首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
大豆胞囊线虫抗性基因定位与克隆研究进展   总被引:1,自引:1,他引:0  
大豆胞囊线虫(soybean cyst nematode,SCN)是大豆生产上一种危害严重的世界性害虫,能给大豆生产造成极大损失。大豆抗性品种选育是防治其措施中最经济、有效的方法。大豆SCN抗性的分子遗传学研究是开展大豆SCN抗性分子育种的理论基础,本文针对SCN抗性基因定位和克隆两个方面的研究现状进行了综述,并对当前研究中存在的问题及发展前景进行了讨论与展望。  相似文献   

2.
本研究以57份中美大豆抗胞囊线虫病种质资源为实验材料,利用基于检测微珠的单碱基延伸方法,对与大豆胞囊线虫病(SCN)抗性基因rhg1和Rhg4紧密连锁的SNPs进行分析,目的是阐明我国大豆抗性种质在这两个位点的SNPs等位变异分布频率,为中国大豆种质抗SCN资源的利用奠定基础。分析结果表明,SNPs的抗性等位基因与中国大豆种质综合抗性的关系比不同生理小种的抗性关系更为密切。在rhg1和Rhg4位点,美国的9份抗性种质中,有7份抗性种质的SNPs均为纯合抗病基因型,而中国48份抗性种质中有32份。分别占鏊定总数的77.8%和66.7%,推测大豆抗SCN种质中,以rhg1和Rhg4这两个基因协同作用表现出的抗性可能占多数.但还存在其他的抗性机制。  相似文献   

3.
大豆胞囊线虫(SCN,soybean cyst nematode)病是一种世界性大豆病害,培育抗SCN大豆品种是防治SCN的重要措施。本研究利用来自抗SCN主效位点rhg1和Rhg4的2个KASP标记,对487份大豆材料进行筛选,选择含有抗性位点且农艺性状优异的材料;通过室内接种大豆胞囊线虫2号、4号、5号生理小种和新小种X12,进行抗性鉴定验证其抗性水平,为培育抗病品种提供抗源材料。标记筛选结果表明,20份材料含有rhg1和Rhg4这2个主效抗性位点,其中,2份材料仅含有Rhg4位点。表型抗性鉴定结果表明,在接种的22份材料中,有1份材料对3个小种表现中抗,5份材料对2个小种表现抗或中抗。其中,1份材料对2号小种表现抗病、4份表现中抗;2份材料对4号小种表现中抗;4份材料对5号小种表现抗病、14份表现中抗;22份材料对新小种X12均表现出感病或中感。因此,本研究从487份材料中筛选出20份含有2个SCN抗性位点并具优异农艺性状的材料,可通过rhg1和Rhg4位点的累加培育抗病品种。  相似文献   

4.
大豆孢囊线虫(Heterodera glycines Ichinohe,soybean cyst nematode,SCN)病害是大豆(Glycine max(L.)Merr.)生产上危害最严重的病害,每年造成巨大的经济损失.种植抗性大豆品种是防治SCN最经济、有效且对环境友好的措施.大豆对SCN的抗性受多基因位点控制.近年来,大豆的SCN抗性基因研究取得了突破性进展,几乎同时鉴定出了大豆的2个主要SCN抗性位点基因rhg1和Rhg4,并揭示了2种完全不同的植物抗病机制.rhg1采取的是一种由一段约31 kb长的基因组序列上的3个基因共同控制的多拷贝抗病机制,而Rhg4采取的是一种由丝氨酸羟甲基转移酶控制、可能由一碳代谢参与的抗病新机制.本文就近年来(2003年7月以来)在大豆的抗SCN位点的鉴定及新抗性种质资源挖掘、rhg1和Rhg4基因克隆与功能鉴定以及特异性分子标记开发与对SCN抗性的大豆资源品种的高通量筛选等研究方面取得的一些最新进展进行综述.  相似文献   

