首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Two experiments were conducted to investigate the effects of timing of prostaglandin F2(alpha) (PGF2(alpha)) administration, controlled internal drug release device (CIDR) removal and second gonodotropin releasing hormone (GnRH) administration on the pregnancy outcome in CIDR-based synchronization protocols. In Experiment 1, suckled Angus crossbred beef cows (n = 580) were given 100 microg of GnRH+a CIDR on Day 0. Cows in Group 1 (modified Ovsynch-P) received 25 mg of dinoprost (PGF2(alpha)) and CIDR device removal on Day 8 (AM), 100 microg of GnRH 36 h later on Day 9 (p.m.), and fixed-time AI (FTAI) 16 h later on Day 10 (47.5+/-1.1 h after PGF2(alpha)). Cows in Group 2 (Ovsynch-P) received 25mg of PGF2(alpha) and CIDR device removal on Day 7 (p.m.), 100 microg of GnRH 48 h later on Day 9 and FTAI 16 h later on Day 10 (66.6+/-1.2 h after PGF2(alpha)). Pregnancy rates were 56.5% (170/301) for Group 1 and 55.6% (155/279) for Group 2, respectively (P = 0.47). In Experiment 2, beef cows (n=734) were synchronized with 100 microg of GnRH+CIDR on Day 0, 25 mg of PGF2(alpha) and CIDR device removal on Day 7 and either 100 microg of GnRH 48 h later on Day 9 (Ovsynch-P) and FTAI 16 h later on Day 10 (64.9+/-3.3 h from PGF2(alpha)) or 100 microg of GnRH on Day 10 (CO-Synch-P) at the time of AI (63.2+/-4.2 h from PGF2(alpha)). Pregnancy rates were 48.8% (180/369) for Ovsynch-P and 44.7% (163/365) for CO-synch-P groups, respectively (P = 0.11). In both experiments, there was a locationxtreatment interaction (P<0.05); pregnancy rates between locations were different (P < 0.05) in the Ovsynch-P group. In conclusion, in a CIDR-based Ovsynch synchronization protocol, delaying administration of prostaglandin and CIDR removal by 12 h, or timing of the second GnRH by 16 h, did not affect pregnancy rates to FTAI. Therefore, there may be an opportunity to make changes in synchronization protocols with out adversely affecting FTAI pregnancy rates.  相似文献   

2.
The present work evaluated low-cost protocols for timed artificial insemination (TAI) in beef cattle. In Experiment 1, cycling nonlactating Nelore cows (Bos indicus, n=98) were assigned to the following groups: GnRH-PGF (GP) and GnRH-PGF-GnRH (GPG), whereas cycling (n=328, Experiment 2) or anestrus (n = 225, Experiment 3) lactating (L) cows were divided into 3 groups: GP-L, GPG-L and GnRH-PGF-Estradiol benzoate (GPE-L). In Experiment 4, lactating cows (n=201) were separated into 3 groups: GP-L, GPE-L and G/2PE-L. Animals from Experiment 1, 3 and 4 were treated (Day 0), at random stages of the estrous cycle, with 8 microg of buserelin acetate (GnRH agonist) intramuscularly (i.m.), whereas in Experiment 2 half of the cows received 8 and the other half 12 microg of GnRH (i.m.). Seven days later (D 7) all animals were treated with 25 mg of dinoprost trometamine (PGF2alpha, i.m.) except those cows from the G/2PE-L group which received only 1/2 dose of PGF2alpha (12.5 mg) via intravulvo-submucosa (i.v.s.m.). After PGF2alpha injection the animals from the control groups (GP and GP-L) were observed twice daily to detect estrus and AI was performed 12 h afterwards. The cows from the