首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The polar, COOH-terminal c-region of signal peptides has been considered to be most important for influencing the efficiency and fidelity of signal peptidase cleavage while the hydrophobic core or h-region appears indispensable for initiating translocation. To identify structural features of residues flanking the c-region that influence the fidelity and efficiency of signal peptidase cleavage as well as co-translational translocation, we introduced six amino acid substitutions into the COOH terminus of the hydrophobic core and seven substitutions at the NH2 terminus of the mature region (the +1 position) of a model eukaryotic preprotein-human pre(delta pro)apoA-II. This preprotein contains several potential sites for signal peptidase cleavage. The functional consequences of these mutations were assayed using an in vitro co-translational translocation/processing system and by post-translational cleavage with purified, detergent-solubilized, hen oviduct signal peptidase. The efficiency of translocation could be correlated with the hydrophobic character of the residue introduced at the COOH terminus of the h-region. Some h/c boundary mutants underwent co-translational translocation across the microsomal membrane with only minimal cleavage yet they were cleaved post-translationally by hen oviduct signal peptidase more efficiently than other mutants which exhibited a high degree of coupling of co-translational translocation and cleavage. These data suggest that features at the COOH terminus of the h-domain can influence "presentation" of the cleavage site to signal peptidase. The +1 residue substitutions had minor effects on the extent of co-translational translocation and processing. However, these +1, as well as h/c boundary mutations, had dramatic effects on the site of cleavage chosen by signal peptidase, indicating that residues flanking the c-region of this prototypic eukaryotic signal peptide can affect the fidelity of its proteolytic processing. The site(s) selected by canine microsomal and purified hen oviduct signal peptidase were very similar, suggesting that "intrinsic" structural features of this prepeptide can influence the selectivity of eukaryotic signal peptidase cleavage, independent of the microsomal membrane and associated translocation apparatus.  相似文献   

2.
Signal peptidases (SPases) remove signal peptides from secretory proteins. The sipS (signal peptidase of subtilis) gene, which encodes an SPase of Bacillus subtilis, was cloned in Escherichia coli and was also found to be active in E.coli. Its overproduction in B.subtilis resulted in increased rates of processing of a hybrid beta-lactamase precursor. The SipS protein consisted of 184 amino acids (mol. wt 21 kDa). The protein showed sequence similarity with the leader peptidases of E.coli and Salmonella typhimurium, and the mitochondrial inner membrane protease I of Saccharomyces cerevisiae. Patterns of conserved amino acids present in these four proteins were also detected in the Sec11 subunit of the SPase complex of S.cerevisiae and the 18 and 21 kDa subunits of the canine SPase complex. Knowledge of the sequence of SipS was essential for the detection of these similarities between prokaryotic and eukaryotic SPases. The data suggest that these proteins, which have analogous functions, belong to one class of enzymes, the type I SPases.  相似文献   

3.
Type I signal peptidase (SPase I) catalyzes the hydrolytic cleavage of the N-terminal signal peptide from translocated preproteins. SPase I belongs to a novel class of Ser proteases that utilize a Ser/Lys dyad catalytic mechanism instead of the classical Ser/His/Asp triad found in most Ser proteases. Recent X-ray crystallographic studies indicate that the backbone amide nitrogen of the catalytic Ser 90 and the hydroxyl side chain of Ser 88 might participate as H-bond donors in the transition-state oxyanion hole. In this work, contribution of the side-chain Ser 88 in Escherichia coli SPase I to the stabilization of the transition state was investigated through in vivo and in vitro characterizations of Ala-, Cys-, and Thr-substituted mutants. The S88T mutant maintains near-wild-type activity with the substrate pro-OmpA nuclease A. In contrast, substitution with Cys at position 88 results in more than a 740-fold reduction in activity (k(cat)) whereas S88A retains much less activity (>2440-fold decrease). Measurements of the kinetic constants of the individual mutant enzymes indicate that these decreases in activity are attributed mainly to decreases in k(cat) while effects on K(m) are minimal. Thermal inactivation and CD spectroscopic analyses indicate no global conformational perturbations of the Ser 88 mutants relative to the wild-type E. coli SPase I enzyme. These results provide strong evidence for the stabilization by Ser 88 of the oxyanion intermediate during catalysis by E. coli SPase I.  相似文献   

