首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Each subunit of the nicotinic acetylcholine receptor (AChR) contains two conserved cysteine residues, which are known to form a disulfide bond, in the N-terminal extracellular domain. The role of this retained structural feature in the biogenesis of the AChR was studied by expressing site-directed mutant alpha and beta subunits together with other normal subunits from Torpedo californica AChR in Xenopus oocytes. Mutation of the cysteines at position 128 or 142 in the alpha subunit, or in the beta subunit, did not prevent subunit assembly. All Cys128 and Cys142 mutants of the alpha and beta subunits were able to associate with coexpressed other normal subunits, although associational efficiency of the mutant alpha subunits with the delta subunit was reduced. Functional studies of the mutant AChR complexes showed that the mutations in the alpha subunit abolished detectable 125I-alpha-bungarotoxin (alpha-BuTX) binding in whole oocytes, whereas the mutations in the beta subunit resulted in decreased total binding of 125I-alpha-BuTX and no detectable surface 125I-alpha-BuTX binding. Additionally, all mutant subunits, when co-expressed with the other normal subunits in oocytes, produced small acetylcholine-activated membrane currents, suggesting incorporation of only small numbers of functional mutant AChRs into the plasma membrane. The functional acetylcholine-gated ion channel formed with mutant alpha subunits, but not mutant beta subunits, could not be blocked by alpha-BuTX. Thus, a disulfide bond between Cys128 and Cys142 of the AChR alpha or beta subunits is not needed for acetylcholine-binding. However, this disulfide bond on the alpha subunit is necessary for formation of the alpha-BuTX-binding site. These results also suggest that the most significant effect caused by disrupting the conserved disulfide loop structure is intracellular retention of most of the assembled AChR complexes.  相似文献   

2.
The nicotinic acetylcholine receptor (AChR) of human skeletal muscle has a reducible disulfide bond near the neurotransmitter binding site in each of its alpha-subunits. By testing a panel of overlapping synthetic peptides encompassing the alpha-subunit segment 177-208 (containing cysteines 192 and 193) we found that specific binding of 125I-labelled alpha-bungarotoxin (alpha-BTx) was maximal in the region 185-199. Binding was inhibited by unlabelled alpha-BTx greater than d-tubocurarine greater than atropine greater than carbamylcholine. Peptide 193-208 did not bind alpha-BTx, whereas 177-192 retained 40% binding activity. Peptides corresponding to regions 125-147 (containing cysteines 128 and 142) and 389-409, or peptides unrelated to sequences of the AChR failed to bind alpha-BTx. No peptide bound 125I-alpha-labelled parathyroid hormone. The apparent affinity (KD) of alpha-BTx binding to immobilized peptides 181-199 and 185-199 was approximately 25 microM and 80 microM, respectively, in comparison with alpha-BTx binding to native Torpedo ACh receptor (apparent KD approximately 0.5 nM). In solution phase, both peptides effectively competed with solubilized native human AChR for binding of alpha-BTx, and peptide 185-199 showed little evidence of dissociation after 24 h. Peptides that bound alpha-BTx did so when sulfhydryls were reduced. Cysteine modification, by N-ethylmaleimide or acetamidomethylation, abolished alpha-BTx-binding activity. The data implicate the region of cysteines 192 and 193 in the binding of neurotransmitter to the human receptor.  相似文献   

3.
Three regions of the alpha chain of Torpedo californica acetylcholine receptor (AChR), corresponding to residues alpha 262-276, alpha 388, 408 and alpha 427-437 were synthesized, purified and characterized. The first two peptides have been proposed to occupy inter-transmembrane regions while the third represented the C-terminal segment, proposed by various models to be either extracellular or intracellular. Peptide alpha 388-408 stimulated a good response in the AChR-primed T cells of H-2s haplotype mice, a low response in the H-2q haplotype and no response in the H-2b haplotype. Peptide alpha 427-437 stimulated AChR-primed T cells of the H-2s haplotype, but caused no response in the q and b haplotypes. Peptide alpha 262-276 evoked no in vitro stimulation in any of the s, q or b haplotypes. In antibody binding studies, peptide alpha 388-408 bound antibodies raised against free AChR or against membrane-bound AChR. The other two peptides showed little or no binding activity. Further, peptide alpha 388-408 bound specifically both 125I-labelled bungarotoxin and cobratoxin, while the other two peptides had no binding activity. These results were consistent with only one of the models for subunit organization within the membrane.  相似文献   

