首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Rous sarcoma virus (RSV) Gag protein, the 25 amino-acid residues of the p10 domain immediately upstream of the CA domain are essential for immature particle formation. We performed systematic mutagenesis on this region and found excellent correlation between the amino-acid side chains required for in vitro assembly and those that participate in the p10-CA dimer interface in a previously described crystal structure. We introduced exogenous cysteine residues that were predicted to form disulphide bonds across the dimer interface. Upon oxidation of immature particles, a disulphide-linked Gag hexamer was formed, implying that p10 participates in and stabilizes the immature Gag hexamer. This is the first example of a critical interaction between two different Gag domains. Molecular modeling of the RSV immature hexamer indicates that the N-terminal domains of CA must expand relative to the murine leukaemia virus mature hexamer to accommodate the p10 contact; this expansion is strikingly similar to recent cryotomography results for immature human immunodeficiency virus particles.  相似文献   

2.
Joshi SM  Vogt VM 《Journal of virology》2000,74(21):10260-10268
Purified retrovirus Gag proteins can assemble in vitro into virus-like particles (VLPs) in the presence of RNA. It was shown previously that a Rous sarcoma virus Gag protein missing only the protease domain forms spherical particles resembling immature virions lacking a membrane but that a similar protein missing the p10 domain forms tubular particles. Thus, p10 plays a role in spherical particle formation. To further study this shape-determining function, we dissected the p10 domain by mutagenesis and examined VLPs assembled within Escherichia coli or assembled in vitro from purified proteins. The results identified a minimal contiguous segment of 25 amino acid residues at the C terminus of p10 that is sufficient to restore efficient spherical assembly to a p10 deletion mutant. Random and site-directed mutations were introduced into this segment of polypeptide, and the shapes of particles formed in E. coli were examined in crude extracts by electron microscopy. Three phenotypes were observed: tubular morphology, spherical morphology, or no regular structure. While the particle morphology visualized in crude extracts generally was the same as that visualized for purified proteins, some tubular mutants scored as spherical when tested as purified proteins, suggesting that a cellular factor may also play a role in shape determination. We also examined the assembly properties of smaller Gag proteins consisting of the capsid protein-nucleocapsid protein (CA-NC) domains with short N-terminal extensions or deletions. Addition of one or three residues allowed CA-NC to form spheres instead of tubes in vitro, but the efficiency of assembly was extremely low. Deletion of the N-terminal residue(s) abrogated assembly. Taken together, these results imply that the N terminus of CA and the adjacent upstream 25 residues play an important role in the polymerization of the Gag protein.  相似文献   

3.
Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein–protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.  相似文献   

4.
All orthoretroviruses encode a single structural protein, Gag, which is necessary and sufficient for the assembly and budding of enveloped virus-like particles from the cell. The Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1) contain a short spacer peptide (SP or SP1, respectively) separating the capsid (CA) and nucleocapsid (NC) domains. SP or SP1 and the residues immediately upstream are known to be critical for proper assembly. Using mutagenesis and electron microscopy analysis of insect cells or chicken cells overexpressing RSV Gag, we defined the SP assembly domain to include the last 8 residues of CA, all 12 residues of SP, and the first 4 residues of NC. Five- or two-amino acid glycine-rich insertions or substitutions in this critical region uniformly resulted in the budding of abnormal, long tubular particles. The equivalent SP1-containing HIV-1 Gag sequence was unable to functionally replace the RSV sequence in supporting normal RSV spherical assembly. According to secondary structure predictions, RSV and HIV-1 SP/SP1 and adjoining residues may form an alpha helix, and what is likely the functionally equivalent sequence in murine leukemia virus Gag has been inferred by mutational analysis to form an amphipathic alpha helix. However, our alanine insertion mutagenesis did not provide evidence for an amphipathic helix in RSV Gag. Taken together, these results define a short assembly domain between the folded portions of CA and NC, which is essential for formation of the immature Gag shell.  相似文献   

