首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To investigate the factors regulating the biosynthesis of poly-N-acetyllactosamine chains containing the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1] in animal cell glycoproteins, we have examined the structures and terminal sequences of these chains in the complex-type asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Cells were grown in medium containing [6-3H]galactose, and radiolabeled glycopeptides were prepared and fractionated by serial lectin affinity chromatography. The glycopeptides containing the poly-N-acetyllactosamine chains in these cells were complex-type tri- and tetraantennary asparagine-linked oligosaccharides. The poly-N-acetyllactosamine chains in these glycopeptides had four different terminal sequences with the structures: I, Gal beta 1,4GlcNAc beta 1,3Gal-R; II, Gal alpha 1,3Gal beta 1,4GlcNac beta 1,3Gal-R; III, Sia alpha 2,3Gal beta 1,4GlcNAc beta 1,3Gal-R; and IV, Sia alpha 2,6Gal beta 1,4GlcNAc beta 1,3Gal-R. We have found that immobilized tomato lectin interacts with high affinity with glycopeptides containing three or more linear units of the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1] and thereby allows for a separation of glycopeptides on the basis of the length of the chain. A high percentage of the long poly-N-acetyllactosamine chains bound by immobilized tomato lectin were not sialylated and contained the simple terminal sequence of Structure I. In addition, a high percentage of the sialic acid residues that were present in the long chains were linked alpha 2,3 to penultimate galactose residues (Structure III). In contrast, a high percentage of the shorter poly-N-acetyllactosamine chains not bound by the immobilized lectin were sialylated, and most of the sialic acid residues in these chains were linked alpha 2,6 to galactose (Structure IV). These results indicate that there is a relationship in these cells between poly-N-acetyllactosamine chain length and the degree and type of sialylation of these chains.  相似文献   

2.
Hydrolysis of phosphoinositides can lead to mobilization of calcium and production of diacylglycerol, which together are proposed to activate protein kinase C. We have shown that phosphoinositide hydrolysis mediated by alpha 1-adrenergic receptors on Madin-Darby canine kidney cells (MDCK-D1) occurred with an early lag and increased over a prolonged time course (Slivka, S.R., and Insel, P.A. (1987) J. Biol. Chem. 262, 4200-4207). In this study we characterize another type of receptor-mediated phospholipid hydrolysis in MDCK-D1 cells, alpha 1-adrenergic receptor-mediated hydrolysis of phosphatidylcholine. The predicted products of this hydrolysis, phosphorylcholine and diacylglycerol, were detectable as early as 0.5 min after alpha 1-adrenergic receptor stimulation by epinephrine. This hydrolysis appears to be a primary event after receptor occupancy because it occurred in the presence of neomycin, an inhibitor of polyphosphoinositide hydrolysis, and the protein kinase C inhibitors, sphingosine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7). In addition, we demonstrate alpha 1-adrenergic receptor-mediated activation of protein kinase C in MDCK-D1 cells. This activation was measured as a rapid translocation (0.5 min) of protein kinase C activity from the cytosolic fraction to the membrane fraction. This translocation also was not inhibited by neomycin. The time course and agonist concentration dependence of both phosphatidylcholine hydrolysis and protein kinase C activation by alpha 1-adrenergic receptors were similar. Thus, we propose that agonists acting at alpha 1-adrenergic receptors promote hydrolysis of phosphatidylcholine which results in rapid generation of diacylglycerol for the activation of protein kinase C.  相似文献   

3.
Active opiate binding sites have been solubilized from mammalian brain cell membranes. The presence of 0.5-0.1 M NaCl during treatment of membranes from rat brain, human frontal cortex, and bovine corpus striatum with glycodeoxycholate or digitonin resulted in the extraction of active opiate binding sites in yields ranging up to 43%. The criteria for solubility of the sites were their inability to sediment at 10(5) x g after 2 hr and their apparent molecular weight of 3- 4 x 10(5) as determined by gel filtration. The receptors in solution resemble the membrane-bound sites with respect to saturability, stereo-specificity, sensitivity to heat and reagents, and high affinity for opioid ligands. The interaction of solubilized sites with immobilized lectins was used to demonstrate the glycoprotein nature of the opiate receptor. Soluble receptors from all species studied were retained by wheat germ agglutinin(WGA)-agarose and could be specifically eluted with N-acetylglucosamine. No retention of solubilized material was observed with eight other lectins examined, including horseshoe crab lectin, a sialic acid specific agglutinin. The receptor protein eluted from WGA columns was enriched 25-50-fold over the crude soluble fraction.  相似文献   