4.
Two peptides corresponding to amino acid residues 351-368 of the alpha-subunits of Torpedo and human acetylcholine receptor (AChR) were synthesized. These peptides contain a segment (residues 355-364) which displays the greatest variability in amino acid sequence between the two species. Antibodies elicited against the two peptides cross-reacted with the respective native AChRs and were shown to be species specific by radioimmunoassay, immunoblotting, and immunofluorescence microscopy. Thus, antibodies against the Torpedo peptide cross-reacted with Torpedo AChR but did not bind to mammalian or chicken AChR. Antibodies against the human peptide proved to be specific probes for mammalian muscle AChR. They cross-reacted with mammalian AChR (human, calf, mouse, and rat) but not with Torpedo or chicken AChR. These antibodies were also shown to react preferentially with the extrajunctional form of muscle AChR, as compared to their reactivity with junctional muscle AChR. In immunofluorescence experiments, the anti-human peptide antibody stained AChR aggregates in sectioned or ethanol-permeabilized rat and mouse myotubes grown in culture but did not stain living myotubes. This indicates that the sequence 351-368 of the alpha-subunit of mammalian AChR is on the cytoplasmic face of muscle cell membranes, as predicted theoretically.  相似文献   

5.
Myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are T cell-dependent diseases mediated by antibodies against acetylcholine receptor (AChR) on skeletal muscle. Most of the antibodies are directed toward conformation-dependent epitopes on the AChR, whereas T cells recognize denatured AChR. In search of T cell epitopes in EAMG, we tested 24 synthetic peptides covering 62% of the alpha-subunit sequence of Torpedo californica electric organ AChR in the T cell proliferation assay with lymph node cells from rats immunized with AChR. In Lewis rats, 2 of these peptides, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90, strongly stimulated T cells and, of these, [Tyr 100]alpha 100-116 was much more potent; 4 other peptides were weakly mitogenic and 18 were ineffective. None of the 24 synthetic peptides alone stimulated anti-AChR production and, when added to cultures along with AChR, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90 suppressed antibody production. Of twelve cloned T cell lines specific to AChR, 4 responded to [Tyr 100]alpha 100-116, indicating the importance of the epitope in alpha 101-116 in Lewis rats. In three other strains of rats whose responses to AChR and its subunits were similar to those in the Lewis rat, neither [Tyr 100]alpha 100-116 nor [Gly 89, Tyr 90]alpha 73-90 was stimulatory. Instead, completely different sets of peptides stimulated their T cells. When peptides were used as immunogens, each strain (except Lewis rats) responded only to the peptides that stimulated AChR-immune T cells from the same strain. Genetically restricted T cell recognition of AChR peptides in rats suggests that T cells from MG patients with different major histocompatibility haplotypes may recognize different AChR peptides.  相似文献   

6.
Myasthenia gravis (MG) and its animal model, experimental autoimmune (EA) MG, are caused by T cell-dependent autoantibodies that react with the nicotinic acetylcholine receptor (AChR) on muscle and interfere with neuromuscular transmission. Thus, selective inactivation of CD4(+) AChR-specific T helper cells should lower AChR Ab levels and ameliorate disease. In the Lewis rat model of EAMG, alpha chain residues 100-116 of the AChR represent the dominant T cell epitope, which is important in helping Ab responses to this autoantigen. In the present report, we have applied a new design technique that requires no knowledge of Ag receptor sequences on errant T cells in order to develop a synthetic peptide vaccine against T cells reactive with the aforementioned T cell epitope. Immunization with the peptide 1) induced polyclonal and monoclonal Ab, which inhibited AChR 100-116 stimulation of AChR-sensitized lymphocytes and recognized Vbeta15 containing T cell receptors on AChR 100-116-specific T cell lines and clones; 2) lowered AChR Ab levels; 3) reduced the loss of muscle AChR; and 4) lessened the incidence and severity of EAMG. These findings suggest a new strategy for the functional abrogation of epitope-specific T cells that could have potential application to human autoimmune diseases.  相似文献   