other groups received a second GnRH injection (D 8 in GPG-L and d9 in GPG groups) or one injection of estradiol benzoate (EB, 1.0 mg, D 8 in GPE-L group). All cows from GPG and GPG-L or GPE-L groups were AI 20 to 24 or 30 to 34 h, respectively, after the last hormonal injection. Pregnancy was determined by ultrasonography or rectal palpation 30 to 50 days after AI. In the control groups (GP and GP-L) percentage of animals detected in heat (44.5 to 70.3%) and pregnancy rate (20 to 42%) varied according to the number of animals with corpus luteum (CL) at the beginning of treatment. The administration of a second dose of GnRH either 24 (Experiment 2) or 48 h (Experiment 1) after PGF2alpha resulted in 47.7 and 44.9% pregnancy rates, respectively, after TAI in cycling animals. However, in anestrus cows the GPG treatment induced a much lower pregnancy rate (14.9%) after TAI. The replacement of the second dose of GnRH by EB (GPE-L) resulted in a pregnancy rate (43.3%) comparable to that obtained after GnRH treatment (GPG-L, 47.7%, Experiment 2). Furthermore, the use of 1/2 dose of PGF2alpha (12.5 mg i.v.m.s., Experiment 4) resulted in pregnancy rate (43.5%) similar to that observed with the full dose (i.m.). Both protocols GPG and GPE were effective in synchronizing ovulation in cycling Nelore cows and allowed approximately a 45% pregnancy rate after TAI. Additionally, the GPE treatment is a promising alternative to the use of GPG in timed AI of beef cattle, due to the low cost of EB when compared to GnRH agonists.  相似文献   

3.
The objectives of this experiment were to compare estrous synchronization responses and AI pregnancy rates of beef heifers using protocols that included either CIDR or MGA as the progestin source. The hypotheses tested were that: (1) estrous synchronization responses after (a) progestin removal, and (b) PGF(2alpha); and, (2) AI pregnancy rates, do not differ between heifers synchronized with either progestin source. At the start of the experiment (Day 0) in both years, heifers were assigned randomly to receive, MGA supplement for 14 days (MGA-treated; n=79) or CIDR for 14 days (CIDR-treated; n=77). On Day 14 progestin was removed and heifers were observed for estrus up to and after PGF(2alpha) on Days 31 and 33 for CIDR-treated and MGA-treated heifers, respectively. Heifers that exhibited estrus within 60h after PGF(2alpha) were inseminated by AI 12h later; the remaining heifers were inseminated at 72h after PGF(2alpha) and given GnRH (100mug). More (P<0.05) CIDR-treated heifers exhibited estrus within 120h after progestin removal than MGA-treated heifers. Intervals to estrus after progestin removal were shorter (P<0.05) for CIDR-treated heifers than MGA-treated heifers. More (P<0.05) CIDR-treated heifers exhibited estrus and were inseminated within 60h after PGF(2alpha) than MGA-treated heifers. Pregnancy rates did not differ (P>0.10) between MGA-treated (66%) and CIDR-treated (62%) heifers. In conclusion, the use of CIDR as a progestin source in a 14-day progestin, PGF(2alpha), and timed AI and GnRH estrous synchronization protocol was as effective as the use of MGA to synchronize estrus and generate AI pregnancies in beef heifers.  相似文献   

4.