4.
Recombinant adeno-associated viruses (AAVs) are promising vectors in the field of gene therapy. Different AAV serotypes display distinct tissue tropism, believed to be related to the distribution of their receptors on target cells. Of the 11 well-characterized AAV serotypes, heparan sulfate proteoglycan and sialic acid have been suggested to be the attachment receptors for AAV type 2 and types 4 and 5, respectively. In this report, we identify the receptor for the two closely related serotypes, AAV1 and AAV6. First, we demonstrate using coinfection experiments and luciferase reporter analysis that AAV1 and AAV6 compete for similar receptors. Unlike heparin sulfate, enzymatic or genetic removal of sialic acid markedly reduced AAV1 and AAV6 binding and transduction. Further analysis using lectin staining and lectin competition assays identified that AAV1 and AAV6 use either alpha2,3-linked or alpha2,6-linked sialic acid when transducing numerous cell types (HepG2, Pro-5, and Cos-7). Treatment of cells with proteinase K but not glycolipid inhibitor reduced AAV1 and AAV6 infection, supporting the hypothesis that the sialic acid that facilitates infection is associated with glycoproteins rather than glycolipids. In addition, we determined by inhibitor (N-benzyl GalNAc)- and cell line-specific (Lec-1) studies that AAV1 and AAV6 require N-linked and not O-linked sialic acid. Furthermore, a resialylation experiment on a deficient Lec-2 cell line confirmed a 2,3 and 2,6 N-linked sialic acid requirement, while studies of mucin with O-linked sialic acid showed no inhibition effect for AAV1 and AAV6 transduction on Cos-7 cells. Finally, using a glycan array binding assay we determined that AAV1 efficiently binds to NeuAcalpha2-3GalNAcbeta1-4GlcNAc, as well as two glycoproteins with alpha2,3 and alpha2,6 N-linked sialic acids. Taken together, competition, genetic, inhibitor, enzymatic reconstitution, and glycan array experiments support alpha2,3 and alpha2,6 sialic acids that are present on N-linked glycoproteins as primary receptors for efficient AAV1 and AAV6 viral infection.  相似文献   

5.
The mammalian beta 2-adrenergic receptor: purification and characterization   总被引:8,自引:0,他引:8  
The beta 2-adrenergic receptors from hamster, guinea pig, and rat lungs have been solubilized with digitonin and purified by sequential Sepharose-alprenolol affinity and high-performance steric-exclusion liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveal a peptide with an apparent Mr of 64 000 in all three systems that coincides with the peptide labeled by the specific beta-adrenergic photoaffinity probe (p-azido-m-[125I]iodobenzyl)carazolol. A single polypeptide was observed in all three systems, suggesting that lower molecular weight peptides identified previously by affinity labeling or purification in mammalian systems may represent proteolyzed forms of the receptor. Purification of the beta-adrenergic receptor has also been assessed by silver staining, iodinated lectin binding, and measurement of the specific activity (approximately 15 000 pmol of [3H]dihydroalprenolol bound/mg of protein). Overall yields approximate 10% of the initial crude particulate binding, with 1-3 pmol of purified receptor obtained/g of tissue. The purified receptor preparations bind agonist and antagonist ligands with the expected beta 2-adrenergic specificity and stereoselectivity. Peptide mapping and lectin binding studies of the hamster, guinea pig, and rat lung beta 2-adrenergic receptors reveal significant similarities suggestive of evolutionary homology.  相似文献   

