首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Quinine, a cinchona alkaloid, was investigated for putative anxiogenic activity in view of clinical reports suggesting that it induces anxiety and apprehension following its use in malaria. The experimental paradigms chosen to elucidate anxiogenic activity have been shown to stand the tests of reliability and validity. Yohimbine, which has been shown to induce anxiety both in animals and in man, was used for comparison. Quinine was found to elicit a complex behavioural profile of activity ranging from overt central stimulation to marked central depression on dose increment. The doses 10 and 20 mg/kg, ip, of quinine chosen to investigate anxiogenic activity were comparable to those induced by 2.5 and 5 mg/kg ip of yohimbine. Quinine induced a dose-related anxiogenic activity in the open-field and elevated plus-maze tests in mice, and the social interaction and thirst conflict tests in rats, similar to effects induced by yohimbine. In addition, both quinine and yohimbine attenuated the effects of diazepam, an anxiolytic agent, in the open-field and thirst conflict tests. The results indicate that quinine exerts significant anxiogenic effect at a particular dose range.  相似文献   

2.
Effects of L-tryptophan on learning and behavior were studied in male rats with a deficit or excess of thyroid hormones. Learning was assessed in active avoidance paradigm, and behavior was estimated in the "open-field" test. It was found that L-tryptophan restored the capability of thyreoidectomized rats for acquisition and reproduction of the active avoidance reaction and increased the exploratory behavior of these rats in the open-field. In triiodothyronine treated rats, L-tryptophan eliminated a light stimulatory effects of thyroid hormones on the processes of formations and retention of the active avoidance reaction, increased the exploratory activity, but decreased grooming in the open-field.  相似文献   

3.
J Skopkova  G Croiset  D De Wied 《Peptides》1991,12(3):471-475
DGAVP facilitates consolidation and retrieval of active and passive avoidance behavior. In this study it was tested whether the long-term behavioral effects of DGAVP are the consequence of an initial increase in behavioral arousal during the learning phase. Animals that were preestimated in an open field test to be low active showed a lower number of conditioned avoidance responses (CAR's) during acquisition and extinction of a shuttle-box task than high active rats. DGAVP was administered 40 min prior to the 1st acquisition session. The immediate effect of DGAVP was a shift in the bell-shaped curve of the relation between arousal and performance (13); an increase in acquisition performance was observed with a low dose of DGAVP (0.1 microgram), while a decrease was found with a high dose of DGAVP (1 microgram). A dose-dependent inhibition of extinction was found in both low and high active animals. These results suggest an immediate effect of DGAVP on the rate of acquisition behavior, which may be a direct consequence of its arousing properties, and a long-term effect on extinction, indicating the formation of memory traces specific for vasopressin-related neuropeptides.  相似文献   

4.
Segev A  Ramot A  Akirav I 《PloS one》2012,7(1):e29988
This study examined the effects of the arousal level of the rat and exposure to a behavioral stressor on acquisition, consolidation and retrieval of a non-aversive hippocampal-dependent learning paradigm, the object location task. Learning was tested under two arousal conditions: no previous habituation to the experimental context (high novelty stress/arousal level) or extensive prior habituation (reduced novelty stress/arousal level). Results indicated that in the habituated rats, exposure to an out-of-context stressor (i.e, elevated platform stress) impaired consolidation and retrieval, but not acquisition, of the task. Non-habituated animals under both stressed and control conditions did not show retention of the task. In habituated rats, RU-486 (10 ng/side), a glucocorticoid receptor (GR) antagonist, or propranolol (0.75 μg/side), a beta-adrenergic antagonist, injected into the basolateral amygdala (BLA), prevented the impairing effects of the stressor on consolidation, but not on retrieval. The CB1/CB2 receptor agonist WIN55,212-2 (WIN, 5 μg/side) microinjected into the BLA did not prevent the effects of stress on either consolidation or retrieval. Taken together the results suggest that: (i) GR and β-adrenergic receptors in the BLA mediate the impairing effects of stress on the consolidation, but not the retrieval, of a neutral, non-aversive hippocampal-dependent task, (ii) the impairing effects of stress on hippocampal consolidation and retrieval are mediated by different neural mechanisms (i.e., different neurotransmitters or different brain areas), and (iii) the effects of stress on memory depend on the interaction between several main factors such as the stage of memory processing under investigation, the animal's level of arousal and the nature of the task (neutral or aversive).  相似文献   

