首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gastrulation movements are critical for establishing the three germ layers and the architecture of vertebrate embryos. During Xenopus laevis gastrulation, mesodermal tissue migrates on the blastocoel roof and elongates along the antero-posterior axis. During this process, cells in the dorsal mesoderm are polarized and intercalate with each other, which is defined as convergent extension and is known to be regulated by the non-canonical Wnt pathway. Here, we show that paxillin plays an essential role in this process. Paxillin is a focal-adhesion associated protein implicated in the regulation of actin cytoskeletal organization and cell motility, but its role in Xenopus embryogenesis has not yet been clarified. We demonstrate that the Wnt pathway controls the ubiquitination and stability of paxillin, and that this regulatory mechanism is essential for convergent extension movements. We identified a RING finger protein XRNF185, which physically binds to paxillin and the proteasome. XRNF185 destabilizes paxillin at focal adhesions and promotes mesodermal cell migration during convergent extension. We propose a mechanism to regulate gastrulation movements that involves paxillin ubiquitination and stability controlled by Wnt signalling.  相似文献   

2.
In Xenopus and zebrafish embryos, elongation of the anterior-posterior body axis depends on convergent extension, a process that involves polarized cell movements and is regulated by non-canonical Wnt signaling. The mechanisms that control axis elongation of the mouse embryo are much less well understood. Here, we characterize the ENU-induced mouse mutation chato, which causes arrest at midgestation and defects characteristic of convergent extension mutants, including a shortened body axis, mediolaterally extended somites and an open neural tube. The chato mutation disrupts Zfp568, a Krüppel-associated box (KRAB) domain zinc-finger protein. Morphometric analysis revealed that the definitive endoderm of mouse wild-type embryos undergoes cell rearrangements that lead to convergent extension during early somite stages, and that these cell rearrangements fail in chato embryos. Although non-canonical Wnt signaling is important for convergent extension in the mouse notochord and neural plate, the results indicate that chato regulates body axis elongation in all embryonic tissues through a process independent of non-canonical Wnt signaling.  相似文献   

3.
During amphibian development, non-canonical Wnt signals regulate the polarity of intercalating dorsal mesoderm cells during convergent extension. Cells of the overlying posterior neural ectoderm engage in similar morphogenetic cell movements. Important differences have been discerned in the cell behaviors associated with neural and mesodermal cell intercalation, raising the possibility that different mechanisms may control intercalations in these two tissues. In this report, targeted expression of mutants of Xenopus Dishevelled (Xdsh) to neural or mesodermal tissues elicited different defects that were consistent with inhibition of either neural or mesodermal convergent extension. Expression of mutant Xdsh also inhibited elongation of neural tissues in vitro in Keller sandwich explants and in vivo in neural plate grafts. Targeted expression of other Wnt signaling antagonists also inhibited neural convergent extension in whole embryos. In situ hybridization indicated that these defects were not due to changes in cell fate. Examination of embryonic phenotypes after inhibition of convergent extension in different tissues reveals a primary role for mesodermal convergent extension in axial elongation, and a role for neural convergent extension as an equalizing force to produce a straight axis. This study demonstrates that non-canonical Wnt signaling is a common mechanism controlling convergent extension in two very different tissues in the Xenopus embryo and may reflect a general conservation of control mechanisms in vertebrate convergent extension.  相似文献   

4.
Coordinated morphogenetic cell movements during gastrulation are crucial for establishing embryonic axes in animals. Most recently, the non-canonical Wnt signaling cascade (PCP pathway) has been shown to regulate convergent extension movements in Xenopus and zebrafish. Heparan sulfate proteoglycans (HSPGs) are known as modulators of intercellular signaling, and are required for gastrulation movements in vertebrates. However, the function of HSPGs is poorly understood. We analyze the function of Xenopus glypican 4 (Xgly4), which is a member of membrane-associated HSPG family. In situ hybridization revealed that Xgly4 is expressed in the dorsal mesoderm and ectoderm during gastrulation. Reducing the levels of Xgly4 inhibits cell-membrane accumulation of Dishevelled (Dsh), which is a transducer of the Wnt signaling cascade, and thereby disturbs cell movements during gastrulation. Rescue analysis with different Dsh mutants and Wnt11 demonstrated that Xgly4 functions in the non-canonical Wnt/PCP pathway, but not in the canonical Wnt/beta-catenin pathway, to regulate gastrulation movements. We also provide evidence that the Xgly4 protein physically binds Wnt ligands. Therefore, our results suggest that Xgly4 functions as positive regulator in non-canonical Wnt/PCP signaling during gastrulation.  相似文献   