6.
Solubilization and Characterization of Rat Brain α2-Adrenergic Receptor   总被引:5,自引:4,他引:1  
alpha 2-Adrenergic receptors labelled by [3H]-clonidine (alpha 2-agonist) can be solubilized from the rat brain in a form sensitive to guanine nucleotides with a zwitterionic detergent, 3-[3-(cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS). About 40% of the original [3H]CLO binding sites in the membranes were solubilized with 6 mM CHAPS. Separation of the soluble [3H]CLO-bound complex was performed by the vacuum filtration method using polyethylenimine-treated GF/B filters. Solubilized [3H]CLO binding sites retained the same pharmacological characteristics of membrane-bound alpha 2-adrenergic receptors. Scatchard plots of [3H]CLO binding to solubilized alpha 2-receptors were curvilinear, indicating the existence of the two distinct binding components. Solubilized receptors were eluted as a single peak from Bio-Gel A-1.5 m column with a Stokes radius of 6.6 nm. The isoelectric point was 5.6-5.8. Regulations of the receptor binding by guanine nucleotides, monovalent cations, and sulfhydryl-reactive agents were maintained intact in the soluble state, whereas those by divalent cations were lost. The apparent retention of receptors and guanine nucleotide binding regulatory component(s) in the soluble state may allow a investigation of the regulation mechanisms of the brain alpha 2-adrenergic receptor system at the molecular level.  相似文献   

7.
Molecular structure of the beta-adrenergic receptor   总被引:1,自引:0,他引:1  
The beta-adrenergic receptor from several tissues has been purified to homogeneity or photoaffinity radiolabeled and its subunit molecular weight determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. In this study we have examined the oligomeric structure of nondenatured beta 1- and beta 2-adrenergic receptor proteins, as solubilized with the detergent digitonin. Model systems used were frog and turkey red blood cell as well as rat, rabbit, and bovine lung plasma membrane preparations. To correct for the effects of detergent binding, sedimentation equilibrium analysis in various solvents, as adapted for the air-driven ultracentrifuge, was used. With this approach an estimate of 6 g of digitonin/g of protein binding was determined, corresponding to a ratio of 180 mol of digitonin/mol of protein. Protein molecular weights estimated by this method were 43 500 for the turkey red blood cell beta 1 receptor and 54 000 for the frog red blood cell beta 2 receptor. Molecular weights of 60 000-65 000 were estimated for beta 1 and beta 2 receptors present in mammalian lungs. These values agree with estimates of subunit molecular weight obtained by SDS gel electrophoresis of purified or photoradiolabeled preparations and suggest beta-adrenergic receptors to be digitonin solubilized from the membrane as single polypeptide chains.  相似文献   

8.
Immobilized catecholamines have played an important role in the localization of alpha- and beta-adrenergic receptors to the plasma membrane of effector cells, and in elucidating mechanisms of beta receptor activation of cardiac muscle. An extension of immobilized drug and affinity chromatography procedures has been developed by utilizing receptor-specific monoclonal antibodies. Structurally different beta 1- and beta 2-adrenergic receptors have been purified with a single monoclonal antibody affinity column, where the antibody is specific for an epitope in the ligand-binding site of both beta 1 and beta 2 receptors. Specificity was increased by elution of receptors from the monoclonal antibody affinity columns with low concentrations of beta-receptor antagonists. These studies indicate that the turkey erythrocyte beta 1-adrenergic receptor is most likely a monomer with a molecular weight of 65,000-70,000. beta 2-Adrenergic receptors have a primary subunit of 55,000-58,000 daltons, with the intact receptor in membranes having a molecular weight of 109,000, which suggests that the beta 2-adrenergic receptor is most likely a dimer of either two identical subunits or a binding subunit and an unidentified second subunit.  相似文献   