5.
Disturbances of circadian rhythms are associated with many types of mood disorders; however, it is unknown whether a dysfunctional circadian pacemaker can be the primary cause of altered emotional behavior. To test this hypothesis, male and female mice carrying a mutation of the circadian gene, Clock, were compared to wild-type mice in an array of behavioral tests used to measure exploratory activity, anxiety, and behavioral despair. Female Clock mutant mice exhibited significantly greater activity and rearing in an open field and a greater number of total arm entries in the elevated plus maze. In addition, female Clock mutant mice spent significantly more time swimming in the forced swim test than wild-type mice on both days of a 2-day test. Male Clock mutant mice also exhibited increased exploration of the open field and increased swimming in the forced swim test; however, behavioral changes were less robust in Clock mutant males compared to Clock mutant females. These changes in behavior were not dependent on the expression of a lengthened free-running period but were more or less striking depending on the testing conditions. These data indicate that the Clock mutation leads to increased exploratory behavior and increased escape-seeking behavior, and, conversely, does not result in increased anxiety or depressive-like behavior. These results suggest that the Clock gene is involved in regulating behavioral arousal, and that Clock may interact with sex hormones to produce these behavioral changes.  相似文献   

6.
The glucocorticoid‐induced receptor (GIR) is a stress‐responsive gene that is abundantly expressed in forebrain limbic regions. Glucocorticoid‐induced receptor has been classified as a Neuropeptide Y‐like receptor, however, physiological attributes have not been investigated. In this study, mice lacking GIR (?/?) were screened in various paradigms related to stress, anxiety, activity, memory, fear and reward. GIR ?/? mice elicited behavioral insensitivity to the anxiogenic effects of restraint stress. However, hypothalamic pituitary adrenal axis response to stress was not impacted by GIR deficiency. Increased preference for sucrose was observed in GIR ?/? mice suggestive of modulation of reward‐associated behaviors by the receptor. A delayed acquisition of spatial learning was also observed in GIR ?/? mice. There were no effects of genotype on the modulation of anxiety‐like behavior, activity, fear‐conditioning and extinction. Our data extend previous studies on GIR regulation by glucocorticoids and provide novel evidence for a role of GIR in reward, learning and the behavioral outcomes of stress .  相似文献   

7.
Corticotropin releasing factor (CRF) and serotonin (5-HT) are strongly linked to stress and anxiety in vertebrates. As a neuromodulator in the brain, CRF has anxiogenic properties often characterized by increased locomotion and stereotyped behavior in familiar environments. We hypothesized that expression of anxiogenic behavior in response to CRF will also be exhibited in a teleost fish. Rainbow trout were treated with intracerebroventricular (icv) injections of artificial cerebrospinal fluid (aCSF), 500 or 2000 ng ovine CRF, or not injected. Treatment with either dose of CRF elicited greater locomotion and pronounced head shaking behavior but did not influence water column position. Locomotor and head shaking behaviors may be analogous to the increased stereotypy evoked by icv CRF in rats and may reflect the expression of stress/anxiety behavior. Injection with either aCSF or CRF produced significant increases in plasma cortisol. The absence of behavioral changes in aCSF-injected fish suggests that the behavioral responses following CRF were not due to cortisol. Treatment with 2000 ng CRF significantly increased serotonin, 5-HIAA and dopamine concentrations in the subpallium and raphé and increased 5-HIAA in the preoptic hypothalamus (POA). Concurrent effects of CRF on central monoamines, locomotion and head shaking in trout suggest that anxiogenic properties of CRF are evolutionarily conserved. In addition, positive linear correlations between locomotion and serotonergic and dopaminergic function in the subpallium, POA and raphé nuclei suggest a locomotory function for these monoamines.  相似文献   

8.
Early life exposure to Bisphenol A (BPA), a component of polycarbonate plastics and epoxy resins, alters sociosexual behavior in numerous species including humans. The present study focused on the ontogeny of these behavioral effects beginning in adolescence and assessed the underlying molecular changes in the amygdala. We also explored the mitigating potential of a soy-rich diet on these endpoints. Wistar rats were exposed to BPA via drinking water (1 mg/L) from gestation through puberty, and reared on a soy-based or soy-free diet. A group exposed to ethinyl estradiol (50 μg/L) and a soy-free diet was used as a positive estrogenic control. Animals were tested as juveniles or adults for anxiety-like and exploratory behavior. Assessment of serum BPA and genistein (GEN), a soy phytoestrogen, confirmed that internal dose was within a human-relevant range. BPA induced anxiogenic behavior in juveniles and loss of sexual dimorphisms in adult exploratory behavior, but only in the animals reared on the soy-free diet. Expression analysis revealed a suite of genes, including a subset known to mediate sociosexual behavior, associated with BPA-induced juvenile anxiety. Notably, expression of estrogen receptor beta (Esr2) and two melanocortin receptors (Mc3r, Mc4r) were downregulated. Collectively, these results show that behavioral impacts of BPA can manifest during adolescence, but wane in adulthood, and may be mitigated by diet. These data also reveal that, because ERβ and melanocortin receptors are crucial to their function, oxytocin/vasopressin signaling pathways, which have previously been linked to human affective disorders, may underlie these behavioral outcomes.  相似文献   