5.
During retrovirus particle assembly and morphogenesis, the retrovirus structural (Gag) proteins organize into two different arrangements: an immature form assembled by precursor Gag (PrGag) proteins; and a mature form, composed of proteins processed from PrGag. Central to both Gag protein arrangements is the capsid (CA) protein, a domain of PrGag, which is cleaved from the precursor to yield a mature Gag protein composed of an N-terminal domain (NTD), a flexible linker region, and a C-terminal domain (CTD). Because Gag interactions have proven difficult to examine in virions, a number of investigations have focused on the analysis of structures assembled in vitro. We have used electron microscope (EM) image reconstruction techniques to examine assembly products formed by two different CA variants of both human immunodeficiency virus type 1 (HIV-1) and the Moloney murine leukemia virus (M-MuLV). Interestingly, two types of hexameric protein arrangements were observed for each virus type. One organizational scheme featured hexamers composed of putative NTD dimer subunits, with sharing of subunits between neighbor hexamers. The second arrangement used apparent NTD monomers to coordinate hexamers, involved no subunit sharing, and employed putative CTD interactions to connect hexamers. Conversion between the two assembly forms may be achieved by making or breaking the proposed symmetric NTD dimer contacts in a process that appears to mimic viral morphogenesis.  相似文献   

6.
The human immunodeficiency virus type 1 initially assembles and buds as an immature particle that is organized by the viral Gag polyprotein. Gag is then proteolyzed to produce the smaller capsid protein CA, which forms the central conical capsid that surrounds the RNA genome in the mature, infectious virus. To define CA surfaces that function at different stages of the viral life cycle, a total of 48 different alanine-scanning surface mutations in CA were tested for their effects on Gag protein expression, processing, particle production and morphology, capsid assembly, and infectivity. The 27 detrimental mutations fall into three classes: 13 mutations significantly diminished or altered particle production, 9 mutations failed to assemble normal capsids, and 5 mutations supported normal viral assembly but were nevertheless reduced more than 20-fold in infectivity. The locations of the assembly-defective mutations implicate three different CA surfaces in immature particle assembly: one surface encompasses helices 4 to 6 in the CA N-terminal domain (NTD), a second surrounds the crystallographically defined CA dimer interface in the C-terminal domain (CTD), and a third surrounds the loop preceding helix 8 at the base of the CTD. Mature capsid formation required a distinct surface encompassing helices 1 to 3 in the NTD, in good agreement with a recent structural model for the viral capsid. Finally, the identification of replication-defective mutants with normal viral assembly phenotypes indicates that CA also performs important nonstructural functions at early stages of the viral life cycle.  相似文献   

7.
Expression of retroviral Gag polyproteins is sufficient for morphogenesis of virus-like particles with a spherical immature protein shell. Proteolytic cleavage of Gag into the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains (in the case of human immunodeficiency virus [HIV]) leads to condensation to the mature cone-shaped core. We have analyzed the formation of spherical or cylindrical particles on in vitro assembly of purified HIV proteins or inside Escherichia coli cells. CA protein alone yielded cylindrical particles, while all N-terminal extensions of CA abolished cylinder formation. Spherical particles with heterogeneous diameters or amorphous protein aggregates were observed instead. Extending CA by 5 amino acids was sufficient to convert the assembly phenotype to spherical particles. Sequences C-terminal of CA were not required for sphere formation. Proteolytic cleavage of N-terminally extended CA proteins prior to in vitro assembly led to the formation of cylindrical particles, while proteolysis of in vitro assembly products caused disruption of spheres but not formation of cylinders. In vitro assembly of CA and extended CA proteins in the presence of cyclophilin A (CypA) at a CA-to-CypA molar ratio of 10:1 yielded significantly longer cylinders and heterogeneous spheres, while higher concentrations of CypA completely disrupted particle formation. We conclude that the spherical shape of immature HIV particles is determined by the presence of an N-terminal extension on the CA domain and that core condensation during virion maturation requires the liberation of the N terminus of CA.  相似文献   