The objectives were to determine pregnancy rates following fixed-time AI (FTAI) in heifers: (1). given GnRH or estradiol cypionate (ECP) to synchronize follicular wave emergence and ovulation in a CIDR-based protocol; and (2). fed diets supplemented with flax or sunflower seeds. At two locations, Angus and crossbred Angus heifers (n=983) were examined ultrasonically to confirm reproductive maturity and randomly allocated to six synchronization groups in a 2 x 3 factorial design. On Day 0 (start of synchronization treatments), heifers received a CIDR and either 100 microg GnRH i.m. (n=492) or 1mg ECP plus 50 mg progesterone i.m. (n=491); in these groups, CIDR removal and PGF treatment were done concurrently on Days 7 and 8.5, respectively. Heifers were re-randomized to receive 0.5 mg ECP i.m. at CIDR removal or 24 h later (with FTAI 58-60 h after CIDR removal in both groups), or 100 microg GnRH i.m. concurrent with FTAI (52-54 h after CIDR removal). The heifers were fed a barley silage-based diet for 50 days (from Day -25 to 25) supplemented with 1kg/heifer per day of flax seed (n=321), sunflower seed (n=324), or no oilseed (n=338). Pregnancy rate to FTAI (overall, 56.2%) was not affected by treatment at CIDR insertion (P = 0.96) but was higher (P < 0.05) in heifers given ECP 24h after CIDR removal (216/330, 65.4%) than in those given either ECP at CIDR removal (168/322, 52.1%) or GnRH at AI (169/331, 51.1%). Overall, there was no effect of diet on pregnancy rates (P = 0.46). In summary, pregnancy rate to FTAI was not significantly affected by treatment at CIDR insertion to synchronize follicular wave emergence, but 0.5mg ECP 24h after CIDR removal (to synchronize ovulation) resulted in the highest pregnancy rate.  相似文献   

5.
The objective was to determine reproductive performance following AI in beef heifers given estradiol to synchronize ovarian follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose PGF-based protocol. In Experiment 1, 561 cycling (confirmed by ultrasonography), Angus heifers received 500 microg cloprostenol, i.m. (PGF) twice, 14 days apart (days 0 and 14) and were equally allocated to four groups in a 2 x 2 factorial design. On Day 7, heifers received either 2 mg estradiol benzoate (EB) and 50 mg progesterone (P), i.m. in oil (EBP group) or no treatment (NT group). Half the heifers in each group received 1mg EB, i.m. in oil on Day 15 (24h after the second PGF treatment) with TAI 28 h later (52 h after PGF), and the other half received 100 microg GnRH, i.m. on Day 17 (72 h after PGF) concurrent with TAI. All heifers were observed for estrus twice daily from days 13 to 17; those detected in estrus more than 16 h before scheduled TAI were inseminated 4-16 h later and considered nonpregnant to TAI. Overall pregnancy rate (approximately 35 days after AI) was higher in heifers that received EBP than those that did not (61.6% versus 48.2%, respectively; P < 0.002); but was lower in heifers that received EB after PGF than those that received GnRH (50.0% versus 59.8%; P < 0.02). Although estrus was detected prior to TAI in 77 of 279 heifers (27.6%) treated with EBP (presumably due to induced luteolysis), they were inseminated and 53.2% became pregnant. Overall pregnancy rates were 51.4, 68.3, 45.0, and 55.0% in the NT/GnRH, EBP/GnRH, NT/EB, and EBP/EB groups, respectively (P < 0.05). In Experiment 2, 401 cycling, Angus heifers were used. The design was identical to Experiment 1, except that 1.5mg estradiol-17beta (E-17beta) plus 50mg progesterone (E-17betaP) and 1mg E-17beta were used in lieu of EBP and EB, respectively. All heifers receiving E-17beta 24h after the second injection of PGF (NT/E-17beta and E-17betaP/E-17beta) were TAI 28 h later without estrus detection, i.e. 52 h after PGF. Heifers in the other two groups received 100 microg GnRH, i.m. 72 h after PGF and were concurrently TAI; heifers in these two groups that were detected in estrus prior to this time were inseminated 4-12h later and considered nonpregnant to TAI. Estrus rate during the first 72 h after the second PGF treatment was higher (P < 0.05) in the E-17betaP/GnRH group (45.0%; n = 100) than in the NT/GnRH group (16.0%; n = 100), but conception rate following estrus detection and AI was not different (mean, 57.4%; P = 0.50). Overall pregnancy rate was not significantly different among groups (mean, 46.9%; P = 0.32). In summary, the use of EB or E-17beta to synchronize follicular wave emergence and estradiol or GnRH to synchronize ovulation in a two-dose, PGF-based protocol resulted in acceptable fertility to TAI. However, when 2mg EB was used to synchronize follicular wave emergence, early estrus occurred in approximately 28% of heifers, necessitating additional estrus detection. A combination of estrus detection and timed-AI in a two-dose PGF protocol resulted in highly acceptable pregnancy rates.  相似文献   

6.