9.
《Hormones and behavior》2008,53(5):600-611
Corticotropin releasing factor (CRF) and serotonin (5-HT) are strongly linked to stress and anxiety in vertebrates. As a neuromodulator in the brain, CRF has anxiogenic properties often characterized by increased locomotion and stereotyped behavior in familiar environments. We hypothesized that expression of anxiogenic behavior in response to CRF will also be exhibited in a teleost fish. Rainbow trout were treated with intracerebroventricular (icv) injections of artificial cerebrospinal fluid (aCSF), 500 or 2000 ng ovine CRF, or not injected. Treatment with either dose of CRF elicited greater locomotion and pronounced head shaking behavior but did not influence water column position. Locomotor and head shaking behaviors may be analogous to the increased stereotypy evoked by icv CRF in rats and may reflect the expression of stress/anxiety behavior. Injection with either aCSF or CRF produced significant increases in plasma cortisol. The absence of behavioral changes in aCSF-injected fish suggests that the behavioral responses following CRF were not due to cortisol. Treatment with 2000 ng CRF significantly increased serotonin, 5-HIAA and dopamine concentrations in the subpallium and raphé and increased 5-HIAA in the preoptic hypothalamus (POA). Concurrent effects of CRF on central monoamines, locomotion and head shaking in trout suggest that anxiogenic properties of CRF are evolutionarily conserved. In addition, positive linear correlations between locomotion and serotonergic and dopaminergic function in the subpallium, POA and raphé nuclei suggest a locomotory function for these monoamines.  相似文献   

10.
It was shown, that administration of methyl ether N-(beta-carboline-3-carbonyl)-glycine (GA) at dose level of 1-10 mg/kg markedly reduced exploratory behavior and motor activity in the open field test and facilitated manifestation of different rats defend reaction types. Methyl ether N-(beta-carboline-3-carbonyl)-leucine (LA) at the same doses was less effective. Besides GA (10 mg/kg) like earlier described anxiogenic compound FG 7142 suppressed isolation induced muricide behavior of rats. The results obtained combined with literary data allow us to conclude, that GA possesses expressed anxiogenic activity.  相似文献   

11.
The effects of intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF, 100 and 300 ng) were investigated in the social interaction test of anxiety in rats. Both doses of CRF significantly decreased active social interaction without a concomitant decrease in locomotor activity. CRF also significantly increased self-grooming, an effect that was independent of the decrease in social interaction. These results indicate an anxiogenic action for CRF. Chlordiazepoxide (CDP, 5 mg/kg ip) pretreatment reversed the anxiogenic effects of icv CRF (100 ng), but CRF did not prevent the sedative effects of CDP. There were no statistically significant changes due to CRF in locomotor activity or rears or head dipping in the holeboard test. Both doses of CRF significantly increased plasma concentrations of corticosterone. The possible mechanisms of the behavioral effects of CRF are discussed.  相似文献   

12.
Methyl parathion increases neuronal activities in the rat locus coeruleus   总被引:3,自引:1,他引:2  
Exposure to organophosphate insecticides induces undesirable behavioral changes in humans, including anxiety and irritability, depression, cognitive disturbances and sleep disorders. Little information currently exists concerning the neural mechanisms underlying such behavioral changes. The brain stem locus coeruleus (LC) could be a mediator of organophosphate insecticide-induced behavioral toxicities since it contains high levels of acetylcholinesterase and is involved in the regulation of the sleep-wake cycle, attention, arousal, memory, and pathological processes, including anxiety and depression. In the present study, using a multi-wire recording technique, we examined the effects of methyl parathion, a commonly used organophosphate insecticide, on the firing patterns of LC neurons in rats. Systemic administration of a single dose of methyl parathion (1 mg/kg, i.v.) increased the spontaneous firing rates of LC neurons by 240% but did not change the temporal relationships among the activities of multiple LC neurons. This dose of methyl parathion induced a 50% decrease in blood acetylcholinesterase activity and a 48% decrease in LC acetylcholinesterase activity. The methyl parathion-induced excitation of LC neurons was reversed by administration of atropine sulfate, a muscarinic receptor antagonist, indicating an involvement of muscarinic receptors. The methyl parathion-induced increase in LC neuronal activity returned to normal within 30 min while the blood acetylcholinesterase activity remained inhibited for over 1 h. These data indicate that methyl parathion treatment can elicit excitation of LC neurons. Such excitation could contribute to the neuronal basis of organophosphate insecticide-induced behavioral changes in human.  相似文献   