8.
A conformational switch controlling HIV-1 morphogenesis   总被引:1,自引:0,他引:1  
Assembly of infectious human immunodeficiency virus type 1 (HIV-1) proceeds in two steps. Initially, an immature virus with a spherical capsid shell consisting of uncleaved Gag polyproteins is formed. Extracellular proteolytic maturation causes rearrangement of the inner virion structure, leading to the conical capsid of the infectious virus. Using an in vitro assembly system, we show that the same HIV-1 Gag-derived protein can form spherical particles, virtually indistinguishable from immature HIV-1 capsids, as well as tubular or conical particles, resembling the mature core. The assembly phenotype could be correlated with differential binding of the protein to monoclonal antibodies recognizing epitopes in the HIV-1 capsid protein (CA), suggesting distinct conformations of this domain. Only tubular and conical particles were observed when the protein lacked spacer peptide SP1 at the C-terminus of CA, indicating that SP1 may act as a molecular switch, whose presence determines spherical capsid formation, while its cleavage leads to maturation.  相似文献   

9.
Johnson MC  Scobie HM  Ma YM  Vogt VM 《Journal of virology》2002,76(22):11177-11185
The Gag protein of retroviruses alone can polymerize into regular virus-like particles (VLPs) both in vitro and in vivo. In most circumstances the capsid (CA) and nucleocapsid (NC) domains of Gag as well as some form of nucleic acid are required for this process. The mechanism by which NC-nucleic acid interaction promotes assembly has remained obscure. We show here that while deletion of the NC domain of Rous sarcoma virus Gag abolishes formation and budding of VLPs at the plasma membranes of baculovirus-infected insect cells, replacement of NC with a dimer-forming leucine zipper domain restores budding of spherical particles morphologically similar to wild-type VLPs. The positioning of the dimerization domain appears to be critical for proper assembly, as the insertion of a 5-amino-acid flexible linker upstream of the zipper domain leads to budding of tubular rather than spherical particles. Similar tubular particles are formed when the same linker is inserted upstream of NC. The tubes are morphologically distinct from tubes formed when the p10 domain upstream of CA is deleted. The fact that a foreign dimerization domain can functionally mimic NC suggests that the role of nucleic acid in retroviral assembly is not to serve as a scaffold but rather to promote the formation of Gag dimers, which are critical intermediates in the polymerization of the Gag shell.  相似文献   

10.
Formation of infectious HIV-1 involves assembly of Gag polyproteins into immature particles and subsequent assembly of mature capsids after proteolytic disassembly of the Gag shell. We report a 12-mer peptide, capsid assembly inhibitor (CAI), that binds the capsid (CA) domain of Gag and inhibits assembly of immature- and mature-like capsid particles in vitro. CAI was identified by phage display screening among a group of peptides with similar sequences that bind to a single reactive site in CA. Its binding site was mapped to CA residues 169-191, with an additional contribution from the last helix of CA. This result was confirmed by a separate X-ray structure analysis showing that CAI inserts into a conserved hydrophobic groove and alters the CA dimer interface. The CAI binding site is a new target for antiviral development, and CAI is the first known inhibitor directed against assembly of immature HIV-1.  相似文献   