5.
During the early vertebrate body plan formation, convergent extension (CE) of dorsal mesoderm and neurectoderm is coordinated by the evolutionarily conserved non-canonical Wnt/PCP signaling. Disheveled (Dvl), a key mediator of Wnt/PCP signaling, is essential for the medial–lateral polarity formation in the cells undergoing convergent extension movements. NEDD4L, a highly conserved HECT type E3 ligase, has been reported to regulate the stability of multiple substrates including Dvl2. Here we demonstrate that NEDD4L is required for the cellular polarity formation and convergent extension in the early Xenopus embryos. Depletion of NEDD4L in early Xenopus embryos results in the loss of mediolateral polarity of the convergent-extending mesoderm cells and the shortened body axis, resembling those defects caused by the disruption of non-canonical Wnt signaling. Depletion of xNEDD4L also blocks the elongation of the animal explants in response to endogenous mesoderm inducing signals and partially compromises the expression of Brachyury. Importantly, reducing Dvl2 expression can largely rescue the cellular polarity and convergent extension defects in NEDD4L-depleted embryos and explants. Together with the data that NEDD4L reduces Dvl2 protein expression in the frog embryos, our findings suggest that regulation of Dvl protein levels by NEDD4L is essential for convergent extension during early Xenopus embryogenesis.  相似文献   

6.
Recent genetic studies in Drosophila identified a novel non-canonical Wnt pathway, the planar cell polarity (PCP) pathway, that signals via JNK to control epithelial cell polarity in Drosophila. Most recently, a pathway regulating convergent extension movements during gastrulation in vertebrate embryos has been shown to be a vertebrate equivalent of the PCP pathway. However, it is not known whether the JNK pathway functions in this non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. In addition, it is not known whether JNK is in fact activated by Wnt stimulation. Here we show that Wnt5a is capable of activating JNK in cultured cells, and present evidence that the JNK pathway mediates the action of Wnt5a to regulate convergent extension movements in Xenopus. Our results thus demonstrate that the non-canonical Wnt/JNK pathway is conserved in both vertebrate and invertebrate and define that JNK has an activity to regulate morphogenetic cell movements.  相似文献   

7.
During Xenopus gastrulation, mesendodermal cells are internalized and display different movements. Head mesoderm migrates along the blastocoel roof, while trunk mesoderm undergoes convergent extension (C&E). Different signals are implicated in these processes. Our previous studies reveal that signals through ErbB receptor tyrosine kinases modulate Xenopus gastrulation, but the mechanisms employed are not understood. Here we report that ErbB signals control both C&E and head mesoderm migration. Inhibition of ErbB pathway blocks elongation of dorsal marginal zone explants and activin-treated animal caps without removing mesodermal gene expression. Bipolar cell shape and cell mixing in the dorsal region are impaired. Inhibition of ErbB signaling also interferes with migration of prechordal mesoderm on fibronectin. Cell-cell and cell-matrix interaction and cell spreading are reduced when ErbB signaling is blocked. Using antisense morpholino oligonucleotides, we show that ErbB4 is involved in Xenopus gastrulation morphogenesis, and it partially regulates cell movements through modulation of cell adhesion and membrane protrusions. Our results reveal for the first time that vertebrate ErbB signaling modulates gastrulation movements, thus providing a novel pathway, in addition to non-canonical Wnt and FGF signals, that controls gastrulation. We further demonstrate that regulation of cell adhesive properties and cell morphology may underlie the functions of ErbBs in gastrulation.  相似文献   