9.
Isolation and properties of the alpha-latrotoxin receptor.   总被引:2,自引:1,他引:1       下载免费PDF全文
The receptor protein of alpha-latrotoxin (alpha LTx, a neurotoxin with 'pure' presynaptic action isolated from black widow spider venom), was solubilized by Triton X-100 from bovine brain membranes and purified by affinity chromatography on alpha LTx-Sepharose. The purified receptor preparation contained four major polypeptides of molecular masses 200 (alpha), 160 (alpha'), 79 (beta) and 43 (gamma) kd according to SDS electrophoresis with molecular ratio alpha 1 alpha' 1 beta 2 gamma 2. The alpha- and alpha'-subunits are glycoproteins binding to wheat germ lectin and can be separated under non-denaturing conditions by anion exchange chromatography. Purified to homogeneity, both of them, though differing in the carbohydrate composition, retain the alpha LTx-binding activity and give closely related peptide maps. Anti-alpha antibodies recognize the alpha'-subunit as well. These results suggest that alpha LTx receptor is present in purified preparations in two very close forms containing the alpha- or alpha'-subunit. Beta and gamma proteins do not specifically bind alpha LTx and their physiological role is unclear. They form a complex with solubilized alpha- and alpha'-subunits independently of alpha LTx presence. The receptor proteins were purified to homogeneity by high performance gel filtration in the presence of SDS, their amino acid composition was determined.  相似文献   

10.
SRIF receptors are membrane-bound glycoproteins. To structurally identify the carbohydrate components of SRIF receptors, solubilized rat brain SRIF receptors were subjected to lectin affinity chromatography. Solubilized SRIF receptors specifically bound to wheat germ agglutinin-lectin affinity columns but not to succinylated wheat germ agglutinin. This finding, as well as the ability of the solubilized receptor to interact with a Sambucus nigra L. lectin affinity column suggested that sialic acid residues are associated with SRIF receptors. The inability of the receptor to bind to concanavalin A, Dolichus biflorus agglutinin, Ulex europeaus I, and Jacalin lectin affinity columns suggests that high mannose, N-acetylgalactosamine, fucose, and O-linked carbohydrates are not associated with receptor. To investigate the functional role of the carbohydrate groups in brain SRIF receptors, specific sugars were selectively cleaved from SRIF receptors and the subsequent effect on the specific high affinity binding of the agonist [125I]MK 678 to SRIF receptors was determined. Treatment of the receptor with endoglycosidase D did not affect the specific binding of [125I] MK 678 to the solubilized SRIF receptors, consistent with the finding from lectin affinity chromatography that high mannose-type carbohydrate structures were not associated with SRIF receptors. Treatment of solubilized SRIF receptors with peptide-N-glycosidase F and endoglycosidases H and F reduced [125I]MK 678 binding to SRIF receptors indicating that either hybrid, or a combination of hybrid and complex N-linked carbohydrate structures, have a role in maintaining the receptor in a high affinity state for agonists. Treatment of solubilized SRIF receptors with neuraminidase from Vibrio cholera abolished high affinity agonist binding to the receptors, whereas treatment of the receptor with neuraminidase from Newcastle disease virus did not affect [125I]MK 678 binding to the receptor. These findings suggest that sialic acid residues in an alpha 2,6-configuration have a role in maintaining the SRIF receptor in a high affinity conformation for agonists. This is further indicated by studies on SRIF receptors in the pituitary tumor cell line, AtT-20. Treatment of AtT-20 cells in culture with neuraminidase (V. cholera) greatly reduces high affinity [125I] MK 678 binding sites, but did not alter the maximal ability of SRIF to inhibit forskolin-stimulated cAMP accumulation in intact AtT-20 cells. This finding suggests that the desialylated SRIF receptor is functionally active and remains coupled to GTP-binding proteins, but exhibits a reduced affinity for agonists. Treatment of AtT-20 cell membranes with neuraminidase from V. cholera was also able to greatly reduce the affinity of SRIF receptors for [125I]MK 678.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Most antibodies known to interact with beta-adrenergic receptors do not exhibit subtype selectivity, nor do they provide quantitative immunoprecipitation. A monoclonal antibody, G27.1 raised against a synthetic peptide corresponding to the C-terminus of the beta 2-adrenergic receptor of hamster, is selective for the beta 2 subtype. G27.1 provides nearly quantitative immunoprecipitation of the beta 2-adrenergic receptor from hamster lung that has been photoaffinity-labeled and solubilized with sodium dodecyl sulfate. Immunoprecipitation is completely blocked by nanomolar concentrations of the immunizing peptide. This antibody interacts with beta 2-adrenergic receptors from three rodent species, but not with those from humans. When C6 glioma cells, which contain both beta 1- and beta 2-adrenergic receptors, are photoaffinity-labeled in the absence or presence of subtype-selective antagonists, subtype-selective photoaffinity-labeling results. G27.1 can immunoprecipitate beta 2-, but not beta 1-, adrenergic receptors from these cells. Similar results were obtained following subtype-selective photoaffinity-labeling of membranes from rat cerebellum and cerebral cortex. The beta-adrenergic receptors from C6 glioma cells and rat cerebral cortex exist as a mixture of two molecular weight species. These species differ in glycosylation, as shown by endoglycosidase F digestion of crude and immunoprecipitated receptors.  相似文献   