11.
During retrovirus particle maturation, the assembled Gag polyprotein is cleaved by the viral protease into matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. To form the mature viral capsid, CA rearranges, resulting in a lattice composed of hexameric and pentameric CA units. Recent structural studies of assembled HIV-1 CA revealed several inter-subunit interfaces in the capsid lattice, including a three-fold interhexamer interface that is critical for proper capsid stability. Although a general architecture of immature particles has been provided by cryo-electron tomographic studies, the structural details of the immature particle and the maturation pathway remain unknown. Here, we used cryo-electron microscopy (cryoEM) to determine the structure of tubular assemblies of the HIV-1 CA-SP1-NC protein. Relative to the mature assembled CA structure, we observed a marked conformational difference in the position of the CA-CTD relative to the NTD in the CA-SP1-NC assembly, involving the flexible hinge connecting the two domains. This difference was verified via engineered disulfide crosslinking, revealing that inter-hexamer contacts, in particular those at the pseudo three-fold axis, are altered in the CA-SP1-NC assemblies compared to the CA assemblies. Results from crosslinking analyses of mature and immature HIV-1 particles containing the same Cys substitutions in the Gag protein are consistent with these findings. We further show that cleavage of preassembled CA-SP1-NC by HIV-1 protease in vitro leads to release of SP1 and NC without disassembly of the lattice. Collectively, our results indicate that the proteolytic cleavage of Gag leads to a structural reorganization of the polypeptide and creates the three-fold interhexamer interface, important for the formation of infectious HIV-1 particles.  相似文献   

12.
Immature retroviral particles are assembled by self-association of the structural polyprotein precursor Gag. During maturation the Gag polyprotein is proteolytically cleaved, yielding mature structural proteins, matrix (MA), capsid (CA), and nucleocapsid (NC), that reassemble into a mature viral particle. Proteolytic cleavage causes the N terminus of CA to fold back to form a β-hairpin, anchored by an internal salt bridge between the N-terminal proline and the inner aspartate. Using an in vitro assembly system of capsid-nucleocapsid protein (CANC), we studied the formation of virus-like particles (VLP) of a gammaretrovirus, the xenotropic murine leukemia virus (MLV)-related virus (XMRV). We show here that, unlike other retroviruses, XMRV CA and CANC do not assemble tubular particles characteristic of mature assembly. The prevention of β-hairpin formation by the deletion of either the N-terminal proline or 10 initial amino acids enabled the assembly of ΔProCANC or Δ10CANC into immature-like spherical particles. Detailed three-dimensional (3D) structural analysis of these particles revealed that below a disordered N-terminal CA layer, the C terminus of CA assembles a typical immature lattice, which is linked by rod-like densities with the RNP.  相似文献   

13.
Gag protein oligomerization, an essential step during virus assembly, results in budding of spherical virus particles. This process is critically dependent on the spacer p2, located between the capsid and the nucleocapsid proteins. P2 contributes also, in association with NCp7, to specific recognition of the HIV-1 packaging signal resulting in viral genome encapsidation. There is no structural information about the 20 last amino acids of the C-terminal part of capsid (CA[CTD]) and p2, in the molecular mechanism of Gag assembly. In this study the structure of a peptide encompassing the 14 residues of p2 with the upstream 21 residues and the downstream 13 residues was determined by (1)H NMR in 30% trifluoroethanol (TFE). The main structural motif is a well-defined amphipathic alpha-helix including p2, the seven last residues of the CA(CTD), and the two first residues of NCp7. Peptides containing the p2 domain have a strong tendency to aggregate in solution, as shown by gel filtration analyses in pure H(2)O. To take into account the aggregation phenomena, models of dimer and trimer formed through hydrophobic or hydrophilic interfaces were constructed by molecular dynamic simulations. Gel shift experiments demonstrate that the presence of at least p2 and the 13 first residues of NCp7 is required for RNA binding. A computer-generated model of the Gag polyprotein segment (282-434)Gag interacting with the packaging element SL3 is proposed, illustrating the importance of p2 and NCp7 in genomic encapsidation.  相似文献   