8.
Early spherical Xenopus laevis embryos are transformed into a streamlined shape through convergent extension movements. Here we report that a p75(NTR)-related transmembrane protein, NRH1, has an essential function in the regulation of these movements. NRH1 was expressed in marginal zone tissues of the gastrula and in the posterior ectoderm of the neurula. Attenuation of the NRH1 function inhibited convergent extension movements in the embryo and in activin-treated animal caps. NRH1 activated downstream effectors of the Wnt/planar cell polarity pathway: small GTPases and the cascade of MKK7-JNK. Furthermore, gain- and loss-of-function phenotypes of NRH1 were rescued by co-injection of dominant-negative and constitutively active forms of these downstream effectors, respectively, suggesting that NRH1 functions as a positive modulator of planar cell polarity signalling. Interestingly, NRH1 does not require Dishevelled (Xdsh) for the activation of these downstream effectors or translocation of Xdsh to the membrane, suggesting that NRH1 signalling interacts with planar cell polarity signalling downstream of Xdsh. This demonstrates an essential role for p75(NTR)-related signalling in early embryonic morphogenesis.  相似文献   

9.
Involving dynamic and coordinated cell movements that cause drastic changes in embryo shape, gastrulation is one of the most important processes of early development. Gastrulation proceeds by various types of cell movements, including convergence and extension, during which polarized axial mesodermal cells intercalate in radial and mediolateral directions and thus elongate the dorsal marginal zone along the anterior-posterior axis [1,2]. Recently, it was reported that a noncanonical Wnt signaling pathway, which is known to regulate planar cell polarity (PCP) in Drosophila [3,4], participates in the regulation of convergent extension movements in Xenopus as well as in the zebrafish embryo [5-8]. The Wnt5a/Wnt11 signal is mediated by members of the seven-pass transmembrane receptor Frizzled (Fz) and the signal transducer Dishevelled (Dsh) through the Dsh domains that are required for the PCP signal [6-8]. It has also been shown that the relocalization of Dsh to the cell membrane is required for convergent extension movements in Xenopus gastrulae. Although it appears that signaling via these components leads to the activation of JNK [9,10] and rearrangement of microtubules, the precise interplay among these intercellular components is largely unknown. In this study, we show that Xenopus prickle (Xpk), a Xenopus homolog of a Drosophila PCP gene [11-13], is an essential component for gastrulation cell movement. Both gain-of-function and loss-of-function of Xpk severely perturbed gastrulation and caused spina bifida embryos without affecting mesodermal differentiation. We also demonstrate that XPK binds to Xenopus Dsh as well as to JNK. This suggests that XPK plays a pivotal role in connecting Dsh function to JNK activation.  相似文献   

10.
Convergent extension (CE) cell movements during gastrulation mediate extension of the anterior-posterior body axis of vertebrate embryos. Non-canonical Wnt5 and Wnt11 signalling is essential for normal CE movements in vertebrate gastrulation. Here, we show that morpholino (MO)-mediated double knock-down of the Fyn and Yes tyrosine kinases in zebrafish embryos impaired normal CE cell movements, resembling the silberblick and pipetail mutants, caused by mutations in wnt11 and wnt5, respectively. Co-injection of Fyn/Yes- and Wnt11- or Wnt5-MO was synergistic, but wnt11 or wnt5 RNA did not rescue the Fyn/Yes knockdown or vice versa. Remarkably, active RhoA rescued the Fyn/Yes knockdown as well as the Wnt11 knockdown, indicating that Fyn/Yes and Wnt11 signalling converged on RhoA. Our results show that Fyn and Yes act together with non-canonical Wnt signalling via RhoA in CE cell movements during gastrulation.  相似文献   