5.
大豆抗SCN3种质资源的创新   总被引:1,自引:0,他引:1  
大豆孢囊线虫(SCN)是危害大豆的主要病害之一,它发生范围广、危害比较严重,培育抗病品种是目前最经济有效的控制措施.培育抗病品种首先需要筛选和鉴定抗源,得到优良抗源材料至关重要.为此,针对目前我国大豆抗SCN3种质资源存在的弱点问题进行创新研究.采用高抗大豆孢囊线虫病3号生理小种的抗源与当地优良品种进行杂交,对后代(F6)进行盆栽抗性筛选和田间丰产性能鉴定,从中鉴定出抗性强、综合农艺性状优良的创新种质资源,为今后抗线虫育种工作奠定基础,对加快育种进程、缩短育种年限具有重要作用.  相似文献   

6.
抗草甘膦转基因大豆能显著提高大豆生产效率,具有重大的应用前景.本实验室前期研究建立了农杆菌介导、草胺膦为筛选剂的大豆转基因体系,转化效率在4%以上.在此基础上,利用G6-EPSPS和G10-EPSPS 2个具有自主知识产权的草甘膦抗性基因,通过优化转化体系,成功建立了以草甘膦为筛选剂的大豆遗传转化体系,转化效率达1%以上.浓度梯度实验发现,当草甘膦的筛选浓度为100 mg/L时,虽然丛生芽的再生率下降了50%~60%,但最终转化效率不受影响.进一步通过基因表达分析、Western blot、Southern blot和除草剂抗性鉴定等方法对转基因大豆进行了分子检测和验证,最后获得了分子特征明确、对草甘膦抗性稳定的抗草甘膦转基因大豆后代.结果对国内抗草甘膦转基因大豆转基因方法研究及抗除草剂新品种选育具有意义.  相似文献   

7.
抗大豆疫霉根腐病野生大豆资源的初步筛选   总被引:9,自引:0,他引:9  
由大豆疫霉菌引起的大豆疫霉根腐病是严重影响大豆生产的毁灭性病害之一.防治该病唯一经济、有效和环境安全的方法是利用抗病品种.本研究对野生大豆资源进行抗大豆疫霉根腐病初步筛选,以期探讨野生大豆的抗性水平、分布和获得抗性野生大豆资源.通过苗期接种大豆疫霉菌对412份野生大豆资源进行抗病性鉴定,有13.4%的资源抗大豆疫霉根腐病,15.3%的资源表现为中间反应类型.对野生大豆资源的来源分析表明,抗大豆疫霉根腐病野生大豆资源在我国分布广泛,其中安徽省野生大豆资源抗性最丰富.  相似文献   

8.
本研究系统分析了大豆(品种:‘鲁豆4’)接种AM真菌Glomus fasciculatum和胞囊线虫(SCN,Heterodera glycines)4号生理小种后各处理菌根和线虫侵染率、几丁质酶和苯丙氨酸解氨酶(PAL)活性及几丁质酶基因Chib1和苯丙氨酸解氨酶基因PAL5转录物的动态变化。结果表明,接种SCN对AM真菌的侵染率没有产生显著影响,但先接种AM真菌后接种SCN的大豆根内线虫侵染率明显低于只接种SCN的处理。另外,先接种AM真菌后接种SCN的大豆根内几丁质酶和PAL活性显著提高,活性高峰出现在接种线虫后的第3天。值得注意的是,先接种AM真菌后接种SCN的大豆根内两种基因Chib1和PAL5转录物高峰也出现在接种SCN后的第3天,即AM真菌侵染率快速上升而SCN侵染率快速下降时期。所以Chib1和PAL5基因的表达可能是AM真菌诱导的抗大豆胞囊线虫病害防御反应的一种表现。因此推测Chib1和PAL5直接参与了AM真菌诱导大豆抗胞囊线虫病害的防御反应。  相似文献   

