) did not seem to noticeably affect the level of viral control.  相似文献   

2.
Rates of inorganic nitrogen uptake by three Northeast US and three Asian species of Porphyra were compared in short-term incubations to evaluate potential for longer term and larger scale examination of bioremediation of nutrient-loaded effluents from finfish aquaculture facilities. The effects of nitrogen (N) species and concentration, temperature, acclimation history, and irradiance were investigated. Uptake rates increased ca. nine-fold from 20 to 150 μM N. Nitrate and ammonium uptake occurred at similar rates. Irradiance had a strong effect, with uptake at 40 μmol photons m−2 s−1only 55% of uptake at 150 μmol photons m−2 s−1. N-replete tissue took up inorganic nitrogen at rates that averaged only 60% of nutrient-deprived tissue. Although there were species (P. amplissima > (P. purpurea = P. umbilicalis)) and temperature effects (10 °C>5 °C>15 °C), interactions among factors indicated that individual species be considered separately. Overall, P. amplissima was the best Northeast US candidate. It took up ammonium at faster rates than other local species at 10 and 15 °C, two temperatures that fall within the expected range of industrial conditions for finfish operations.  相似文献   

3.
The red tide dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup is noted for causing mass mortalities of marine organisms in the Gulf of Mexico. Most research has focused on culture isolates from the eastern Gulf of Mexico. In this investigation, we examine the effects of light, temperature and salinity on the growth rate of K. brevis from the western Gulf of Mexico. Growth rates of K. brevis were determined under various combinations of irradiance (19, 31, 52, 67, and 123 μmol m−2 s−1), salinity (25, 30, 35, 40 and 45), and temperature (15, 20, 25, and 30 °C). Maximum growth rates varied from 0.17 to 0.36 div day−1 with exponential growth rates increasing with increasing irradiance. Little or no growth was supported at 19 μmol photons m−2 s−1 for any experiment. Maximum growth rates at 15 °C were much lower than at other temperatures. Maximum growth rates of the Texas clone (SP3) fell within the range of Florida clones reported in the literature (0.17–0.36 div day−1 versus 0.2–1.0 div day−1). The Texas clone SP3 had a very similar light saturation point compared to that of a Florida isolate (Wilson's clone) (67 μmol m−2 s−1 versus 65 μmol m−2 s−1), and light compensation (20–30 μmol m−2 s−11). The upper and lower salinity tolerance of the Texas clone was similar than that of some Florida clones (45 versus 46 and 25 versus 22.5, respectively). In our study, the Texas clone had the same temperature tolerance reported for Florida clones (15–30 °C). While individual clones can vary considerably in maximum growth rates, our results indicate only minor differences exist between the Texas and Florida strains of K. brevis in their temperature and salinity tolerance for growth. While the literature notes lower salinity occurrences of K. brevis in nearby Louisiana, our isolate from the southern Texas coast has the higher salinity requirements typical of K. brevis in the eastern Gulf of Mexico.  相似文献   

4.
The nitrogen uptake and growth capabilities of the potentially harmful, raphidophycean flagellate Heterosigma akashiwo (Hada) Sournia were examined in unialgal batch cultures (strain CCMP 1912). Growth rates as a function of three nitrogen substrates (ammonium, nitrate and urea) were determined at saturating and sub-saturating photosynthetic photon flux densities (PPFDs). At saturating PPFD (110 μE m−2 s−1), the growth rate of H. akashiwo was slightly greater for cells grown on NH4+ (0.89 d−1) compared to cells grown on NO3 or urea, which had identical growth rates (0.82 d−1). At sub-saturating PPFD (40 μE m−2 s−1), both urea- and NH4+-grown cells grew faster than NO3-grown cells (0.61, 0.57 and 0.46 d−1, respectively). The N uptake kinetic parameters were investigated using exponentially growing batch cultures of H. akashiwo and the 15N-tracer technique. Maximum specific uptake rates (Vmax) for unialgal cultures grown at 15 °C and saturating PPFD (110 μE m−2 s−1) were 28.0, 18.0 and 2.89 × 10−3 h−1 for NH4+, NO3 and urea, respectively. The traditional measure of nutrient affinity—the half saturation constants (Ks) were similar for NH4+ and NO3 (1.44 and 1.47 μg-at N L−1), but substantially lower for urea (0.42 μg-at N L−1). Whereas the α parameter (α = Vmax/Ks), which is considered a more robust indicator for substrate affinity when substrate concentrations are low (<Ks), were 19.4, 12.2 and 6.88 × 10−3 h−1/(μg-at N L−1) for NH4+, NO3 and urea, respectively. These laboratory results demonstrate that at both saturating and sub-saturating N concentrations, N uptake preference follows the order: NH4+ > NO3 > urea, and suggests that natural blooms of H. akashiwo may be initiated or maintained by any of the three nitrogen substrates examined.  相似文献   