4.
Signal peptidase I (SPase I) is critical for the release of translocated preproteins from the membrane as they are transported from a cytoplasmic site of synthesis to extracytoplasmic locations. These proteins are synthesized with an amino-terminal extension, the signal sequence, which directs the preprotein to the Sec- or Tat-translocation pathway. Recent evidence indicates that the SPase I cleaves preproteins as they emerge from either pathway, though the steps involved are unclear. Now that the structure of many translocation pathway components has been elucidated, it is critical to determine how these components work in concert to support protein translocation and cleavage. Molecular modeling and NMR studies have provided insight on how the preprotein docks on SPase I in preparation for cleavage. This is a key area for future work since SPase I enzymes in a variety of species have now been identified and the inhibition of these enzymes by antibiotics is being pursued. The eubacterial SPase I is essential for cell viability and belongs to a unique group of serine endoproteases which utilize a Ser-Lys catalytic dyad instead of the prototypical Ser-His-Asp triad used by eukaryotes. As such, SPase I is a desirable antimicrobial target. Advances in our understanding of how the preprotein interfaces with SPase I during the final stages of translocation will facilitate future development of inhibitors that display a high efficacy against SPase I function.  相似文献   

5.
Signal peptidase functions to cleave signal peptides from preproteins at the cell membrane. It has a substrate specificity for small uncharged residues at -1 (P1) and aliphatic residues at the -3 (P3) position. Previously, we have reported that certain alterations of the Ile-144 and Ile-86 residues in Escherichia coli signal peptidase I (SPase) can change the specificity such that signal peptidase is able to cleave pro-OmpA nuclease A in vitro after phenylalanine or asparagine residues at the -1 position (Karla, A., Lively, M. O., Paetzel, M. and Dalbey, R. (2005) J. Biol. Chem. 280, 6731-6741). In this study, screening of a fluorescence resonance energy transfer-based peptide library revealed that the I144A, I144C, and I144C/I86T SPase mutants have a more relaxed substrate specificity at the -3 position, in comparison to the wild-type SPase. The double mutant tolerated arginine, glutamine, and tyrosine residues at the -3 position of the substrate. The altered specificity of the I144C/I86T mutant was confirmed by in vivo processing of pre-beta-lactamase containing non-canonical arginine and glutamine residues at the -3 position. This work establishes Ile-144 and Ile-86 as key P3 substrate specificity determinants for signal peptidase I and demonstrates the power of the fluorescence resonance energy transfer-based peptide library approach in defining the substrate specificity of proteases.  相似文献   

6.
The processing of secretory preproteins by signal peptidases (SPases) is essential for cell viability. As previously shown for Bacillus subtilis, only certain SPases of organisms containing multiple paralogous SPases are essential. This allows a distinction between SPases that are of major and minor importance for cell viability. Notably, the functional difference between major and minor SPases is not reflected clearly in sequence alignments. Here, we have successfully used molecular phylogeny to predict major and minor SPases. The results were verified with SPases from various bacilli. As predicted, the latter enzymes behaved as major or minor SPases when expressed in B. subtilis. Strikingly, molecular modeling indicated that the active site geometry is not a critical parameter for the classification of major and minor Bacillus SPases. Even though the substrate binding site of the minor SPase SipV is smaller than that of other known SPases, SipV could be converted into a major SPase without changing this site. Instead, replacement of amino-terminal residues of SipV with corresponding residues of the major SPase SipS was sufficient for conversion of SipV into a major SPase. This suggests that differences between major and minor SPases are based on activities other than substrate cleavage site selection.  相似文献   

7.
Minimum substrate sequence for signal peptidase I of Escherichia coli   总被引:4,自引:0,他引:4  
The minimum substrate sequence recognized by signal peptidase I (SPase I or leader peptidase) was defined by measuring the kinetic parameters for a set of chemically synthesized peptides corresponding to the cleavage site of the precursor maltose binding protein (pro-MBP). The minimum sequence of a substrate hydrolyzed by SPase I at a measurable rate was the pentapeptide Ala-Leu-Ala decreases Lys-Ile. The rates of hydrolysis of this substrate, however, were several hundred-fold lower than those observed for the maturation of MBP in Escherichia coli, suggesting that in addition to these minimal sites involved in recognition, other features of pro-MBP are also needed for the optimal rate of signal peptide cleavage by SPase I. One parameter may be the length of the polypeptide chain. Studies of the synthetic peptides showed that decreasing the length of the polypeptide chain of substrates decreased the substrate efficiency measured as kcat/Km. However, in one case a decrease in the length of a peptide corresponding to -7 to +3 positions of pro-MBP to a nonapeptide (-7 to +2) increased the substrate efficiency by about 900-fold. The nonapeptide is the most efficient substrate for the enzyme in vitro so far reported. It is speculated that better peptide substrates are the ones which are able to adopt folded structures.  相似文献   