9.
大豆疫霉根腐病抗源筛选   总被引:18,自引:2,他引:18  
由大豆疫霉菌引起的大豆疫霉根腐病是大豆生产的重要病害,该病已在我国大豆主要产区发生,并在局部地区造成较大产量损失。利用抗病品种是防治大豆疫霉根腐病最有效的方法。本研究目的是筛选大豆疫霉根腐病抗源,为病害防治和抗病品种的选育提供参考。用下胚轴创伤接种方法对120个栽培大豆品种(系)进行接种,鉴定其对10个具有不同毒力大豆疫霉菌菌株的抗性。有110个品种(系)分别抗1~10个大豆疫霉菌菌株,其中以河南大豆品种(系)对疫霉菌的抗性最丰富,安徽、湖北和山西大豆品种(系)也具有抗性多样性。120个大豆品种(系)对10个大豆疫霉菌菌株共产生57个反应型,有4个抗性反应型分别与单个抗病基因的反应型一致,有7个抗性反应型与2个已知基因组合的反应型相同,其他抗性反应型为新的类型。一些大豆品种(系)中可能存在有效的抗大豆疫霉根腐病新基因。  相似文献   

10.
本研究系统分析了大豆(品种:‘鲁豆4’)接种AM真菌Glomusfasciculatum和胞囊线虫(SCN,Heteroderaglycines)4号生理小种后各处理菌根和线虫侵染率、几丁质酶和苯丙氨酸解氨酶(PAL)活性及几丁质酶基因Chib1和苯丙氨酸解氨酶基因PAL5转录物的动态变化。结果表明,接种SCN对AM真菌的侵染率没有产生显著影响,但先接种AM真菌后接种SCN的大豆根内线虫侵染率明显低于只接种SCN的处理。另外,先接种AM真菌后接种SCN的大豆根内几丁质酶和PAL活性显著提高,活性高峰出现在接种线虫后的第3天。值得注意的是,先接种AM真菌后接种SCN的大豆根内两种基因Chib1和PAL5转录物高峰也出现在接种SCN后的第3天,即AM真菌侵染率快速上升而SCN侵染率快速下降时期。所以Chib1和PAL5基因的表达可能是AM真菌诱导的抗大豆胞囊线虫病害防御反应的一种表现。因此推测Chib1和PAL5直接参与了AM真菌诱导大豆抗胞囊线虫病害的防御反应。  相似文献   

11.
Soybean cyst nematode (SCN) resistance in soybean is a complex oligogenic trait. One of the most important nematode resistance genes, rhg1, has been mapped to a distal region of molecular linkage group G in soybean. A simplified genetic system to identify soybean genes with modified expression in response to SCN led to the identification of several genes within the nematode feeding sites. The genes were mapped to reveal their linkage relationship to known QTLs associated with soybean cyst nematode (SCN) resistance. One candidate, a phosphoribosyl formyl glycinamidine (FGAM) synthase (EC 6.3.5.3) gene, mapped to the same genomic interval as the major SCN resistance gene rhg1 within linkage group G. Isolation of FGAM synthase from a soybean bacterial artificial chromosome (BAC) library revealed two highly homologous paralogs. The genes appeared to be well conserved between bacteria and humans. Promoter analysis of the two soybean homologs was carried out with the Arabidopsis thaliana - Heterodera schachtii system to investigate gene response to nematode feeding. The two promoters and their derived deletion constructions effected green fluorescent protein (GFP) expression within nematode feeding sites. The 1.0-kb promoter sequence immediately adjacent to the translation start site was sufficient to direct expression of GFP within syncytia. A wound-inducible element and a floral organ expression sequence were also identified within these promoters. Although a nematode-responsive element could not be identified, the observed expression of GFP within feeding sites supports the hypothesis that plant gene expression is redirected within feeding sites to benefit the parasite.  相似文献   

12.
Plant endo‐β‐1,4‐glucanases (EGases) include cell wall‐modifying enzymes that are involved in nematode‐induced growth of syncytia (feeding structures) in nematode‐infected roots. EGases in the α‐ and β‐subfamilies contain signal peptides and are secreted, whereas those in the γ‐subfamily have a membrane‐anchoring domain and are not secreted. The Arabidopsis α‐EGase At1g48930, designated as AtCel6, is known to be down‐regulated by beet cyst nematode (Heterodera schachtii) in Arabidopsis roots, whereas another α‐EGase, AtCel2, is up‐regulated. Here, we report that the ectopic expression of AtCel6 in soybean roots reduces susceptibility to both soybean cyst nematode (SCN; Heterodera glycines) and root knot nematode (Meloidogyne incognita). Suppression of GmCel7, the soybean homologue of AtCel2, in soybean roots also reduces the susceptibility to SCN. In contrast, in studies on two γ‐EGases, both ectopic expression of AtKOR2 in soybean roots and suppression of the soybean homologue of AtKOR3 had no significant effect on SCN parasitism. Our results suggest that secreted α‐EGases are likely to be more useful than membrane‐bound γ‐EGases in the development of an SCN‐resistant soybean through gene manipulation. Furthermore, this study provides evidence that Arabidopsis shares molecular events of cyst nematode parasitism with soybean, and confirms the suitability of the Arabidopsis–H. schachtii interaction as a model for the soybean–H. glycines pathosystem.  相似文献   