5.
Lessonia variegata J. Agardh (Laminariales, Phaeophyta) is endemic to New Zealand, where it occurs in subtidal kelp forests on wave exposed coasts in the North, South and Stewart Islands. This is the first account of the growth in culture and life history of L. variegata. Microscopic gametophytes alternate with macroscopic sporophytes, characteristic of members of the order Laminariales. The life history was completed in culture within 14 days under growth conditions of 12 °C, 12:12 (L:D) and 15 °C, 15:9 (L:D). Maximum growth of sporophytes occurred at 15 °C, 15:9, and slowest growth at 10 °C, 9:15. Under low light conditions (8–9 μmol photon m−2 s−1) filamentous growth of gametophytes predominated, and both the proportion of gametogenesis and the growth of sporophytes after 30 days was much reduced from equivalent cultures grown under conditions of higher light (16–17.5 μmol photon m−2 s−1). Interest in this species relates both to its potential for commercial utilisation as well as in the role it plays in coastal rocky reef ecosystems.  相似文献   

6.
In Central European forestry the establishment of broad-leaved mixed forests is attaining increasing importance, but little information exists about gas exchange characteristics of some of the tree species involved, which are less abundant today. In an old-growth forest in Central Germany (Hainich, Thuringia), (i) I compared morphological and chemical leaf traits that are indicative of leaf gas exchange characteristics among eight co-existing species, and (ii) analysed photosynthetic parameters of saplings and adult trees (lower and upper canopy level) in four of these species (Acer pseudoplatanus L., Carpinus betulus L., Fraxinus excelsior L. and Tilia platyphyllos Scop.).Leaves from the upper canopy in the eight species studied varied significantly in their specific leaf area (12.9–19.4 m2 kg−1), stomatal density (125–313 stomata mm−2), leaf nitrogen concentration (95–157 mmol N m−2) and δ13C content (–27.81 to –25.85‰). F. excelsior and C. betulus were largely contrasting species, which suggests that the species, which were studied in more detail, include the widest difference in leaf gas exchange among the co-existing species. The saplings of the four selected species exhibited shade acclimated leaves with net photosynthesis rates at saturating irradiance (Amax) between 5.0 and 6.4 μmol m−2 s−1. In adult trees Amax of fully sunlit leaves was more variable and ranged from 10.5 (C. betulus) to 16.3 μmol m−2 s−1 (F. excelsior). However, less negative δ13C values in F. excelsior sun leaves point to a strong limitation in gas exchange. In the lower canopy of adult trees Amax of F. excelsior (12.0 μmol m−2 s−1) was also greater than that of A. pseudoplatanus, C. betulus and T. platyphyllos (5.0–5.6 μmol m−2 s−1). This can be explained by the small leaf area and the absence of shade leaves in mature F. excelsior trees. Thus, a considerable variation in leaf traits and gas exchange was found among the co-existing tree species. The results suggest that species-specific characteristics increase the spatial heterogeneity of canopy gas exchange and should be taken into account in the interpretation and prediction of gas flux from mixed stands.In der Forstwirtschaft Mitteleuropas gewinnt die Begründung von Laubmischwäldern zunehmend an Bedeutung, aber über Eigenschaften im Gasaustausch einiger beteiligter Baumarten, die heute nicht so häufig sind, ist wenig bekannt. In einem Altbestand in Mitteldeutschland (Hainich, Thüringen) habe ich (i) morphologische und chemische Eigenschaften von Sonnenblättern, die Hinweise auf Charakteristika im Blattgaswechsel geben, an acht koexistierenden Baumarten untersucht, und (ii) Photosyntheseparameter von juvenilen und adulten Bäumen (unteres und oberes Kronenniveau) von vier dieser Arten (Acer pseudoplatanus L., Carpinus betulus L., Fraxinus excelsior L. and Tilia platyphyllos Scop.) erhoben.Blätter aus dem oberen Kronenraum der acht untersuchten Arten variierten signifikant in der spezifischen Blattfläche (12.9–19.4 m2 kg−1), der Stomatadichte (125–313 Stomata mm−2), dem Blattstickstoffgehalt (95–157 mmol N m−2) und den δ13C-Werten (–27.81 bis –25.85‰). In diesem Kollektiv zeigten F. excelsior und C. betulus groβe Unterschiede, was darauf hindeutet, dass die Arten, die genauer untersucht wurden, die Spannweite an Gaswechseleigenschaften unter den koexistierenden Baumarten umfassen. Die Jungpflanzen der vier ausgewählten Arten besaßen Schattenblätter, deren Netto-Photosyntheserate bei hoher Lichtintensität (Amax) zwischen 5.0 and 6.4 μmol m−2 s−1 variierte. An Sonnenblättern von Altbäumen war Amax variabler und lag zwischen 10.5 (C. betulus) und 16.3 μmol m−2 s−1 (F. excelsior). Allerdings weisen hohe δ13C-Werte in Sonnenblättern von F. excelsior auf eine starke Limitierung des Gasaustauschs hin. Auch in der unteren Krone der Altbäume war Amax von F. excelsior (12.0 μmol m−2 s−1) höher als Amax von A. pseudoplatanus, C. betulus und T. platyphyllos (5.0–5.6 μmol m−2 s−1). Dies kann durch die geringe Blattfläche und die Abwesenheit von Schattenblättern in der Krone adulter Bäume von F. excelsior erklärt werden. Zwischen den koexistierenden Baumarten wurde somit in Bezug auf Blatteigenschaften und Photosyntheseparameter eine erhebliche Variation festgestellt. Die Ergebnisse legen nahe, dass artspezifische Eigenschaften die räumliche Heterogenität des Gaswechsels im Kronenraum erhöhen und bei der Interpretation und Vorhersage von Gasflüssen über Mischbeständen berücksichtigt werden sollten.  相似文献   