Kim IH  Suh GH  Son DS 《Theriogenology》2003,60(5):809-817
The objective of this study was to evaluate pregnancy rates in lactating Holstein cows treated with an Ovsynch protocol (GnRH-PGF(2alpha)-GnRH) or a progesterone-based timed AI (TAI) protocol, and to determine the factors that may influence pregnancy rate following protocol treatment. In experiment 1, lactating Holstein cows were randomly assigned to three treatments: (1) an injection of GnRH (Day 0), an injection of PGF(2alpha) on Day 7, a second injection of GnRH on Day 9, and TAI 16h after the second GnRH injection (GPG group, n = 34); (2) insertion of a CIDR intravaginal progesterone (1.9g) device combined with a capsule containing 10mg estradiol benzoate (Day 0), an injection of PGF(2alpha) and removal of the device on Day 7, an injection of GnRH on Day 9, and TAI 16h after the GnRH injection (CPG group, n = 34); (3) an injection of PGF(2alpha) after confirming the presence of CL by ultrasonographical observation and artificial insemination at estrus (AIE) (P group, n = 75). The pregnancy rate after TAI following the CPG protocol (41.2%) was higher (P<0.05) than that after TAI following the GPG protocol (20.6%) and that after AIE (20.0%). In experiment 2, lactating Holstein cows were randomly assigned to two treatments: a GPG group (n = 31) and a CPG group (n = 31). The GPG and CPG protocols were identical to those used in experiment 1. The proportion of cows with premature estrus prior to injection of PGF(2alpha) and with incomplete luteal regression tended (P = 0.056) to be or were greater (P<0.05) in the GPG group (4/31, 8/31) than in the CPG group (0/31, 2/31), respectively. Average diameters of dominant follicles (1.5+/-0.1mm versus 1.4+/-0.1mm) on Day 7 and preovulatory follicles (1.8+/-0.1mm versus 1.6+/-0.1mm) on Day 9, and the proportion of cows with synchronized ovulation by 40h after the second GnRH injection were not different (81.5% versus 87.1%, P>0.05) between groups, respectively. We conclude that the pregnancy rate after TAI following the CPG protocol was higher than that after TAI following the GPG protocol, probably due to a decreased incidence of premature estrus and incomplete luteal regression.  相似文献   

7.
The efficacy of GnRH and PGF2alpha (7-day injection interval) for estrus synchronization is diminished by estrous expression before PGF2alpha (premature estrus; PE). Effects of modifications to GnRH-PGF2alpha protocols on the incidence of PE and other indicators of reproductive performance were evaluated. In Experiment 1, Angus-based crossbred cows (n=51) received 25 mg of PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity and interval postpartum to receive GnRH 100 microg i.m. on either Day -7 or Day -6. Estrous detection and AI were conducted from Day -3 to Day 5. Treatment had no effect on the incidence of PE, estrous response, conception rate per AI or synchronized pregnancy rate (6- vs. 7-day interval; 8 vs. 15%; 92 vs. 93%; 77 vs. 76%; 71 vs. 70%, respectively). In Experiment 2, Angus cows (n=150) received GnRH 100 microg i.m. on Day -7 and 25 mg PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity, interval postpartum, and body condition score to receive either no further treatment (Control) or 0.5 mg melengestrol acetate/hd/d from Day -7 to Day -1 (MGA). Estrous detection and AI were conducted from Day -2 to Day 7. Fewer (P < 0.05) MGA-treated cows were detected in PE (0%) compared to controls (7%). Treatment had no effect on estrous response or synchronized pregnancy rates (Control vs. MGA; 78 vs. 84%; 52 vs. 60%, respectively). Conception rate per AI of cows > or = 60 days postpartum were not affected by treatment (Control vs. MGA; 79 vs. 73%) however, control cows < 60 days postpartum tended (P < 0.10) to have lower conception rates per AI (39%) than did their MGA-treated counterparts (69%). In summary, 6- and 7-day GnRH-PGF2alpha injection intervals resulted in similar synchronized reproductive performance. Inclusion of MGA feeding between GnRH and PGF2alpha injections eliminated the occurrence of premature estrus and improved conception rate per AI of late-calving cows.  相似文献   

8.