14.
Mason-Pfizer monkey virus (M-PMV) preassembles immature capsids in the cytoplasm prior to transporting them to the plasma membrane. Expression of the M-PMV Gag precursor in bacteria results in the assembly of capsids indistinguishable from those assembled in mammalian cells. We have used this system to investigate the structural requirements for the assembly of Gag precursors into procapsids. A series of C- and N-terminal deletion mutants progressively lacking each of the mature Gag domains (matrix protein [MA]-pp24/16-p12-capsid protein [CA]-nucleocapsid protein [NC]-p4) were constructed and expressed in bacteria. The results demonstrate that both the CA and the NC domains are necessary for the assembly of macromolecular arrays (sheets) but that amino acid residues at the N terminus of CA define the assembly of spherical capsids. The role of these N-terminal domains is not based on a specific amino acid sequence, since both MA-CA-NC and p12-CA-NC polyproteins efficiently assemble into capsids. Residues N terminal of CA appear to prevent a conformational change in which the N-terminal proline plays a key role, since the expression of a CA-NC protein lacking this proline results in the assembly of spherical capsids in place of the sheets assembled by the CA-NC protein.  相似文献   

15.
Li H  Dou J  Ding L  Spearman P 《Journal of virology》2007,81(23):12899-12910
The Gag protein of human immunodeficiency virus type 1 directs the virion assembly process. Gag proteins must extensively multimerize during the formation of the spherical immature virion shell. In vitro, virus-like particles can be generated from Gag proteins that lack the N-terminal myristic acid modification or the nucleocapsid (NC) protein. The precise requirements for Gag-Gag multimerization under conditions present in mammalian cells, however, have not been fully elucidated. In this study, a Gag-Gag multimerization assay measuring fluorescence resonance energy transfer was employed to define the Gag domains that are essential for homomultimerization. Three essential components were identified: protein-protein interactions contributed by residues within both the N- and C-terminal domains of capsid (CA), basic residues in NC, and the presence of myristic acid. The requirement of myristic acid for multimerization was reproduced using the heterologous myristoylation sequence from v-src. Only when a leucine zipper dimerization motif was placed in the position of NC was a nonmyristoylated Gag protein able to multimerize. These results support a three-component model for Gag-Gag multimerization that includes membrane interactions mediated by the myristoylated N terminus of Gag, protein-protein interactions between CA domains, and NC-RNA interactions.  相似文献   

16.
Wong HC  Shin R  Krishna NR 《Biochemistry》2008,47(8):2289-2297
As in other retroviruses, the HIV-1 capsid (CA) protein is composed of two domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), joined by a flexible linker. The dimerization of the CTD is thought to be a critical step in the assembly of the immature and mature viral capsids. The precise nature of the functional form of CTD dimerization interface has been a subject of considerable interest. Previously, the CTD dimer was thought to involve a face-to-face dimerization observed in the early crystallographic studies. Recently, the crystallographic structure for a domain-swapped CTD dimer has been determined. This dimer, with an entirely different interface that includes the major homology region (MHR) has been suggested as the functional form during the Gag assembly. The structure determination of the monomeric wt CTD of HIV-1 has not been possible because of the monomer-dimer equilibrium in solution. We report the NMR structure of the [W184A/M185A]-CTD mutant in its monomeric form. These mutations interfere with dimerization without abrogating the assembly activity of Gag and CA. The NMR structure shows some important differences compared to the CTD structure in the face-to-face dimer. Notably, the helix-2 is much shorter, and the kink seen in the crystal structure of the wt CTD in the face-to-face dimer is absent. These NMR studies suggest that dimerization-induced conformational changes may be present in the two crystal structures of the CTD dimers and also suggest a mechanism that can simultaneously accommodate both of the distinctly different dimer models playing functional roles during the Gag assembly of the immature capsids.  相似文献   