7.
Cultures of the obligate psychrophilic diatom Fragilariopsis cylindrus (Grunow) were grown for 4 months under steady-state conditions at −1 °C and +7 °C (50 μmol photons m−2 s−1) prior to measurements in order to investigate long-term acclimation of photosynthesis to both temperatures. No differences in maximum intrinsic quantum yield of PS II (FV/FM) and relative electron transport rates could be detected at either temperature after 4 months of acclimation. Measurements of photosynthesis (relative electron transport rates) vs. irradiance (P vs. E curves) revealed similar values for relative light utilization efficiency (α = 0.57 at −1 °C, α = 0.60 at +7 °C) but higher values for irradiance levels at which photosynthesis saturates (EK) at −1 °C and, therefore, higher maximum photosynthesis (PMAX = 54 (relative units) at −1 °C, PMAX = 49 at +7 °C). Nonphotochemical quenching (NPQ) measurements at 385 μmol photons m−2 s−1 indicated higher (37%) NPQ for diatoms grown at −1 °C compared to +7 °C, which was possibly related to a 2-fold increase in the concentration of the pigment diatoxanthin and a 9-fold up-regulation of a gene encoding a fucoxanthin chlorophyll a,c-binding protein. Expression of the D1 protein encoding gene psbA was ca. 1.5-fold up-regulated at −1 °C, whereas expression levels of other genes from Photosystem II (psbC, psbU, psbO), as well as rbcL, the gene encoding the Rubisco large subunit were similar at both temperatures. However, a 2-fold up-regulation of a plastid glyceraldehyde-P dehydrogenase at −1 °C indicated enhanced Calvin cycle activity. This study revealed for the first time that a polar diatom could efficiently acclimate photosynthesis over a wide range of polar temperatures given enough time. Acclimation of photosynthesis at −1 °C was probably regulated similarly to high light acclimation.  相似文献   