The aim in this study was to compare two estrus synchronization protocols in buffaloes. Animals were divided into two groups: Group A (n=111) received 100 microg GnRH on Day 0, 375 microg PGF(2alpha) on Day 7 and 100 microg GnRH on Day 9 (Ovsynch); Group B (n=117) received an intravaginal drug release device (PRID) containing 1.55 g progesterone and a capsule with 10mg estradiol benzoate for 10 days and were treated with a luteolytic dose of PGF(2alpha) and 1000 IU PMSG at the time of PRID withdrawal. Animals were inseminated twice 18 and 42 h after the second injection of GnRH (Group A) and 60 and 84 h after PGF(2alpha) and PMSG injections (Group B). Progesterone (P(4)) concentrations in milk samples collected 12 and 2 days before treatments were used to determine cyclic and non-cyclic buffaloes, and milk P(4) concentrations 10 days after Artificial insemination (AI) were used as an index of a functional corpus luteum. Cows were palpated per rectum at 40 and 90 days after AI to determine pregnancies. All previously non-cyclic animals in Group B had elevated P(4) (>120 pg/ml milk whey) on Day 10 after AI. Accordingly, a greater (P<0.01) relative percentage of animals with elevated P(4) 10 days after AI were observed in Group B (93.2%) than in Group A (81.1%). However, there was no difference in overall pregnancy rates between the two estrus synchronization protocols (Group A, 36.0%; Group B 28.2%). When only animals with elevated P(4) on Day 10 after AI were considered, pregnancy rate was higher (P<0.05) for animals in Group A (44.4%) than Group B (30.3%). The findings indicated that treatment with PRID can induce ovulation in non-cyclic buffalo cows. However, synchronization of estrus with Ovsynch resulted in a higher pregnancy rate compared with synchronization with PRID, particularly in cyclic buffalo.  相似文献   

9.
Four experiments were conducted to investigate modifications to gonadotropin releasing hormone (GnRH)-based fixed-time Al protocols in beef cattle. In Experiment 1, the effect of reducing the interval from GnRH treatment to prostaglandin (PGF) was examined. Lactating beef cows (n = 111) were given 100 mg gonadorelin (GnRH) on Day 0 (start of treatment) and either 500 microg cloprostenol (PGF) on Day 6 with Al and 100 microg GnRH 60 h later, or PGF on Day 7 with Al and GnRH 48 h later (6- or 7-day Co-Synch regimens). Pregnancy rates were 32/61 (53.3%) versus 26/50 (52.0%), respectively (P = 0.96). In Experiment 2. cattle (n = 196) were synchronized with a 7-day Co-Synch regimen and received either no further treatment or a CIDR-B device (Days 0-7). Pregnancy rates were 32/71 (45.1%) versus 33/77 (42.9%) in cows (P < 0.8), and 9/23 (39.1 %) versus 17/25 (68.0%) in heifers (P < 0.05). In Experiment 3, 49 beef heifers were randomly assigned to receive 12.5 mg pLH on Day 0, PGF on Day 7 and 12.5 mg of pLH on Day 9 with Al 12 h later (pLH Ovsynch), or similar treatment plus a CIDR-B device from Days 0 to 7 (pLH Ovsynch + CIDR-B), or 1 mg estradiol benzoate (EB) and 100 mg progesterone on Day 0, a CIDR-B device from Days 0 to 7 (EB/ P4 + CIDR-B), PGF on Day 7 (at the time of CIDR-B removal) and 1 mg i.m. EB on Day 8 with AI on Day 9 (52 h after PGF). Pregnancy rate in the EB/P4 + CIDR-B group (75.0%) was higher (P < 0.04) than in the pLH Ovsynch group (37.5%): the pLH Ovsynch + CIDR-B group was intermediate (64.7%). In Experiment 4, 266 non-lactating cows were allocated to a 7-day Co-Synch protocol (Co-Synch), a 7-day Co-Synch plus 0.6 mg per head per day melengestrol acetate (MGA) from Days 0 to 6 inclusive (Co-Synch + MGA) or MGA (Days 0-6) plus 2 mg EB and 50 mg progesterone on Day 0. 500 microg PGF on Day 7, 1 mg EB on Day 8 and fixed-time Al 28 h later (EB/ P4 + MGA). Pregnancy rates (P < 0.25) were 44.8% (39/87: Co-Synch), 47.8% (43/90; Co-Synch + MGA), and 60.7% (54/89: EB/P4 + MGA). In conclusion, a 6- or 7-day interval from GnRH to PGF in a Co-Synch regimen resulted in similar pregnancy rates in cows. The addition of a progestin to a Co-Synch or Ovsynch regimen significantly improved pregnancy rates in heifers but not in cows. Progestin-based regimens that included EB consistently resulted in high pregnancy rates to fixed-time Al.  相似文献   