8.
9.
A protein destined for export from the cell cytoplasm is synthesized as a preprotein with an amino-terminal signal peptide. In Escherichia coli, typically signal peptides that guide preproteins into the SecYEG protein conduction channel are subsequently removed by signal peptidase I. To understand the mechanism of this critical step, we have assessed the conformation of the signal peptide when bound to signal peptidase by solution nuclear magnetic resonance. We employed a soluble form of signal peptidase, which laks the two transmembrane domains (SPase I Δ2-75), and the E. coli alkaline phosphatase signal peptide. Using a transferred NOE approach, we found clear evidence of a weak peptide-enzyme complex formation. The peptide adopts a U-turn shape originating from the proline residues within the primary sequence that is stabilized by its interaction with the peptidase and leaves key residues of the cleavage region exposed for proteolysis. In dodecylphosphocholine (DPC) micelles the signal peptide also adopts a U-turn shape comparable with that observed in association with the enzyme. In both environments this conformation is stabilized by the signal peptide phenylalanine side chain-interaction with enzyme or lipid mimetic. Moreover, in the presence of DPC, the N-terminal core region residues of the peptide adopt a helical motif and based on PRE (paramagnetic relaxation enhancement) experiments are shown to be buried within the membrane. Taken together, this is consistent with proteolysis of the preprotein occurring while the signal peptide remains in the bilayer and the enzyme active site functioning at the membrane surface.  相似文献   

10.
To understand the structural nature of signal sequence recognition by the preprotein translocase SecA, we have characterized the interactions of a signal peptide corresponding to a LamB signal sequence (modified to enhance aqueous solubility) with SecA by NMR methods. One-dimensional NMR studies showed that the signal peptide binds SecA with a moderately fast exchange rate (Kd approximately 10(-5) m). The line-broadening effects observed from one-dimensional and two-dimensional NMR spectra indicated that the binding mode does not equally immobilize all segments of this peptide. The positively charged arginine residues of the n-region and the hydrophobic residues of the h-region had less mobility than the polar residues of the c-region in the SecA-bound state, suggesting that this peptide has both electrostatic and hydrophobic interactions with the binding pocket of SecA. Transferred nuclear Overhauser experiments revealed that the h-region and part of the c-region of the signal peptide form an alpha-helical conformation upon binding to SecA. One side of the hydrophobic core of the helical h-region appeared to be more strongly bound in the binding pocket, whereas the extreme C terminus of the peptide was not intimately involved. These results argue that the positive charges at the n-region and the hydrophobic helical h-region are the selective features for recognition of signal sequences by SecA and that the signal peptide-binding site on SecA is not fully buried within its structure.  相似文献   

11.
Various strains of Bacillus subtilis ( natto ) contain small cryptic plasmids that replicate via the rolling-circle mechanism. Like plasmids from other Gram-positive bacteria, these plasmids are composed of several distinct structural modules. A new structural module was identified on the B. subtilis plasmids pTA1015 and pTA1040. It is composed of two genes: one specifies an unidentified protein with a putative signal peptide; and the other ( sipP ) specifies a functional type I signal peptidase (SPase). The homologous, but non-identical, sipP genes of the two plasmids are the first identified plasmid-specific SPase-encoding genes. With respect to structure and activity, the corresponding enzymes (denoted SipP) are highly similar to the chromosomally encoded SPase, SipS, of B. subtilis and several newly identified SPases of other bacilli. Our findings suggest that plasmid-encoded SPases have evolved because, under certain conditions, SPase can be a limiting factor for protein secretion in B. subtilis .  相似文献   