12.
In this study, we clarify the structural aspects of the oligosaccharides associated with the alpha 1-adrenergic receptor in two muscle cell lines. Photoaffinity labelling of intact BC3H1 or DDT1 muscle cells with 2-[4-(4-azido-3-[125I]iodobenzoyl)piperazin-1-yl]-4-amino-6, 7-dimethoxyquinazoline ([125I]azidoprazosin) followed by SDS/polyacrylamide-gel electrophoresis (PAGE) and autoradiography revealed specifically labelled proteins of molecular mass = 87,000 and 81,000, respectively. Treatment of photoaffinity-labelled receptors in DDT1 cells with 33 u. of endoglycosidase F/ml for 24 h resulted in the loss of the 81 kDa receptor and the appearance of a 52.5 kDa protein. When lower concentrations of glycosidase or shorter incubation times were used, the 81 kDa receptor was converted to a 66 kDa protein. Treatment of the photoaffinity-labelled BC3H1 receptor with endoglycosidase F resulted in the appearance of a 50.5 kDa protein. Neither alpha-mannosidase nor endoglycosidase H had an effect on the photoaffinity labelling patterns of the receptor from the two cell types. alpha 1-Adrenergic receptors, solubilized from membranes prepared from BC3H1 and DDT1 cells, bound to wheat germ agglutinin-Sepharose and were displaced by N-acetylglucosamine. Taken together, these results indicate that alpha 1-adrenergic receptors in BC3H1 and DDT1 cells contain complex, but not high, mannose oligosaccharide chains; differences in the composition or number of chains partially accounts for the different molecular mass of the receptor in the two cell lines. The results further indicate that the oligosaccharide chains contribute substantially to the apparent molecular mass of alpha 1-adrenergic receptors, as detected by SDS/PAGE, and that the protein backbone of these receptors is likely to be approximately 50 kDa.  相似文献   

13.
The lectin jacalin immobilized on agarose was found to bind a variety of glycoproteins known to contain typical O-linked oligosaccharides, including human IgA, C1 inhibitor, chorionic gonadotropin, plasminogen, bovine protein Z, bovine coagulation factor X, and fetuin. These proteins were eluted from columns of jacalin-agarose specifically by alpha-galactopyranosides such as melibiose and alpha-methylgalactopyranoside but not by lactose or other sugars. Treatment of asialofetuin with endo--alpha--N--acetylgalactosaminidase eliminated its affinity for the lectin column, and other proteins known to contain only N-linked oligosaccharides such as ovalbumin, transferrin, and alpha 1-acid glycoprotein were not retained by the lectin. Binding of proteins with O-linked oligosaccharides to the lectin column did not require divalent cations and was affected little by changes in pH and ionic strength over a wide range. Virtually all of the glycosidically linked oligosaccharides of fetuin, chorionic gonadotropin, and plasminogen are known to be sialated. Thus, binding of these glycoproteins to jacalin, which is known to have affinity for the core disaccharide, 1-beta-galactopyranosyl-3-(alpha-2-acetamido-2-deoxygalactopyranoside ), in O-linked oligosaccharides of these proteins, was not prevented by the presence of sialic acids. Affinity of oligosaccharides for jacalin did appear to be reduced by occurrence of sialic acids as it was found that higher concentrations of melibiose were required to elute asialofetuin than fetuin from jacalin-agarose. Results of the present study indicate that affinity chromatography using this lectin is a widely applicable technique for identifying and purifying proteins bearing O-linked oligosaccharides.  相似文献   