10.
This study was designed to compare the reproductive response to timed AI of lactating dairy cows with cystic ovarian follicles treated with GnRH or hCG to synchronize ovulation. The effectiveness of treatment during the warm or cool period of the year was also compared. Cows were given 12 microg GnRH-agonist i.m. on day 0 of the protocol, 15 mg PGF(2alpha) i.m. on day 7, and either GnRH-agonist (GPG treatment) or 3000 IU hCG i.m. (GPH treatment) on day 9, followed by timed AI. The cows were randomly chronologically assigned to GPG (n=130) or GPH (n=136) group. All cows were inseminated at fixed time 16-22 h after the end of treatment. During the warm period the pregnancy rate to first AI was 12% (7/60) and 21% (14/68) for the GPG and GPH groups, respectively, there being no significant differences between groups; the cumulative pregnancy rate was 22% (13/60) and 21% (14/68) for the GPG and GPH groups, respectively, again with no significant intergroup differences. During the cool period pregnancy rate to first AI was not different between groups: 29% (20/70) for GPG and 32% (22/68) for GPH, respectively; whereas the cumulative pregnancy rate was significantly higher (P<0.05) for the GPH groups than for the GPG group: 56% (39/70) and 78% (53/68), respectively. These findings indicate that during the warm period, the pregnancy rates of the cystic cows were similar whether they received GPG or GPH treatment, during the cool period, there is a beneficial effect to use hCG at day 9 of the ovsynch protocol compared GnRH on cumulative pregnancy rate.  相似文献   

11.
The overall objective was to compare the efficacy of GnRH, porcine LH (pLH) and estradiol cypionate (ECP), in a modified Ovsynch/fixed-time AI (FTAI) protocol that included a controlled internal drug [progesterone] release (CIDR) device. In Experiment 1, heifers received a CIDR on Day -10, and PGF (25mg) on Day -3. At CIDR insertion, heifers received 100 microg of GnRH (n=6), 0.5mg of ECP (n=6), 5.0mg of pLH (n=6) or 2 mL of saline (n=7); these treatments were repeated on Day -1, except for ECP, that was repeated on Day -2, concurrent with CIDR-removal. The 5.0 mg pLH was the least effective with a longer interval to ovulation than the other groups combined (102 versus 64 h; P<0.05). Overall mean LH concentrations (1.6 ng/mL) and area under the curve (AUC) did not differ among treatments, but mean peak LH concentration was lower in heifers given 5 mg of pLH compared to all other groups (4.5 versus 10.3 ng/mL; P<0.05). In Experiment 2, heifers on CIDR-based Ovsynch protocols were given 12.5mg pLH (n=6; pLH-low), 25.0 mg pLH (n=6, pLH-high), or 100 microg GnRH (n=5; control). Heifers in the pLH-high group had greater (P<0.01) plasma LH concentrations (between 12 and 20 h) than GnRH-treated heifers, but the pLH treatments did not differ (P>0.10). Area under the curve for LH (ng/32 h) was at least 50% greater (P<0.01) in pLH-treated heifers compared to GnRH-treated heifers (mean, 41.3, 56.3 and 20.3 for pLH-low, pLH-high and GnRH, respectively). Ovulation occurred in 15 of 17 heifers. Progesterone concentrations were higher on Days 9 and 14 in heifers given 25mg of pLH, suggesting enhanced CL function. In Experiment 3, 240 heifers were assigned to CIDR-based Ovsynch/FTAI protocols. The first and second hormonal treatments (with an intervening PGF treatment on Day -3) were GnRH/GnRH (100 microg), ECP/ECP (0.5 mg), pLH/pLH (12.5 mg) or GnRH/ECP, respectively; pregnancy rates were 58.7, 66.1, 45.9 and 48.3%, respectively (ECP/ECP>both pLH/pLH and GnRH/ECP; P相似文献   

12.