8.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

9.
Nitrogenase activity and the rate of photosynthesis were measured simultaneously in Azolla by a continuous gas flow system. The mode of interaction between light, photosynthesis and nitrogenase activity was analysed.Nitrogenase activity dropped off when either Azolla plants or the cyanobiont Anabaena were transferred from light to dark. This decline was immediate and was independent of length or intensity of the prior light phase. Reillumination restored nitrogenase activity.Nitrogenase activity did not depend on the rate of photosynthesis at light intensities below 10 μE m−2 s−1. Its activity was saturated at 200 μE m−2 s−1 while CO2 fixation was saturated at a light intensity of 850 μE m−2 s−1. Azolla photosynthetic activity followed the absorption spectrum of chlorophyll a, while nitrogenase activity markedly increased between 690 and 710 nm. Inhibition of photosynthesis by DCMU was accompanied by an increase in nitrogenase activity. These results suggest direct light regulation of nitrogenase activity in Azolla independent of CO2 fixation, and a possible inhibition of nitrogenase activity by the oxygen produced in photosynthesis.  相似文献   

10.
Cladoptosis, the abscission of twigs, is the main mechanism of changes in crown structure in senescing pedunculate oak (Quercus robur L.). We tested the hypotheses that abscission zones in nodes of old pedunculate oak trees reduce leaf-specific hydraulic conductance of shoots and thereby limit the stomatal conductance and assimilation.Hydraulic conductance and leaf-specific hydraulic conductance, measured with a high pressure flowmeter in 0.5–1.5 m long shoots, were significantly lower in shoots of low vigour compared to vigorous growing shoots in a 165-years-old stand in the southeast of Germany. Two types of bottlenecks to water transport could be identified in shoots of old oak trees, namely nodes and abscission zones. In young twigs, vessel diameter and vessel density in nodes with abscission zones were significantly reduced compared with internodes. In nodes without abscission zones, vessel density was significantly reduced. The reduction of hydraulic conductance was especially severe in the smallest and youngest shoots with diameters less than 2 mm. Internodes of 1–5 mm sapwood diameter had an average hydraulic conductance of 7.13×10−6±0.2×10−6 kg s−1 m−1 MPa−1, compared to 4.54×10−6±0.3×10−6 kg s−1 m−1 MPa−1 in those with nodes.Maximum stomatal conductance and maximum net assimilation rate increased significantly with hydraulic conductance and leaf-specific hydraulic conductance. Maximum rate of net photosynthesis Amax of the most vigorous shoots (VC0) (7.34±0.55 μmol m−2 s−1) was significantly higher (P<0.001) than in shoots of other vigour classes (5.97±0.28 μmol m−2 s−1). Our data support the hypothesis that the changes in shoot and consequently crown architecture that are observed in ageing and declining trees can limit photosynthesis by reducing shoot hydraulic conductance. Abscission zones increase the hydraulic disadvantage of less vigorous compared to vigorously growing twigs. Cladoptosis might serve as a mechanism of selection between twigs of different efficiency.  相似文献   

11.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

12.
The effects of small-scale turbulence on two species of dinoflagellates were examined in cultures where the turbulent forces came randomly from all directions and were intermittent both spatially and temporally; much like small-scale turbulence in the ocean. With Lingulodinium polyedrum (Stein) Dodge (syn. Gonyaulax polyedra), division rate increased linearly (from 0.35 to 0.5 per day) and the mean cross-sectional area (CSA) decreased linearly (from 1100 to 750 μm2) as a function of the logarithmic increase in turbulence energy dissipation rate (). These effects were noted when values increased between 10−8 and 10−4 m2 s−3. However, when increased to 10−3 m2 s−3, division rate sharply decreased and mean CSA increased. Over the same range of , Alexandrium catenella (Wheedon and Kofoid) Balech had its division rate decrease linearly (from 0.6 to 0.45 per day) and its CSA increase linearly (from 560 to 650 μm2) as a function of the logarithmic increase in . Even at the highest examined (10−3 m2 s−3), which may be unrealistically high for their ambits, both L. polyedra and A. catenella still had fairly high division rates, 0.2 and 0.45 per day, respectively. Turbulence strongly affected chain formation in A. catenella. In non-turbulent cultures, the mode was single cells (80–90% of the population), but at of 10−5 to 10−4 m2 s−3, the mode was 8 cells per chain. At the highest (10−3 m2 s−3), the mode decreased to 4 cells per chain. The vertical distributions of A. catenella populations in relation to hydrographic flow fields were studied in the summers of 1997 and 1998 in East Sound, Washington, USA (latitude 48°39′N, 122°53′W). In both summers, high concentrations of A. catenella were found as a subsurface bloom in a narrow depth interval (2 m), where both current shear and turbulence intensity were at a minimum. Other researchers have shown that A. catenella orients its swimming in shear flows, and that swimming speed increases with chain length. These responses, when combined with our observations, support a hypothesis that A. catenella actively concentrates at depths with low turbulence and shear.  相似文献   