12.
Phage-displayed single chain variable fragment (scFv) libraries are powerful tools in antibody engineering. Disulfide-stabilized scFv (sc-dsFv) with an interface disulfide bond is structure-wise more stable than the corresponding scFv. A set of recently discovered signal sequences replacing the wild type (pelB) signal peptidase cleavage site in the c-region has been shown to be effective in rescuing the expression of sc-dsFv libraries on the phage surface. However, the effects of the other regions of the signal sequence on the expression of the sc-dsFv libraries and on the formation of the interface disulfide bond in the phage-displayed sc-dsFv have not been clear. In this work, selected novel signal sequence variants in the h-region were shown to be equally effective in promoting sc-dsFv library expression on the phage surface; the expression level and complexity of the sc-dsFv libraries were comparable to the corresponding scFv libraries produced with the wild-type (pelB) signal sequence. The interface disulfide bond in the phage-displayed sc-dsFv was proven to form to a large extent in the library variant ensemble generated with signal sequence variants in both the h-region and the c-region. The sc-dsFv engineering platform established in this work can be applied to many of the known scFv molecules which are in need of a more stable version for the applications under harsh conditions or for longer shelf-life.  相似文献   

13.
Comparative analyses of a number of secretory proteins processed by eukaryotic and prokaryotic signal peptidases have identified a strongly conserved feature regarding the residues positioned -3 and -1 relative to the cleavage site. These 2 residues of the signal peptide are thought to constitute a recognition site for the processing enzyme and are usually amino acids with small, neutral side chains. It was shown previously that the substitution of aspartic acid for alanine at -3 of the Escherichia coli maltose-binding protein (MBP) signal peptide blocked maturation by signal peptidase I but had no noticeable effect or MBP translocation across the cytoplasmic membrane of its biological activity. This identified an excellent system in which to undertake a detailed investigation of the structural requirements and limitations for the cleavage site. In vitro mutagenesis was used to generate 14 different amino acid substitutions at -3 and 13 different amino acid substitutions at -1 of the MBP signal peptide. The maturation of the mutant precursor species expressed in vivo was examined. Overall, the results obtained agreed fairly well with statistically derived models of signal peptidase I specificity, except that cysteine was found to permit efficient processing when present at either -3 and -1, and threonine at -1 resulted in inefficient processing. Interestingly, it was found that substitutions at -1 which blocked processing at the normal cleavage site redirected processing, with varying efficiencies, to an alternate site in the signal peptide represented by the Ala-X-Ala sequence at positions -5 to -3. The substitution of aspartic acid for alanine at -5 blocked processing at this alternate site but not the normal site. The amino acids occupying the -5 and -3 positions in many other prokaryotic signal peptides also have the potential for constituting alternate processing sites. This appears to represent another example of redundant information contained within the signal peptide.  相似文献   

14.
15.
Upon translocation across the endoplasmic reticulum (ER) membrane, secretory proteins are proteolytically processed to remove their signal peptide by signal peptidase (SPase). This process is critical for subsequent folding, intracellular trafficking, and maturation of secretory proteins. Prokaryotic SPase has been shown to be a promising antibiotic target. In contrast, to date, no eukaryotic SPase inhibitors have been reported. Here we report that introducing a proline immediately following the natural signal peptide cleavage site not only blocks preprotein cleavage but also, in trans, impairs the processing and maturation of co-expressed preproteins in the ER. Specifically, we find that a variant preproinsulin, pPI-F25P, is translocated across the ER membrane, where it binds to the catalytic SPase subunit SEC11A, inhibiting SPase activity in a dose-dependent manner. Similar findings were obtained with an analogous variant of preproparathyroid hormone, demonstrating that inhibition of the SPase does not depend strictly on the sequence or structure of the downstream mature protein. We further show that inhibiting SPase in the ER impairs intracellular processing of viral polypeptides and their subsequent maturation. These observations suggest that eukaryotic SPases (including the human ortholog) are, in principle, suitable therapeutic targets for antiviral drug design.  相似文献   