7.
The target of most of the autoantibodies against the acetylcholine receptor (AChR) in myasthenic sera is the main immunogenic region (MIR) on the extracellular side of the AChR alpha-subunit. Binding of anti-MIR monoclonal antibodies (mAbs) has been recently localized between residues alpha 67 and alpha 76 of Torpedo californica electric organ (WNPADYGGIK) and human muscle (WNPDDYGGVK) AChR. In order to evaluate the contribution of each residue to the antigenicity of the MIR, we synthesized peptides corresponding to residues alpha 67-76 from Torpedo and human AChRs, together with 13 peptide analogues. Nine of these analogues had one residue of the Torpedo decapeptide replaced by L-alanine, three had a structure which was intermediate between those of the Torpedo and human alpha 67-76 decapeptides, and one had D-alanine in position 73. Binding studies employing six anti-MIR mAbs and all 15 peptides revealed that some residues (Asn68 and Asp71) are indispensable for binding by all mAbs tested, whereas others are important only for binding by some mAbs. Antibody binding was mainly restricted to residues alpha 68-74, the most critical sequence being alpha 68-71. Fish electric organ and human MIR form two distinct groups of strongly overlapping epitopes. Some peptide analogues enhanced mAb binding compared with Torpedo and human peptides, suggesting that the construction of a very antigenic MIR is feasible.  相似文献   

8.
C57BL/6 (B6) mice respond to immunization with acetylcholine receptor (AChR) from Torpedo californica as measured by T cell proliferation, antibody production, and the development of muscle weakness resembling human myasthenia gravis. The congenic strain B6.C-H-2bm12 (bm12), which differs from B6 by three amino acid substitutions in the beta-chain of the MHC class II molecule I-A, develops a T cell proliferative response but does not produce antibody or develop muscle weakness. By examining the fine specificity of the B6 and bm12 T cell responses to AChR by using T cell clones and synthetic AChR peptides, we found key differences between the two strains in T cell epitope recognition. B6 T cells responded predominantly to the peptide representing alpha-subunit residues 146-162; this response was cross-reactive at the clonal level to peptide 111-126. Based on the sequence homology between these peptides and the T cell response to a set of truncated peptides, the major B6 T cell epitope was determined to be residues 148-152. The cross-reactivity of peptides 146-162 and 111-126 could also be demonstrated in vivo. Immunization of B6 mice with either peptide primed for T cell responses to both peptides. In contrast, immunization of bm12 mice with peptide 111-126 primed for an anti-peptide response, which did not cross-react with 146-162. Peptide-reactive T cells were not elicited after immunization of bm12 mice with 146-162. These results define a major T cell fine specificity in experimental autoimmune myasthenia gravis-susceptible B6 mice to be directed at alpha-subunit residues 148-152. T cells from disease-resistant bm12 mice fail to recognize this epitope but do recognize other portions of AChR. We postulate that alpha-148-152 is a disease-related epitope in murine experimental autoimmune myasthenia gravis. In this informative strain combination, MHC class II-associated determinant selection, rather than Ag responsiveness per se, may play a major role in determining disease susceptibility.  相似文献   