13.
Iprindole, a tricyclic indole compound with an antidepressant activity was evaluated in an animal test model. In this test a potential antidepressant agent should potentiate the behavioral and cardiovascular effects of yohimbine, a naturally occurring indole alkaloid, in conscious dogs. For comparison, imipramine, a standard antidepressant drug was used. Iprindole was tested at a dose of 3, 9, and 15 mg per kg. It potentiated the behavioral and cardiovascular effects of yohimbine at a dose of 9 mg per kg. Iprindole failed to potentiate norepinephrine response in dogs; similar observations are reported in man. The results further confirm the validity of the present test for evaluation of potential antidepressant agents in conscious dog.  相似文献   

14.
Arousal patently transforms the faculties of complex organisms. Although typical changes in cortical activity such as seen in EEG and LFP measurements are associated with change in state of arousal, it remains unclear what in the constitution of such state dependent activity enables this profound enhancement of ability. We put forward the hypothesis that arousal modulates cortical activity by rendering it more fit to represent information. We argue that representational capacity is of a dual nature—it requires not only that cortical tissue generate complex activity (i.e. spatiotemporal neuronal events), but also a complex cortical activity space (which is comprised of such spatiotemporal events). We explain that the topological notion of complexity—homology—is the pertinent measure of the complexity of neuronal activity spaces, as homological structure indicates not only the degree to which underlying activity is inherently clustered but also registers the effective dimensionality of the configurations formed by such clusters. Changes of this sort in the structure of cortical activity spaces can serve as the basis of the enhanced capacity to make perceptual/behavioral distinctions brought about by arousal. To show the feasibility of these ideas, we analyzed voltage sensitive dye imaging (VSDI) data acquired from primate visual cortex in disparate states of arousal. Our results lend some support to the theory: first as arousal increased so did the complexity of activity (that is the complexity of VSDI movies). Moreover, the complexity of structure of activity space (that is VSDI movie space) as measured by persistent homology—a multi scale topological measure of complexity—increased with arousal as well.  相似文献   

15.
While the subject of learning has attracted immense interest from both behavioral and neural scientists, only relatively few investigators have observed single-neuron activity while animals are acquiring an operantly conditioned response, or when that response is extinguished. But even in these cases, observation periods usually encompass only a single stage of learning, i.e. acquisition or extinction, but not both (exceptions include protocols employing reversal learning; see Bingman et al.1 for an example). However, acquisition and extinction entail different learning mechanisms and are therefore expected to be accompanied by different types and/or loci of neural plasticity.Accordingly, we developed a behavioral paradigm which institutes three stages of learning in a single behavioral session and which is well suited for the simultaneous recording of single neurons'' action potentials. Animals are trained on a single-interval forced choice task which requires mapping each of two possible choice responses to the presentation of different novel visual stimuli (acquisition). After having reached a predefined performance criterion, one of the two choice responses is no longer reinforced (extinction). Following a certain decrement in performance level, correct responses are reinforced again (reacquisition). By using a new set of stimuli in every session, animals can undergo the acquisition-extinction-reacquisition process repeatedly. Because all three stages of learning occur in a single behavioral session, the paradigm is ideal for the simultaneous observation of the spiking output of multiple single neurons. We use pigeons as model systems, but the task can easily be adapted to any other species capable of conditioned discrimination learning.  相似文献   