11.
Wnt signalling is a key regulatory factor in animal development and homeostasis and plays an important role in the establishment and progression of cancer. Wnt signals are predominantly transduced via the Frizzled family of serpentine receptors to two distinct pathways, the canonical ß-catenin pathway and a non-canonical pathway controlling planar cell polarity and convergent extension. Interference between these pathways is an important determinant of cellular and phenotypic responses, but is poorly understood. Here we show that TNIK (Traf2 and Nck-interacting kinase) and MINK (Misshapen/NIKs-related kinase) MAP4K signalling kinases are integral components of both canonical and non-canonical pathways in Xenopus. xTNIK and xMINK interact and are proteolytically cleaved in vivo to generate Kinase domain fragments that are active in signal transduction, and Citron-NIK-Homology (CNH) Domain fragments that are suppressive. The catalytic activity of the Kinase domain fragments of both xTNIK and xMINK mediate non-canonical signalling. However, while the Kinase domain fragments of xTNIK also mediate canonical signalling, the analogous fragments derived from xMINK strongly antagonize this signalling. Our data suggest that the proteolytic cleavage of xTNIK and xMINK determines their respective activities and is an important factor in controlling the balance between canonical and non-canonical Wnt signalling in vivo.  相似文献   

12.
13.
14.
Convergent extension movements are the main driving force of Xenopus gastrulation. A fine-tuned regulation of cadherin-mediated cell-cell adhesion is thought to be required for this process. Members of the Wnt family of extracellular glycoproteins have been shown to modulate cadherin-mediated cell-cell adhesion, convergent extension movements, and cell differentiation. Here we show that endogenous Wnt/beta-catenin signaling activity is essential for convergent extension movements due to its effect on gene expression rather than on cadherins. Our data also suggest that XLEF-1 rather than XTCF-3 is required for convergent extension movements and that XLEF-1 functions in this context in the Wnt/beta-catenin pathway to regulate Xnr-3. In contrast, activation of the Wnt/Ca2+ pathway blocks convergent extension movements, with potential regulation of the Wnt/beta-catenin pathway at two different levels. PKC, activated by the Wnt/Ca2+ pathway, blocks the Wnt/beta-catenin pathway upstream of beta-catenin and phosphorylates Dishevelled. CamKII, also activated by the Wnt/Ca2+ pathway, inhibits the Wnt/beta-catenin signaling cascade downstream of beta-catenin. Thus, an opposing cross-talk of two distinct Wnt signaling cascades regulates convergent extension movements in Xenopus.  相似文献   

15.
The Spemann organizer plays a central role in neural induction, patterning of the neuroectoderm and mesoderm, and morphogenetic movements during early embryogenesis. By seeking genes whose expression is activated by the organizer-specific LIM homeobox gene Xlim-1 in Xenopus animal caps, we isolated the receptor tyrosine kinase Xror2. Xror2 is expressed initially in the dorsal marginal zone, then in the notochord and the neuroectoderm posterior to the midbrain-hindbrain boundary. mRNA injection experiments revealed that overexpression of Xror2 inhibits convergent extension of the dorsal mesoderm and neuroectoderm in whole embryos, as well as the elongation of animal caps treated with activin, whereas it does not appear to affect cell differentiation of neural tissue and notochord. Interestingly, mutant constructs in which the kinase domain was point-mutated or deleted (named Xror2-TM) also inhibited convergent extension, and did not counteract the wild-type, suggesting that the ectodomain of Xror2 per se has activities that may be modulated by the intracellular domain. In relation to Wnt signaling for planar cell polarity, we observed: (1) the Frizzled-like domain in the ectodomain is required for the activity of wild-type Xror2 and Xror2-TM; (2) co-expression of Xror2 with Xwnt11, Xfz7, or both, synergistically inhibits convergent extension in embryos; (3) inhibition of elongation by Xror2 in activin-treated animal caps is reversed by co-expression of a dominant negative form of Cdc42 that has been suggested to mediate the planar cell polarity pathway of Wnt; and (4) the ectodomain of Xror2 interacts with Xwnts in co-immunoprecipitation experiments. These results suggest that Xror2 cooperates with Wnts to regulate convergent extension of the axial mesoderm and neuroectoderm by modulating the planar cell polarity pathway of Wnt.  相似文献   