The effects on estrus and fertility of 3 estrus synchronization protocols were studied in Brahman beef heifers. In Treatment 1 (PGF protocol; n=234), heifers received 7.5 mg, i.m. prostianol on Day 0 and were inseminated after observed estrus until Day 5. Treatment 2 (10-d NOR protocol; n = 220) consisted of norgestomet (NOR; 3 mg, s.c. implant and 3 mg, i.m.) and estradiol valerate (5 mg, i.m.) treatment on Day -10, NOR implant removal and 400 IU, i.m. PMSG on Day 0, and AI after observed estrus through to Day 5. Treatment 3 (14-d NOR+PGF protocol; n = 168) constituted a NOR implant (3 mg, sc) on Day -14, NOR implant removal on Day 0, PGF on Day 16, and AI after observed estrus through to Day 21. All heifers were examined for return to estrus at the next cycle and inseminated after observed estrus. The heifers were then exposed to bulls for at least 21 d. During the period of estrus observation (5 d) after treatment, those heifers treated with the PGF protocol had a lower (P<0.01) rate of estrual response (58%) than heifers treated with the 10-d NOR (87%) or 14-d NOR+PGF (88%) protocol. Heifers treated with the 10-d NOR protocol displayed estrus earlier and had a closer synchrony of estrus than heifers treated with either the PGF or the 14-d NOR+PGF protocol. Heifers treated with the 14-d NOR+PGF protocol had higher (P<0.05) conception and calving rates (51 and 46%) to AI at the induced estrus than heifers treated with the PGF (45 and 27%) or the 10-d NOR (38 and 33%) protocol. Calving rate to 2 rounds of AI was greater (P<0.05) for heifers treated with the 14-d NOR-PGF (50%) protocol than heifers treated with the 10-d NOR (38%) but not the PGF (43%) protocol. Breeding season calving rates were similar among the 3 protocols. The results show that the 14-d NOR+PGF estrus synchronization protocol induced a high incidence of estrus with comparatively high fertility in Brahman heifers.  相似文献   

13.