17.
Mason-Pfizer monkey virus (M-PMV) belongs to the family of betaretroviruses characterized by the assembly of immature particles within cytoplasm of infected cells in contrast to other retroviruses (e.g. HIV, RSV) that assemble their immature particles at a plasma membrane. Simultaneously with or shortly after budding a virus-encoded protease is activated and the Gag polyprotein is cleaved into three major structural proteins: matrix (MA), capsid (CA), and nucleocapsid (NC) protein. Mature retroviral CA proteins consist of two independently folded structural domains: N-terminal domain (NTD) and C-terminal dimerization domain (CTD), separated by a flexible linker. As a first step toward the solution structure elucidation, we present nearly complete backbone and side-chain 1H, 15N and 13C resonance assignment of the M-PMV NTD CA.  相似文献   

18.
During assembly and morphogenesis of Rous sarcoma virus (RSV), proteolytic processing of the structural precursor (Pr76Gag) protein generates three capsid (CA) protein variants, CA476, CA479, and CA488. The proteins share identical N-terminal domains (NTDs), but are truncated at residues corresponding to gag codons 476, 479, and 488 in their CA C-terminal domains (CTDs). To characterize oligomeric forms of the RSV CA variants, we examined 2D crystals of the capsid proteins, assembled on lipid monolayers. Using electron microscopy and image analysis approaches, the CA proteins were observed to organize in hexagonal (p6) arrangements, where rings of membrane-proximal NTD hexamers were spaced at 95 A intervals. Differences between the oligomeric structures of the CA variants were most evident in membrane-distal regions, where apparent CTDs interconnect hexamer rings. In this region, CA488 connections were observed readily, while CA476 and CA479 contacts were resolved poorly, suggesting that in vivo processing of CA488 to the shorter forms may permit virions to adopt a dissembly-competent conformation. In addition to crystalline arrays, the CA479 and CA488 proteins formed small spherical particles with diameters of 165-175 A. The spheres appear to be arranged from hexamer or hexamer plus pentamer ring subunits that are related to the 2D crystal forms. Our results implicate RSV CA hexamer rings as basic elements in the assembly of RSV virus cores.  相似文献   

19.
After budding, the human immunodeficiency virus (HIV) must 'mature' into an infectious viral particle. Viral maturation requires proteolytic processing of the Gag polyprotein at the matrix-capsid junction, which liberates the capsid (CA) domain to condense from the spherical protein coat of the immature virus into the conical core of the mature virus. We propose that upon proteolysis, the amino-terminal end of the capsid refolds into a beta-hairpin/helix structure that is stabilized by formation of a salt bridge between the processed amino-terminus (Pro1) and a highly conserved aspartate residue (Asp51). The refolded amino-terminus then creates a new CA-CA interface that is essential for assembling the condensed conical core. Consistent with this model, we found that recombinant capsid proteins with as few as four matrix residues fused to their amino-termini formed spheres in vitro, but that removing these residues refolded the capsid amino-terminus and redirected protein assembly from spheres to cylinders. Moreover, point mutations throughout the putative CA-CA interface blocked capsid assembly in vitro, core assembly in vivo and viral infectivity. Disruption of the conserved amino-terminal capsid salt bridge also abolished the infectivity of Moloney murine leukemia viral particles, suggesting that lenti- and oncoviruses mature via analogous pathways.  相似文献   

20.
The stoichiometry of Gag protein in HIV-1   总被引:1,自引:0,他引:1  
The major structural components of HIV-1 are encoded as a single polyprotein, Gag, which is sufficient for virus particle assembly. Initially, Gag forms an approximately spherical shell underlying the membrane of the immature particle. After proteolytic maturation of Gag, the capsid (CA) domain of Gag reforms into a conical shell enclosing the RNA genome. This mature shell contains 1,000-1,500 CA proteins assembled into a hexameric lattice with a spacing of 10 nm. By contrast, little is known about the structure of the immature virus. We used cryo-EM and scanning transmission EM to determine that an average (145 nm diameter) complete immature HIV particle contains approximately 5,000 structural (Gag) proteins, more than twice the number from previous estimates. In the immature virus, Gag forms a hexameric lattice with a spacing of 8.0 nm. Thus, less than half of the CA proteins form the mature core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号