16.
Previous studies have indicated that vasopressin treatment improves the poor performance of congenitally vasopressin deficient (Brattleboro) rats on shock avoidance paradigms, an effect thought to relate to the peptide's enhancement of mnemonic processing. In the present study, a food rewarded autoshaping task was used to study the acquisition, retention, extinction and subsequent re-acquisition of lever pressing. Vasopressin (1 μg/rat, subcutaneous) was found to impair acquisition in these animals.The possibility that this deleterious effect was due to a transient suppression of motor capability was tested in a second experiment. Vasopressin increased overall locomotor activity levels, but there was an indication that rates immediately following injection were lower than usual. An explanation for the effects of vasopressin based on arousal enhancement is discussed, and it is suggested that the neuropeptide may be concerned with the regulation of arousal and hence performance.  相似文献   

17.
Circadian rhythms in the Syrian hamster can be markedly phase shifted by 3 h of wheel running or arousal stimulation during their usual daily rest period ("subjective day"). Continuous wheel running is predictive but not necessary for phase shifts of this "nonphotic" type; hamsters aroused by gentle handling without running can also show maximal shifts. By contrast, physical restraint, a standard stress procedure and thus presumably arousing, is ineffective. To resolve this apparent paradox, phase-shifting effects of 3-h sessions of restraint or other stress procedures were assessed. In a preliminary study, phase shifts to arousal by gentle handling were significantly potentiated by the cortisol synthesis inhibitor metyrapone, suggesting that stress-related cortisol release may inhibit phase shifts to arousal. Next, it was confirmed that restraint in the subjective day does not induce phase shifts, but behavioral observations revealed that it also does not sustain arousal. Restraint combined with noxious compressed air blasts did sustain arousal and induced a significant cortisol response compared with arousal by gentle handling but did not induce shifts. Restraint combined with continuous horizontal rotation was also ineffective, as was EEG-validated arousal via confinement to a pedestal over water. However, 3 h of resident-intruder interactions (an intense psychosocial stress) or exposure to an open field (a mild stress) did induce large shifts that were positively correlated with indexes of forward locomotion. The results indicate that large phase shifts associated with arousal in the usual sleep period are neither induced nor prevented by stress per se, but are dependent on the expression of at least low levels of locomotor activity. Sustained arousal alone is not sufficient.  相似文献   

18.
Rats learning the Morris water maze exhibit hippocampal changes in synaptic morphology and physiology that manifest as altered synaptic efficacy. Learning requires structural changes in the synapse, and multiple cell adhesion molecules appear to participate. The activity of these cell adhesion molecules is, in large part, dependent on their interaction with the extracellular matrix (ECM). Given that matrix metalloproteinases (MMPs) are responsible for transient alterations in the ECM, we predicted that MMP function is critical for hippocampal-dependent learning. In support of this, it was observed that hippocampal MMP-3 and -9 increased transiently during water maze acquisition as assessed by western blotting and mRNA analysis. The ability of the NMDA receptor channel blocker MK801 to attenuate these changes indicated that the transient MMP changes were in large part dependent upon NMDA receptor activation. Furthermore, inhibition of MMP activity with MMP-3 and -9 antisense oligonucleotides and/or MMP inhibitor FN-439 altered long-term potentiation and prevented acquisition in the Morris water maze. The learning-dependent MMP alterations were shown to modify the stability of the actin-binding protein cortactin, which plays an essential role in regulating the dendritic cytoskeleton and synaptic efficiency. Together these results indicate that changes in MMP function are critical to synaptic plasticity and hippocampal-dependent learning.  相似文献   

19.
Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.  相似文献   

20.
The effects of various doses (0.01-1.00 mg/kg) of yohimbine, an alpha-2 adrenoceptor antagonist, on the erectile and ejaculatory response elicited by manual penile stimulation were investigated in male dogs. Systemic administration of yohimbine caused a biphasic effect on ejaculatory response; the amount of ejaculate produced by the genital stimulation (for 5 min) was dose-dependently increased by low doses (0.01-0.10 mg/kg) of yohimbine, whereas it was decreased by the highest dose (1.00 mg/kg) of yohimbine. The erectile potency was attenuated only, by the highest dose of yohimbine. The most effective dose (0.10 mg/kg) of yohimbine on ejaculation did not affect the duration of penile erection after removing the genital stimulation. In a stereoisomer's testing, the stimulatory effect on ejaculation was also observed by rauwolscine, an alpha-2 adrenoceptor antagonist (0.03 and 0.10 mg/kg), but not by corynanthine, an alpha-1 adrenoceptor antagonist (0.10 and 0.30 mg/kg). These results suggest that yohimbine at low doses specifically facilitate the ejaculatory response through the blockade of the alpha-2 adrenoceptors. This study also indicates that the effects of yohimbine on male genital responses vary with its dosage used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号