9.
Autoimmune T cell lines specific for muscle nicotinic acetylcholine receptor (AChR) were propagated from the blood of three myasthenia gravis patients by the use of a pool of synthetic peptides (delta-pool) corresponding to the complete sequence of the delta-subunit of human muscle AChR. Propagation of AChR-specific T cell lines was attempted unsuccessfully from four other myasthenia gravis patients and from four healthy controls. The lines had CD3+, CD4+, CD8- phenotype, strongly recognized the delta-pool, and cross-reacted vigorously with non-denatured AChR purified from mammalian muscle. They did not cross-react detectably with pools of similar overlapping synthetic peptides corresponding to the complete sequences of the alpha- and gamma-subunits of human muscle AChR. The sequence segments of the delta-subunit that contain T epitopes were identified by investigating the response of the three CD4+ T cell lines to the individual synthetic peptides forming the delta-pool. Each line had an individual pattern of peptide recognition. Although no immunodominant region, recognized in association with different DR haplotypes, could be identified, the sequence segments most strongly recognized by the CD4+ T cell lines were clustered within residues 121-290. One of the peptides more strongly recognized by the T cells corresponded to a sequence segment with high predicted propensity to form an amphipathic alpha-helix, a structural motif proposed to be typical of T epitopes.  相似文献   

10.
The sequence of the alpha-chain of the acetylcholine receptor of T. californica has been determined by recent cloning studies. The integrity of the disulphide bond between Cys-128 and cys-142 has been shown to be important for the maintenance of the binding activity of the receptor, thus implicating the regions around the disulphide bridge in binding with acetylcholine. In the present work, a synthetic peptide containing this loop region (residues 125-147) was synthesized. Solid-phase radiometric binding assays demonstrated a high binding of 125I-labelled alpha-bungarotoxin to the synthetic peptide. It was further shown that the free peptide bound well to [3H]acetylcholine. Additional experiments demonstrated that pretreatment of peptide 125-147 with 2-mercaptoethanol destroyed its binding activity, clearly showing that the integrity of the disulphide structure was essential for binding. Unlabelled acetylcholine also inhibited the binding of labelled acetylcholine to the synthetic peptide. The region 125-147, therefore, contains essential elements of the acetylcholine binding site of the Torpedo receptor.  相似文献   

11.
The influence of T cell specificity was evaluated with regard to its role in the antibody response against the acetylcholine receptor (AChR) and resulting AChR-dependent muscle dysfunction. The reactivity of immune Th cells was restricted to a small region of the AChR alpha-subunit (amino acid residues 100-116) reported to be highly immunogenic. T cells primed to this peptide were found to demonstrate significant proliferation when challenged in vitro with either the homologous peptide or the intact AChR. Adoptive transfer of the peptide-immune T cells into immunologically naive recipient rats followed by AChR challenge resulted in the production of anti-AChR antibodies very similar to those produced under the regulation of T cells immune to the entire intact AChR with regard to overall clonotypic heterogeneity (measured by IEF) and their ability to interfere with AChR-dependent muscle contraction. Interestingly, when the threonine at position 106 was substituted with a proline, the resulting peptide continued to be equally, if not exceedingly, capable of stimulating T cell-proliferative responses, but was found to be ineffective at stimulating the levels of anti-AChR antibodies necessary for producing neuromuscular dysfunction.  相似文献   

12.
B D Schlyer  A H Maki  E Hawrot 《FEBS letters》1992,297(1-2):87-90
Phosphorescence and optically detected magnetic resonance (ODMR) have been used to characterize two synthetic peptides, alpha 181-198 and alpha 185-196, of the major binding determinant of the alpha-acetylcholine receptor (AChR) of Torpedo californica and its interaction with alpha-bungarotoxin (BgTX) using Trp as an intrinsic probe. BgTX conformational changes are suggested upon complexation with the peptides. Methylmercury-modified peptides show conformational heterogeneity which brings some of the modified Cys residues into proximity of peptide Trp(s). These modified peptides, when bound to BgTX, undergo structural changes which remove the tagged Cys from its close contact with the Trp residue(s) of the peptide.  相似文献   