16.
The signaling mechanisms that specify, guide and coordinate cell behavior during embryonic morphogenesis are poorly understood. We report that a Xenopus homolog of the Drosophila planar cell polarity gene strabismus (stbm) participates in the regulation of convergent extension, a critical morphogenetic process required for the elongation of dorsal structures in vertebrate embryos. Overexpression of Xstbm, which is expressed broadly in early development and subsequently in the nervous system, causes severely shortened trunk structures; a similar phenotype results from inhibiting Xstbm translation using a morpholino antisense oligo. Experiments with Keller explants further demonstrate that Xstbm can regulate convergent extension in both dorsal mesoderm and neural tissue. The specification of dorsal tissues is not affected. The Xstbm phenotype resembles those obtained with several other molecules with roles in planar polarity signaling, including Dishevelled and Frizzled-7 and -8. Unlike these proteins, however, Stbm has little effect on conventional Wnt/beta-catenin signaling in either frog or fly assays. Thus our results strongly support the emerging hypothesis that a vertebrate analog of the planar polarity pathway governs convergent extension movements.  相似文献   

17.
Coordinated cell movements are crucial for vertebrate gastrulation and are controlled by multiple signals. Although many factors are shown to mediate non-canonical Wnt pathways to regulate cell polarity and intercalation during gastrulation, signaling molecules acting in other pathways are less investigated and the connections between various signals and cytoskeleton are not well understood. In this study, we show that the cytoplasmic tyrosine kinase Arg modulates gastrulation movements through control of actin remodeling. Arg is expressed in the dorsal mesoderm at the onset of gastrulation, and both gain- and loss-of-function of Arg disrupted axial development in Xenopus embryos. Arg controlled migration of anterior mesendoderm, influenced cell decision on individual versus collective migration, and modulated spreading and protrusive activities of anterior mesendodermal cells. Arg also regulated convergent extension of the trunk mesoderm by influencing cell intercalation behaviors. Arg modulated actin organization to control dynamic F-actin distribution at the cell-cell contact or in membrane protrusions. The functions of Arg required an intact tyrosine kinase domain but not the actin-binding motifs in its carboxyl terminus. Arg acted downstream of receptor tyrosine kinases to regulate phosphorylation of endogenous CrkII and paxillin, adaptor proteins involved in activation of Rho family GTPases and actin reorganization. Our data demonstrate that Arg is a crucial cytoplasmic signaling molecule that controls dynamic actin remodeling and mesodermal cell behaviors during Xenopus gastrulation.  相似文献   

18.
Convergent extension movements occur ubiquitously in animal development. This special type of cell movement is controlled by the Wnt/planar cell polarity (PCP) pathway. Here we show that Xenopus paraxial protocadherin (XPAPC) functionally interacts with the Wnt/PCP pathway in the control of convergence and extension (CE) movements in Xenopus laevis. XPAPC functions as a signalling molecule that coordinates cell polarity of the involuting mesoderm in mediolateral orientation and thus selectively promotes convergence in CE movements. XPAPC signals through the small GTPases Rho A and Rac 1 and c-jun N-terminal kinase (JNK). Loss of XPAPC function blocks Rho A-mediated JNK activation. Despite common downstream components, XPAPC and Wnt/PCP signalling are not redundant, and the activity of both, XPAPC and PCP signalling, is required to coordinate CE movements.  相似文献   

19.
20.
During gastrulation, cells in the dorsal marginal zone polarize, elongate, align and intercalate to establish the physical body axis of the developing embryo. Here we demonstrate that the bifunctional channel-kinase TRPM7 is specifically required for vertebrate gastrulation. TRPM7 is temporally expressed maternally and throughout development, and is spatially enriched in tissues undergoing convergent extension during gastrulation. Functional studies reveal that TRPM7's ion channel, but not its kinase domain, specifically affects cell polarity and convergent extension movements during gastrulation, independent of mesodermal specification. During gastrulation, the non-canonical Wnt pathway via Dishevelled (Dvl) orchestrates the activities of the GTPases Rho and Rac to control convergent extension movements. We find that TRPM7 functions synergistically with non-canonical Wnt signaling to regulate Rac activity. The phenotype caused by depletion of the Ca2+- and Mg2+-permeant TRPM7 is suppressed by expression of a dominant negative form of Rac, as well as by Mg2+ supplementation or by expression of the Mg2+ transporter SLC41A2. Together, these studies demonstrate an essential role for the ion channel TRPM7 and Mg2+ in Rac-dependent polarized cell movements during vertebrate gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号