14.
Adrenergic control of human fat cell lipolysis is mediated by two kinds of receptor sites that are simultaneously stimulated by physiological amines. To establish a correlation between the binding characteristics of the receptor and biological functions, the ability of physiological amines to stimulate or inhibit isolated fat cell lipolysis in vitro was compared to the beta- and alpha 2-adrenoceptor properties of the same fat cell batch. The beta-selective antagonist (-)[3H]dihydroalprenolol ([3H]DHA) and the alpha 2-selective antagonists [3H]yohimbine ([3H]YOH) and [3H]rauwolscine ([3H]RAU) were used to identify and characterize the two receptor sites. Binding of each ligand was rapid, saturable, and specific. The results demonstrate 1) the weaker lipolytic effect of epinephrine compared with norepinephrine. This can be explained by the equipotency of the amines at the beta 1-sites and the higher affinity of epinephrine for alpha 2-adrenergic receptors. 2) The preponderance of alpha 2-adrenergic receptor sites labeled by [3H]YOH (Bmax, 586 +/- 95 fmol/mg protein; KD, 2.7 +/- 0.2 nM) or [3H]RAU (Bmax, 580 +/- 100 fmol/mg protein; KD, 3.7 +/- 0.1 nM). These two ligands can be successfully used to label alpha 2-adrenergic receptor sites. 3) The beta 1-adrenergic receptor population labeled by [3H]DHA(Bmax, 234 +/- 37 fmol/mg protein; KD, 1.8 +/- 0.4 nM), although a third as numerous as the alpha 2-adrenergic population, is responsible for the lipolytic effect of physiological amines and is weakly counteracted by simultaneous alpha 2-adrenergic receptor stimulation under our experimental conditions. It is concluded that, in human fat cells, the characterization of beta 1- and alpha 2-adrenergic receptors by saturation studies or kinetic analysis to determine affinity (KD) and maximal number of binding sites (Bmax) is not sufficient for an accurate characterization of the functional adrenergic receptors involved in the observed biological effect.  相似文献   

15.
Stimulation of DDT1 MF-2 vas deferens cells with epinephrine resulted in a time- and dose-dependent loss of alpha 1-adrenergic receptor-specific ligand binding. Regulation of alpha 1-adrenergic receptor mRNA was characterized. In monolayer culture, cells displayed 0.7 +/- 0.05 amol of alpha 1-adrenergic receptor mRNA/microgram of total cellular RNA. Epinephrine, which acts at both alpha 1- and beta 2-adrenergic receptors of DDT1 MF-2 cells, induced a short term (2-8 h) increase (50-70%) in the abundance of alpha 1-adrenergic receptor mRNA. Propranolol, a beta 2-adrenergic receptor antagonist, attenuated the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA but did not affect the decrease in alpha 1-adrenergic receptor-specific ligand binding. Phentolamine, an alpha 1-adrenergic receptor antagonist, did not attenuate the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA at 4 h but did block the decrease in alpha 1-adrenergic receptor-specific ligand binding. The half-life of the alpha 1-adrenergic receptor mRNA was approximately 7 h in untreated cells as well as in cells challenged with epinephrine. The epinephrine-promoted increase in alpha 1-adrenergic receptor mRNA was found to result from cross-regulation via beta 2-adrenergic receptors. Cholera toxin, forskolin, as well as the cyclic AMP analog CPT cAMP (8-(4-chlorophenylthio)adenosine 3':5'-cyclic monophosphate) increased the alpha 1-adrenergic receptor mRNA at 4 h, as did epinephrine in the presence of alpha 1-antagonists but not in the presence of a beta-adrenergic antagonist. This is the first report of heterologous up-regulation of mRNA levels of adrenergic receptors. Cross-regulation between alpha 1- and beta 2-adrenergic receptor-mediated pathways at 4 h occurs at the level of mRNA whereas later down-regulation of alpha 1-receptor mRNA and binding proceed via agonist activation of alpha 1-adrenergic receptors.  相似文献   