13.
We have previously shown that the alpha chain of human fibrinogen interacts directly with ADP-activated human platelets [Hawiger, J., Timmons, S., Kloczewiak, M., Strong, D. D., & Doolittle, R. F. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2068]. Now, we report that platelet receptor recognition domains are localized on two CNBr fragments of the human fibrinogen alpha chain. They encompass residues 92-147 and 518-584, which inhibit 125I-fibrinogen binding to ADP-stimulated platelets. The inhibitory CNBr fragment alpha 92-147 contains the RGD sequence at residues 95-97. Synthetic peptides encompassing this sequence were inhibitory while peptide 99-113 lacking the RGD sequence was inactive. The synthetic peptide RGDF, corresponding to residues alpha 95-98, inhibited the binding of 125I-fibrinogen to ADP-treated platelets (IC50 = 2 microM). However, the peptides containing sequence RGDF, with residues preceding Arg95 or following Phe98, were less inhibitory. It appears that the sequence alpha 95-98 constitutes a platelet receptor recognition domain which is constrained by flanking residues. The second inhibitory CNBr fragment, alpha 518-584, also contains the sequence RGD at positions 572-574. Synthetic peptides overlapping this sequence were inhibitory, while peptides lacking the sequence RGDS were not reactive. Thus, another platelet reactive site on the alpha chain encompasses residues 572-575 containing sequence RGDS. In conclusion, the platelet receptor recognition domains on the human fibrinogen alpha chain in the amino-terminal and in the carboxy-terminal zones contain the ubiquitous cell recognition sequence RGD shared with other known adhesive proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
alpha-Bungarotoxin blocks acetylcholine-mediated ion channel opening of peripheral acetylcholine receptors (AChR). A major binding region for alpha-bungarotoxin has been recently identified within parts of the segment 170-204 of the alpha-subunit. We used the Pepscan systematic peptide synthesis system to determine the minimum Torpedo AChR segment required for alpha-bungarotoxin binding and to investigate the role of each residue within this segment. Continuously overlapping decapeptides within alpha 179-203 and several decapeptides covering other alpha-subunit sequences showed that alpha 188-197 and alpha 189-198 exhibited the best 125I-alpha-bungarotoxin binding activity (KD = 7.3 x 10(-8) and 4.3 x 10(-8) M, respectively). Several continuously overlapping nona-, octa-, hepta-, hexa-, and tetrapeptides showed that the heptapeptide alpha 189-195 was the minimum sequence with high binding activity (KD = 5.6 x 10(-8)M). d-Tubocurarine, but not carbamylcholine, blocked toxin binding. Twenty-six analogs of the alpha 188-197, most having 1 residue substituted by Ala or Gly, showed that Tyr189, Tyr190, and especially Asp195 were indispensable for 125I-alpha-bungarotoxin binding. Cys192 and Cys193 could be substituted by other amino acids, proving that the disulfide bond between alpha 192-193 was not required for alpha-bungarotoxin binding. The decreased alpha-bungarotoxin binding capacity of the equivalent human muscle AChR alpha 188-197 peptide was the result of substitution of Tyr by Thr at alpha 189.  相似文献   

15.
Previous studies by several laboratories have identified a narrow sequence region of the nicotinic acetylcholine receptor (AChR) alpha subunit, flanking the cysteinyl residues at positions 192 and 193, as containing major elements of, if not all, the binding site for cholinergic ligands. In the present study, we used a panel of synthetic peptides as representative structural elements of the AChR to investigate whether additional segments of the AChR sequences are able to bind alpha-bungarotoxin (alpha-BTX) and several alpha-BTX-competitive monoclonal antibodies (mAbs). The mAbs used (WF6, WF5, and W2) were raised against native Torpedo AChR, specifically recognize the alpha subunit, and bind to AChR is inhibited by all cholinergic ligands. WF6 competes with agonists, but not with low mol. wt. antagonists, for AChR binding. The synthetic peptides used in this study were approximately 20 residue long, overlapped each other by 4-6 residues, and corresponded to the complete sequence of Torpedo AChR alpha subunit. Also, overlapping peptides, corresponding to the sequence segments of each Torpedo AChR subunit homologous to alpha 166-203, were synthesized. alpha-BTX bound to a peptide containing the sequence alpha 181-200 and also, albeit to a lesser extent, to a peptide containing the sequence alpha 55-74. WF6 bound to alpha 181-200 and to a lesser extent to alpha 55-74 and alpha 134-153. The two other mAbs predominantly bound to alpha 55-74, and to a lesser extent to alpha 181-200. Peptides alpha 181-200 and alpha 55-74 both inhibited binding of 125I-alpha-BTX to native Torpedo AChR. None of the peptides corresponding to sequence segments from other subunits bound alpha-BTX or WF6, or interfered with their binding. Therefore, the cholinergic binding site is not a single narrow sequence region, but rather two or more discontinuous sequence segments within the N-terminal extracellular region of the AChR alpha subunit, folded together in the native structure of the receptor, contribute to form a cholinergic binding region. Such a structural arrangement is similar to the "discontinuous epitopes" observed by X-ray diffraction studies of antibody-antigen complexes [reviewed in Davies et al. (1988)].  相似文献   