13.
The spatial upscaling of soil respiration from field measurements to ecosystem levels will be biased without studying its spatial variation. We took advantage of the unique spatial gradients of an oak–grass savanna ecosystem in California, with widely spaced oak trees overlying a grass layer, to study the spatial variation in soil respiration and to use these natural gradients to partition soil respiration according to its autotrophic and heterotrophic components. We measured soil respiration along a 42.5 m transect between two oak trees in 2001 and 2002, and found that soil respiration under tree canopies decreased with distance from its base. In the open area, tree roots have no influence on soil respiration. Seasonally, soil respiration increased in spring until late April, and decreased in summer following the decrease in soil moisture content, despite the further increase in soil temperature. Soil respiration significantly increased following the rain events in autumn. During the grass growing season between November and mid-May, the average of CO2 efflux under trees was 2.29 μmol m−2 s−1, while CO2 efflux from the open area was 1.40 μmol m−2 s−1. We deduced that oak root respiration averaged as 0.89 μmol m−2 s−1, accounting for 39% of total soil respiration (oak root + grass root + microbes). During the dry season between mid-May and October, the average of CO2 efflux under trees was 0.87 μmol m−2 s−1, while CO2 efflux from the open areas was 0.51 μmol m−2 s−1. Oak root respiration was 0.36 μmol m−2 s−1, accounting for 41% of total soil respiration (oak root + microbes). The seasonal pattern of soil CO2 efflux under trees and in open areas was simulated by a bi-variable model driven by soil temperature and moisture. The diurnal pattern was influenced by tree physiology as well. Based on the spatial gradient of soil respiration, spatial analysis of crown closure and the simulation model, we spatially and temporally upscaled chamber measurements to the ecosystem scale. We estimated that the cumulative soil respiration in 2002 was 394 gC m−2 year−1 in the open area and 616 gC m−2 year−1 under trees with a site-average of 488 gC m−2 year−1.  相似文献   

14.
Recent research emphasis on the ecology of Pfiesteria spp. (Dinophyceae) has led to recognition of several morphologically similar heterotrophic dinoflagellates that often co-occur with Pfiesteria spp. in estuaries along the United States Atlantic coast. These include cryptoperidiniopsoid dinoflagellates, which resemble Pfiesteria spp. in having complex life cycles that include zoospores capable of kleptoplastidy. To examine and compare the role of kleptoplastidy in Cryptoperidiniopsis sp. and Pfiesteria piscicida, we tested the effects of irradiance on growth under prey-saturated (Storeatula major, Cryptophyceae) conditions. Growth of Cryptoperidiniopsis was strongly influenced by light intensity while no major effects were observed in P. piscicida. In Cryptoperidiniopsis, highest cell numbers and specific growth rates, but lowest specific cryptophyte consumption rates, were found at the highest light intensity tested (100 μmol photons m−2 s−1). A growth model was developed and used to estimate that the average half-life of chloroplasts ingested by Cryptoperidiniopsis decreased 3.4-fold from 12.6 h at high light to 3.7 h in the dark. These results show that light strongly enhances specific growth rate and growth efficiency of Cryptoperidiniopsis feeding on cryptophytes, and suggest that retained kleptochloroplasts may play a quantitatively significant role in carbon and energy metabolism of this organism. Differences in the effects of light between Cryptoperidiniopsis and P. piscicida may reflect different nutritional strategies, and allow these closely related dinoflagellates to occupy different niches and co-exist.  相似文献   