16.
We recently reported that the purified leukoagglutinin (designated MAL) from the seeds of the leguminous plant Maackia amurensis is a potent leukoagglutinin for the mouse lymphoma cell line BW5147 (Wang, W.-C., and Cummings, R. D. (1987) Anal. Biochem. 161,80). We and others have shown that this lectin is a weak hemagglutinin of human erythrocytes (Kawaguchi, T., Matsumoto, I., and Osawa, T. (1974) J. Biol. Chem. 249, 2786). We now report that leukoagglutination by MAL is inhibited by low concentrations of 2,3-sialyllactose (NeuAc alpha 2,3Gal beta 1,4Glc), but it is not inhibited by either 2,6-sialyllactose (NeuAc alpha 2,6Gal beta-1,4Glc), lactose, or free NeuAc. To further study the carbohydrate-binding specificity of this lectin, we investigated the interactions of immobilized MAL with glycopeptides prepared from the mouse lymphoma cell line BW5147 and from purified glycoproteins. We found that immobilized MAL interacts with high affinity with complex-type tri- and tetraantennary Asn-linked oligosaccharides containing outer sialic acid residues linked alpha 2,3 to penultimate galactose residues. Glycopeptides containing sialic acid linked only alpha 2,6 to penultimate galactose did not interact detectably with the immobilized lectin. Our analyses indicate that the interactions of complex-type Asn-linked chains with the lectin are dependent on sialic acid linkages and are not dependent on either the branching pattern of the mannose residues or the presence of poly-N-acetyllactosamine sequences.  相似文献   

17.
Covalent labeling of the canine renal parathyroid hormone receptor with [125I]bPTH(1-34) reveals several major binding components that display characteristics consistent with a physiologically relevant adenylate cyclase linked receptor. Through the use of the specific glycosidases neuraminidase and endoglycosidase F and affinity chromatography on lectin-agarose gels, we show here that the receptor is a glycoprotein that contains several complex N-linked carbohydrate chains consisting of terminal sialic acid and penultimate galactose in a beta 1,4 linkage to N-acetyl-D-glucosamine. No high mannose chains or O-linked glycans appear to be present. The peptide molecular weight of the deglycosylated labeled receptor is 62,000 [or 58,000 if the mass of bPTH(1-34) is excluded]. The binding of [125I]bPTH(1-34) to the receptor is inhibited in a dose-dependent fashion by wheat-germ agglutinin, but not by either succinylated wheat-germ agglutinin or Ricinus communis lectin, suggesting that terminal sialic acid may be involved in agonist binding. A combination of lectin affinity chromatography and immunoaffinity chromatography affords a 200-fold purification of the covalently labeled receptor.  相似文献   

18.
The Madin-Darby canine kidney (MDCK) cell line, derived from distal tubule/collecting duct, expresses differentiated properties of renal tubule epithelium in culture. We studied the expression of adrenergic receptors in MDCK to examine the role of catecholamines in the regulation of renal function. Radioligand-binding studies demonstrated, on the basis of receptor affinities of subtype-selective adrenergic agonists and antagonists, that MDCK cells have both alpha 1- and beta 2- adrenergic receptors. To determine whether these receptor types were expressed by the same cell, we developed a number of clonal MDCK cell lines. The clonal lines had stable but unique morphologies reflecting heterogeneity in the parent cell line. Some clones expressed only beta 2-adrenergic receptors and were nonmotile, whereas others expressed both alpha 1- and beta 2-receptors and demonstrated motility on the culture substrate at low cell densities. In one clone, alpha- and beta- receptor expression was stable for more than 50 passages. Catecholamine agonists increased phosphatidylinositol turnover by activating alpha- adrenergic receptors and cellular cyclic adenosine monophosphate accumulation by activating beta-adrenergic receptors. Guanine nucleotide decreased the affinity of isoproterenol for the beta 2- receptor but did not alter the affinity of epinephrine for the alpha 1- receptor. These results show that alpha 1- and beta 2-receptors can be expressed by a single renal tubular cell and that the two receptors behave as distinct entities in terms of cellular response and receptor regulation. Heterogeneity of adrenergic receptor expression in MDCK clones may reflect properties of different types of renal tubule cells.  相似文献   