16.
Human RNase H1 is active only under reduced conditions. Oxidation as well as N-ethylmaleimide (NEM) treatment of human RNase H1 ablates the cleavage activity. The oxidized and NEM alkylated forms of human RNase H1 exhibited binding affinities for the heteroduplex substrate comparable with the reduced form of the enzyme. Mutants of human RNase H1 in which the cysteines were either deleted or substituted with alanine exhibited cleavage rates comparable with the reduced form of the enzyme, suggesting that the cysteine residues were not required for catalysis. The cysteine residues responsible for the observed redox-dependent activity of human RNase H1 were determined by site-directed mutagenesis to involve Cys(147) and Cys(148). The redox states of the Cys(147) and Cys(148) residues were determined by digesting the reduced, oxidized, and NEM-treated forms of human RNase H1 with trypsin and analyzing the cysteine containing tryptic fragments by micro high performance liquid chromatography-electrospray ionization-Fourier transform ion cyclotron mass spectrometry. The tryptic fragment Asp(131)-Arg(153) containing Cys(147) and Cys(148) was identified. The mass spectra for the Asp(131)-Arg(153) peptides from the oxidized and reduced forms of human RNase H1 in the presence and absence of NEM showed peptide masses consistent with the formation of a disulfide bond between Cys(147) and Cys(148). These data show that the formation of a disulfide bond between adjacent Cys(147) and Cys(148) residues results in an inactive enzyme conformation and provides further insights into the interaction between human RNase H1 and the heteroduplex substrate.  相似文献   

17.
Experimental autoimmune myasthenia gravis (EAMG), a model for human myasthenia (MG), is routinely induced in susceptible rat strains by a single immunization with Torpedo acetylcholine receptor (TAChR). TAChR immunization induces anti-AChR Abs that cross-react with self AChR, activate the complement cascade, and promote degradation of the postsynaptic membrane of the neuromuscular junction. In parallel, TAChR-specific T cells are induced, and their specific immunodominant epitope has been mapped to the sequence 97-116 of the AChR alpha subunit. A proliferative T cell response against the corresponding rat sequence (R97-116) was also found in TAChR-immunized rats. To test whether the rat (self) sequence can be pathogenic, we immunized Lewis rats with R97-116 or T97-116 peptides and evaluated clinical, neurophysiological, and immunological parameters. Clinical signs of the disease were noted only in R97-116-immunized animals and were confirmed by electrophysiological signs of impaired neuromuscular transmission. All animals produced Abs against the immunizing peptide, but anti-rat AChR Abs were observed only in animals immunized with the rat peptide. These findings suggested that EAMG in rats can be induced by a single peptide of the self AChR, that this sequence is recognized by T cells and Abs, and that breakdown of tolerance to a self epitope might be an initiating event in the pathogenesis of rat EAMG and MG.  相似文献   