13.
The soybean cyst nematode Heterodera glycines (SCN) is of major economic importance and widely distributed throughout soybean production regions of the United States where different maturity groups with the same sources of SCN resistance are grown. The objective of this study was to assess SCN-resistant and -susceptible soybean yield responses in infested soils across the north-central region. In 1994 and 1995, eight SCN-resistant and eight SCN-susceptible public soybean cultivars representing maturity groups (MG) I to IV were planted in 63 fields, either infested or noninfested, in 10 states in the north-central United States. Soil samples were taken to determine initial SCN population density and race, and soil classification. Data were grouped for analysis by adaptation based on MG zones. Soybean yields were 658 to 3,840 kg/ha across the sites. Soybean cyst nematode-resistant cultivars yielded better at SCN-infested sites but lost this superiority to susceptible soybean cultivars at noninfested sites. Interactions were observed among initial SCN population density, cultivar, and location. This study showed that no region-wide predictive equations could be developed for yield loss based on initial nematode populations in the soil and that yield loss due to SCN in our region was greatly confounded by other stress factors, which included temperature and moisture extremes.  相似文献   

14.
Soybean, Glycine max (L.) Merrill (Fabaceae), is an introduced crop to America and initially benefited from a small number of pests threatening its production. Since its rapid expansion in production beginning in the 1930s, several pests have been introduced from the native range of soybean. Our knowledge of how these pests interact and the implications for management is limited. We examined how three common economic soybean pests, the nematode Heterodera glycines Ichinohe (Nematoda: Heteroderidae), the fungus Cadophora gregata Harrington & McNew (Incertae sedis), and the aphid Aphis glycines Matsumura (Hemiptera: Aphididae), interact on soybean cyst nematode‐susceptible (SCN‐S) and soybean cyst nematode‐resistant cultivars carrying the PI 88788 resistance source (SCN‐R). From 2008 to 2010, six soybean cultivars were infested with either a single pest or all three pests in combination in a micro‐plot field experiment. Pest performance was measured in a ‘single pest’ treatment and compared with pest performance in the ‘multiple pest’ treatment, allowing us to measure the impact of SCN resistance and the presence of other soybean pests on each pest’s performance. Performance of H. glycines (80% reduction in reproduction) and A. glycines (19.8% reduction in plant exposure) was reduced on SCN‐R cultivars. Regardless of cultivar, the presence of multiple pests significantly decreased the performance of A. glycines, but significantly increased H. glycines performance. The presence of multiple pests decreased the performance of C. gregata on SCN‐S soybean cultivars (20.6% reduction in disease rating).  相似文献   

15.
The soybean cyst nematode (SCN) Heterodera glycines is the most devastating pest of soybean in the U.S.A. The resistance response elicited by SCN in soybean is complex, and genes involved in the response to a large extent are unknown and not well characterized. We constructed cDNA libraries made from mRNA extracted from roots of the resistant soybean Glycine max L. Merr. 'Peking' at 12 h, 2 to 4 days, and 6 to 8 days post inoculation with the soybean cyst nematode, population NL1-RHp, similar to race 3. Expressed sequence tag analysis of the libraries provides rapid discovery of genes involved in the response of soybean to the nematode. A total of 3454 cDNA clones were examined from the three libraries, of which 25 cDNAs were derived from nematode RNA. The levels of certain stress-induced genes such as SAM22 and glutathione S-transferase (GST8) were elevated in the SCN-infected roots relative to uninoculated roots. Early defense response genes, particularly ascorbate peroxidase and lipoxygenase, were abundant in the 12-h library. By 6-8 days, the expression of most of those genes was not as abundant, whereas genes coding for unknown proteins and stress-induced proteins continued to be highly expressed. These ESTs and associated information will be useful to scientists examining gene and protein interactions between nematodes and plants.  相似文献   