19.
Both alpha- and beta-adrenergic receptors have been identified in the human myometrium by radioligand binding. Both adrenergic receptor subclasses have been shown to mediate the contractile response of the uterus upon catecholamine stimulation: alpha-adrenergic receptors cause uterine contraction while beta-adrenergic receptors induce relaxation. We have identified alpha 1- and alpha 2-adrenergic receptors in myometrial membranes using the newly developed radiolabelled specific antagonists [3H]-prazosin and [3H]-rauwolscine. This enabled us to characterize both receptor subclasses individually. Beta adrenergic receptors were identified using the radiolabelled antagonist (-)-[3H]-dihydroalprenolol. Binding of radioligands to the myometrial membrane receptors was rapid, readily reversible, of high affinity and stereoselective. The total number of alpha 1-, alpha 2- and beta-receptors was determined by Scatchard analysis of radioligand saturation binding and the beta/beta 2-receptor ratio was determined by computer analysis of the beta 2-selective antagonist ICI 118 551) (-)-[3H]-dihydroalprenolol competition binding curves. This enabled us to study the regulation of both alpha- and beta-receptor subclasses under various physiological and pharmacological conditions in the human, i.e., during different phases of the menstrual cycle, in postmenopausal women and during depo-progestin (Medroxyprogesterone acetate) therapy. Only the alpha 2- and beta 1-adrenergic receptor concentrations were found to be subjected to gonadal steroid regulation. The number of alpha 2- and beta 1-adrenergic receptors increased concomitantly with circulating plasma oestradiol levels. This effect was counteracted by progesterone. The number of alpha 1- and beta 2-adrenergic receptors was unaffected by the gonadal steroid environment. These results are an example of the heteroregulation of membrane receptors by oestrogens and progesterone and cast new light on the regulatory mechanisms involved in uterine contractility in the human.  相似文献   

20.
The structure of high-affinity receptors for type beta-transforming growth factor (beta TGF) has been examined by affinity labeling with 125I-beta TGF and disuccinimidyl suberate. The major receptor component labeled by 125I-beta TGF in mouse, rat, and chick fibroblasts migrated as a 280-290-kilodalton species on dodecyl sulfate-polyacrylamide electrophoresis gels in the presence of reductant, dithiothreitol. A larger (330-kilodalton) species was labeled in human fibroblasts, but comparative peptide mapping indicated a close structural relationship with receptors from mouse fibroblasts. In the absence of reductant, the affinity-labeled beta TGF receptor migrated in the gels as a larger disulfide-linked complex. The molecular mass calculated from the hydrodynamic properties of native nonreduced beta TGF receptors was 565 (mouse) or 615 kilodaltons (human). Other molecular parameters for the beta TGF receptor were: Stokes radius, 8.3-8.5 nm; sedimentation coefficient, 12.7-13.0 S; and frictional ratio, f/f0 = 1.4. The beta TGF receptor was solubilized under conditions in which the structural and ligand-binding properties of the native state were retained. beta TGF receptors solubilized from human, mouse, and chick cells interacted specifically with immobilized wheat germ agglutinin. These data suggest that the high affinity receptor for beta TGF in human, rodent, and avian fibroblasts is a disulfide-linked glycosylated 565-615-kilodalton complex with a 280-330-kilodalton subunit that contains the ligand-binding site. The oligomeric structure of the beta TGF receptor does not appear to be induced by receptor occupancy with the ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号