16.
The bacterial Sec pathway is responsible for the translocation of secretory preproteins. During the later stages of transport, the membrane‐embedded signal peptidase I (SPase I) cleaves the signal peptide from a preprotein. We used tryptophan fluorescence spectroscopy of a soluble, catalytically active E. coli SPase I Δ2‐75 enzyme to study its dynamic conformational changes while in solution and when interacting with lipids and signal peptides. We generated four single Trp SPase I Δ2‐75 mutants, W261, W284, W300, and W310. Based on fluorescence quenching experiments, W300 and W310 were found to be more solvent accessible than W261 and W284 in the absence of ligands. W300 and W310 inserted into lipids, consistent with their location at the enzyme's proposed membrane‐interface region, while the solvent accessibilities of W261, W284, and W300 were modified in the presence of signal peptide, suggesting propagation of structural changes beyond the active site in response to peptide binding. The signal peptide binding affinity for the enzyme was measured via FRET experiments and the Kd determined to be 4.4 μM. The location of the peptide with respect to the enzyme was also established; this positioning is crucial for the peptide to gain access to the enzyme active site as it emerges from the translocon into the membrane bilayer. These studies reveal enzymatic structural changes required for preprotein proteolysis as it interacts with its two key partners, the signal peptide and membrane phospholipids. Proteins 2014; 82:596–606. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Type I signal peptidases (SPases) are membrane-bound endopeptidases responsible for the catalytic cleavage of signal peptides from secretory proteins. Here, we analysed the interaction between a bacterial type I SPase and preprotein substrates using surface plasmon resonance. The use of a home-made biosensor surface based on a mixed self-assembled monolayer of thiols on gold allowed qualitative and kinetic analysis. In vitro binding of purified preproteins to a covalently immobilised bacterial SPase was found to be rather efficient (apparent K(D)=10(-7)-10(-8)M). The signal peptide was shown to be a prerequisite for SPase binding and the nature of the mature part of the preprotein significantly affected SPase binding affinity. The developed biosensor containing immobilised SPase is of great importance for analysis of specificity at substrate binding level and for drug screening. In fact, this is the first report of a membrane protein that was covalently attached to a biosensor surface and that retained binding capacity.  相似文献   

18.
19.
Li Y  Wen Z  Zhou C  Tan F  Li M 《Peptides》2008,29(9):1498-1504
Signal peptide has a pivotal role in the translocation of secretory protein. Some models have been designed to predict its cleavage site. It is reported that the cleavage site has relationship with the neighboring sequence environment, i.e., hydrophobic core h-region, and the specific patterns in c-region. In some studies, this finding does facilitate the prediction of cleavage site. However, in these models, sequence environment information is merely taken account of as model inputs and no detailed investigation into its effect on the prediction of cleavage site has been made. In this work, we analyze the constraint on cleave site placed by the hydrophobic core of signal peptide and then use it to improve the performance of the signal peptide cleavage site prediction. Our model is designed as follows: firstly, a sliding window is used to scan sample and artificial neural network (ANN) is employed to give cleavage site/non-cleavage site scores. Then, based on an estimated hydrophobic h-region a correcting function is proposed to improve the prediction result, in which the sequence environment is taken into account. A trend of cleavage site is indicated by our analysis for each position, which is consistent with experimental findings. Through this correcting step, the improvement of prediction accuracy is over 7%. It therefore demonstrates the neighboring sequence environment is helpful for determination of cleavage site. Program written in Matlab can be downloaded from http://www.scucic.cn/combined model/source code.html.  相似文献   

20.
Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria and serves as a potential target for the development of novel antibacterial agents due to its unique physiological and biochemical properties. In this paper, we describe a novel fluorogenic substrate, KLTFGTVK(Abz)PVQAIAGY(NO2)EWL, in which 2-aminobenzoic acid (Abz) and 3-nitrotyrosine (Y(NO2)) were used as the fluorescent donor and acceptor, respectively. The substrate can be cleaved by both Streptococcus pneumoniae and Escherichia coli SPase I. Upon cleavage of the fluorogenic substrate by SPase I, the fluorescent intensity increases and can be monitored continuously by spectrofluorometer. Kinetic analysis with S. pneumoniae SPase I demonstrated that the K(m) value for the substrate is 118.1 microM, and the k(cat) value is 0.032 s(-1). Mass spectrometric analysis and peptide sequencing of the two cleaved products confirmed that the cleavage occurs specifically at the predicted site. More interestingly, the positively charged lysine in the N-terminus of the substrate was demonstrated to be important for effective cleavage. Phospholipids were found to stimulate the cleavage reaction. This stimulation by phospholipids is dependent upon the N-terminal charge of the substrate, indicating that the interaction of the positively charged substrate with anionic phospholipids is important for maintaining the substrate in certain conformation for cleavage. The substrate and assay described here can be readily automated and utilized for the identification of potential antibacterial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号