16.
Soybean cyst nematode (SCN, Heterodera glycines) is the most devastating pest affecting soybean production worldwide. SCN resistance requires both the GmSHMT08 and the GmSNAP18 in ‘Peking’‐type resistance. Here, we describe the molecular interaction between GmSHMT08 and GmSNAP18, which is potentiated by a pathogenesis‐related protein GmPR08‐Bet VI. Like GmSNAP18 and GmSHMT08, GmPR08‐Bet VI expression was induced in response to SCN and its overexpression decreased SCN cysts by 65% in infected transgenic soybean roots. Overexpression of GmPR08‐Bet VI did not have an effect on SCN resistance when the two cytokinin‐binding sites in GmPR08‐Bet VI were mutated, indicating a new role of GmPR08‐Bet VI in SCN resistance. GmPR08‐Bet VI was mapped to a QTL for resistance to SCN using different mapping populations. GmSHMT08, GmSNAP18 and GmPR08‐Bet VI localize to the cytosol and plasma membrane. GmSNAP18 expression and localization hyper‐accumulated at the plasma membrane and was specific to the root cells surrounding the nematode in SCN‐resistant soybeans. Genes encoding key components of the salicylic acid signalling pathway were induced under SCN infection. GmSNAP18 and GmPR08‐Bet VI were also induced under salicylic acid and cytokinin exogenous treatments, while GmSHMT08 was induced only when the resistant GmSNAP18 was present, pointing to the presence of a molecular crosstalk between SCN‐resistant genes and defence genes. Expression analysis of GmSHMT08 and GmSNAP18 identified the need of a minimum expression requirement to trigger the SCN resistance reaction. These results provide insight into a new response mechanism towards plant nematode resistance involving haplotype compatibility, gene dosage and hormone signalling.  相似文献   

17.

Background  

Soybean cyst nematode (Heterodera glycines, SCN) is the most economically damaging pathogen of soybean (Glycine max) in the U.S. The Rhg1 locus is repeatedly observed as the quantitative trait locus with the greatest impact on SCN resistance. The Glyma18g02680.1 gene at the Rhg1 locus that encodes an apparent leucine-rich repeat transmembrane receptor-kinase (LRR-kinase) has been proposed to be the SCN resistance gene, but its function has not been confirmed. Generation of fertile transgenic soybean lines is difficult but methods have been published that test SCN resistance in transgenic roots generated with Agrobacterium rhizogenes.  相似文献   

18.
Infection of the soybean root by the soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) induces a well-documented, yet poorly understood, response by the host plant. The plant response, involving the differentiation of a feeding structure, or "syncytium," facilitates the feeding and reproduction of the nematode to the detriment of the host. We used a genetic system involving a single dominant soybean gene conferring susceptibility to an inbred nematode strain, VL1, to characterize the nematode-host interaction in susceptible line PI 89008. The restriction fragment length polymorphism marker pB053, shown to map to a major SCN resistance locus, cosegregates with resistance among F2 progeny from the PI 89008 x PI 88287 cross. Cytological examination of the infection process confirmed that syncytium development in this genetic system is similar to that reported by others who used noninbred nematode lines. Our study of infected root tissue in the susceptible line PI 89008 revealed a number of genes enhanced in expression. Among these are catalase, cyclin, elongation factor 1alpha, beta-1,3-endoglucanase, hydroxy-methylglutaryl coenzyme A reductase, heat shock protein 70, late embryonic abundant protein 14, and formylglycinamidine ribonucleotide synthase, all of which we have genetically positioned on the public linkage map of soybean. Formylglycinamidine ribonucleotide synthase was found to be tightly linked with a major quantitative trait locus for SCN resistance. Our observations are consistent with the hypothesis proposed by others that feeding site development involves the dramatic modulation of gene expression relative to surrounding root cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号