18.
A recurring epitope in the human acetylcholine receptor (AChR) alpha subunit (alpha146-160) is presented to specific T cells from myasthenia gravis patients by HLA-DRB3*0101-"DR52a"-or by DR4. Here we first map residues critical for DR52a in this epitope by serial Ala substitution. For two somewhat similar T cells, this confirms the recently deduced importance of hydrophobic "anchor" residues at peptide p1 and p9; also of Asp at p4, which complements this allele's distinctive Arg74 in DRbeta. Surprisingly, despite the 9 sequence differences in DRbeta between DR52a and DR3, merely reducing the bulk of the peptide's p1 anchor residue (Trp149-->Phe) allowed maximal cross-presentation to both T cells by DR3 (which has Val86 instead of Gly). The shared K71G73R74N77 motif in the alpha helices of DR52a and DR3 thus outweighs the five differences in the floor of the peptide-binding groove. A second issue is that T cells selected in vitro with synthetic AChR peptides rarely respond to longer Ag preparations, whereas those raised with recombinant subunits consistently recognize epitopes processed naturally even from whole AChR. Here we compared one T cell of each kind, which both respond to many overlapping alpha140-160 region peptides (in proliferation assays). Even though both use Vbeta2 to recognize peptides bound to the same HLA-DR52a in the same register, the peptide-selected line nevertheless proved to depend on a recurring synthetic artifact-a widely underestimated problem. Unlike these contaminant-responsive T cells, those that are truly specific for natural AChR epitopes appear less heterogeneous and therefore more suitable targets for selective immunotherapy.  相似文献   

19.
Previous studies showed that chromogranin A (CgA), a glycoprotein stored and co-released with various hormones by neuroendocrine cells and neurons, can modulate cell adhesion. We have investigated the structure-activity relationships of CgA using fibroblasts and coronary artery smooth muscle cells in adhesion assays. A recombinant CgA fragment 1-78 and a peptide 7-57 containing reduced and alkylated cysteines (Cys(17) and Cys(38)) induced cell adhesion after adsorption onto solid phases at 50-100 nm. Peptides lacking the disulfide loop region, including residues 47-68, 39-59, and 39-68, induced cell adhesion, either bound to solid phases at 200-400 nm or added to the liquid phase at 5-10 microm, whereas peptide 60-68 was inactive, suggesting that residues 47-57 are important for activity. The effect of CgA-(1-78) was blocked by anti-CgA antibodies against epitopes including residues Arg(53), His(54), and Leu(57). Substitutions of residues His(54), Gln(55), and Asn(56) with alanine decreased the cell adhesion activity of peptide 47-68. These results suggest that the region 47-57 (RILSILRHQNL) contains a cell adhesion site and that the disulfide bridge is not necessary for the proadhesive activity. The ability of soluble peptides to elicit proadhesive effects suggests an indirect mechanism. The high sequence conservation and accessibility to antibodies suggest that this region is important for the physiological role of CgA.  相似文献   

20.
A comprehensive synthetic approach, previously developed in this laboratory, has been applied to systematically screen the entire extracellular part (residues 1-210) of the alpha chain of the Torpedo californica acetylcholine receptor (AChR) for the profiles of the continuous regions that are recognized by antibodies against free, or membrane-sequestered, AChR; the regions recognized by AChR-primed T cells; the regions that bind alpha-bungarotoxin and cobratoxin; and an acetylcholine-binding region. Eight continuous antigenic sites were localized in this part of the alpha chain by all of the antisera tested. The sites were independent of the host species from which the antisera were obtained and were also similar to antisera against the isolated pentameric AChR or against the membrane-sequestered AChR. Six regions were found to stimulate AChR-primed T cells (T sites). Three of the T sites coincided with regions recognized by antibodies. At least two T sites had no detectable antibody responses directed to them. Five toxin-binding regions were localized, and may constitute distinct sites or, alternatively, different faces in one (or more) sites. Some of these regions coincided with regions recognized by anti-AChR antibodies. One of the toxin-binding regions bound acetylcholine, and immunization with this peptide induced experimental autoimmune myasthenia gravis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号