15.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

16.
The long-term effects of exogenous sucrose (3 percnt;) on growth, photosynthesis and carbon metabolism ofin vitro tomato plantlets were investigated under two sets of growth conditions that respectively favor source- or sink-limitations of photosynthesis: 1) low photosynthetic photon flux (PPF) (50 μmol m−2 · s−1) and low CO2 concentration (400 μmol mol−1) and 2) high PPF (500 μmol m−2 · s−1 and high CO2 concentration (4000 μmol mol−1). The supply of sucrose under source-limitation conditions increased the growth, the maximal photosynthetic rate, the chl content, the maximal quantum yield of Photosystem II estimated by the Fv/Fm chl fluorescence ratio as well as the soluble sugars (hexoses, sucrose) and starch contents in roots, young and mature leaves when compared to those of photo-autotrophic plantlets. Also, sucrose feeding under these conditions strongly increased the activity of sucrose synthase (SS) (EC 2.4.1.13) in roots and young leaves whereas the activities of sucrose phosphate synthase (SPS) (EC 2.4.1.14), acid invertase (INV) (EC 3.2.1.26) and ADP-glucose pyrophosphorylase (ADPGppase) (EC 2.7.7.27) were highly stimulated in roots and mature leaves. Contrary to these observations, the supply of sucrose to plantlets developed under high PPF and CO2 concentration decreased growth and led to a somewhat lower maximal photosynthetic rate relative to photo-autotrophic plantlets. These negative responses to exogenous sucrose were accompanied by stronger accumulations of hexose and starch, larger stimulation of INV in mature leaves developed under conditions of sink limitation than those from source limitation conditions. Moreover, under high PPF and high CO2 concentration, exogenous sucrose led to a marked repression of the SPS activity and caused much lower stimulations of ADPGppase in mature leaves than those observed at low PPF and low CO2 concentration. We therefore conclude that under our experimental conditions, the interactive effects of exogenous sucrose and environmental conditions on growth and photosynthesis could be rationalized by the source-sink equilibrium of thein vitro tomato plantlets.  相似文献   

17.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

18.
The influence of light and temperature on the cylindrospermopsin (CYN) production of two Aphanizomenon flos-aquae strains, isolated from North-eastern German lakes, was investigated with semi-continuously growing cultures. A light gradient from 10 to 60 μE m−2 s−1 in combination with temperatures of 16, 20, and 25 °C was tested.CYN concentrations varied by a maximum factor of 2.7 in strain 10E9 with a significant decrease with increasing temperature. Strain 22D11 showed less pronounced changes, i.e. by a factor of 1.6, and without clear relationship to temperature.Reaction patterns of CYN production to changing light intensities are different at different temperatures. In both strains CYN concentrations increase significantly at 20 °C between 10 and 60 μE m−2 s−1, whereas they decrease significantly at 25 °C in the same light gradient. The amount of synthesised CYN is not reflected by growth rates of the strains in a uniform manner. Nonetheless several temperature–light combinations which constitute physiological stress seem to trigger CYN production and particularly CYN release from cells. The lowest growth rate observed at 16 °C and 60 μE m−2 s−1 of strain 22D11 may reflect photoinhibition due to the lower temperature and related limited CO2-fixation. Under these conditions, extracellular CYN concentrations increased to 58% of total CYN, while the share of extracellular CYN of all other light and temperature regimes was 11–26%. From the results and the experimental design we conclude an active release of the toxin into medium to be more likely than mere leakage from cells.  相似文献   

19.
Increasing sucrose from 20 to 50 g l−1 in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 ± 61 to 553 ± 193 μg g−1 cell dry wt. The maximal concentration of both triterpenes (1680 ± 39 μg g−1 cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 ± 20 or 1120 ± 26 μg g−1 cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30.  相似文献   

20.
This study assessed the effect of two precursors (l-phenylalanine and p-amino benzoic acid) used alone or in combination with methyl jasmonate, on the growth and accumulation of paclitaxel, baccatin III and 10-deacetylbaccatin III in hairy root cultures of Taxus x media var. Hicksii. The greatest increase in dry biomass was observed after 4 weeks of culturing hairy roots in medium supplemented with 1 μM of l-phenylalanine (6.2 g L−1). Addition of 1 μM of l-phenylalanine to the medium also resulted in the greatest 10-deacetylbaccatin III accumulation (422.7 μg L−1), which was not detected in the untreated control culture. Supplementation with 100 μM of l-phenylalanine together with 100 μM of methyl jasmonate resulted in the enhancement of paclitaxel production from 40.3 μg L−1 (control untreated culture) to 568.2 μg L−1, the highest paclitaxel content detected in the study. The effect of p-amino benzoic acid on taxane production was less pronounced, and the highest yield of paclitaxel (221.8 μg L−1) was observed when the medium was supplemented with 100 μM of the precursor in combination with methyl jasmonate.Baccatin III was not detected under the conditions used in this experiment and the investigated taxanes were not excreted into the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号