The reproductive efficiency of Friesian dairy cows was investigated in a three (oestrous synchronisation technique) x two (seasons of the year) factorial design. The 90 primiparous and multiparous cows (winter, n=42; summer, n=48) were allocated at random to three synchronisation treatments (n=30 cows per treatment). In treatment 1 (GPG), the cows were administered 15 mg PGF(2alpha) i.m. at 30 +/- 3 days postpartum, 100 microg GnRH i.m. at 51 +/- 3 days and 15 mg PGF(2alpha) 7 days later. A second 100 microg dose of GnRH was given after, further 2 days and fixed time AI occurred 16-20 h later. In treatment 2 (PG-PG), 15 mg PGF(2alpha) was administered i.m. to each cow on three occasions at successive 14 days interval starting at 30 +/- 3 days postpartum and the cows were inseminated at observed oestrus following the third dose of PGF(2alpha). Cows in treatment 3 (PG) had a single administration of 15 mg PGF(2alpha) i.m. at 57+/-3days postpartum and were inseminated as in treatment 2. Mean daily ambient temperature was 10.9 degrees C in winter (November-March) and 20.2 degrees C in summer (June-October). The cows were confined in an open-fronted shed and had ad libitum access to a complete diet with a 37:63 forage to concentrate ratio. Body condition score was assessed at 57 +/- 3 days postpartum. Cow rectal temperature at insemination, milk yield, reproductive data and climatic variables were recorded. Blood samples were collected for progesterone assay on days 4, 11, 18, 25, 32, 39 and 46 post-AI from 54 of the cows (19 GPG; 17 PG-PG; 18 PG). Pregnancy rate to first AI was 36.7% (11/30) for GPG and 16.7% (5/30) for both PG-PG and PG treatments. The difference was not significant. The cumulative pregnancy rate after third AI were GPG 83.3% (25/30), PG-PG 60.0% (18/30) and PG 60.0% (18/30; P<0.057). The cumulative pregnancy rate for cows inseminated in the winter (81.0%; 34/42) was higher (P<0.01) than for those inseminated in the summer (56.3%; 27/48). The interval from calving to first service was shorter (P<0.05) in treatment PG-PG (65.4+/-1.3 days) than in PG (69.2+/-1.3 days). Mean plasma progesterone concentrations post-AI of pregnant cows were higher (P<0.001) for GPG cows than those for PG-PG and PG cows. Plasma progesterone levels of pregnant cows tended to be higher (P=0.087) in winter than in summer. In conclusion, although the cumulative pregnancy rate was higher for GPG cows, it may be appropriate to correct the nutrition and management of the herd before resorting to synchronisation techniques to improve animal reproductive performances.  相似文献   

14.
Two progestin-based protocols for estrus synchronization in replacement beef heifers were compared on the basis of estrous response, interval to and synchrony of estrus, and pregnancy rate. The objective was to determine, whether addition of GnRH to a melengestrol acetate (MGA)-prostaglandin F2alpha (PGF2alpha) estrus synchronization protocol would improve synchrony of estrus without compromising fertility in yearling beef heifers. Heifers at two locations (Location 1, n = 60 and Location 2, n = 64) were assigned randomly to one of two treatments by breed and pubertal status. Heifers were defined as, pubertal when concentrations of progesterone in serum were elevated (> or = 1 ng/mL) in either one of two samples obtained 10 and 1 day prior to treatment initiation. Prior to MGA administration, 18/60 (30%) and 36/64 (56%) of the heifers at Locations 1 and 2, respectively, were pubertal. Heifers in both treatments were fed MGA (0.5 mg/head/day in 1.8 kg/head/day supplement) for 14 days followed by 25 mg of PGF2alpha i.m. (MGA-PGF2alpha) 19 days after MGA withdrawal (Day 33 of treatment). One-half of the heifers at each location received 100 microg of GnRH i.m. 12 days after MGA withdrawal (Day 26 of treatment; MGA Select). The control group received only MGA-PGF2alpha. Heifers were observed for signs of behavioral estrus continuously during daylight hours for 7 days beginning on the day PGF2alpha was administered. Heifers were inseminated 12 h after observed estrus. There was a treatment by location by pubertal status interaction (P < 0.05) for interval to estrus. Compared to the respective control treatment at each location, prepubertal heifers assigned to the MGA Select protocol at Location 1 had longer intervals to estrus, whereas at Location 2, prepubertal heifers assigned to the MGA-PGF2alpha protocol had longer intervals to estrus. The higher number of pubertal heifers at Location 2 was associated with a reduced variance in the interval to estrus among MGA Select treated heifers. Total estrous response and synchronized conception rates were similar between treatments at both locations. These data suggest that addition of GnRH to the MGA-PGF2alpha protocol may improve synchrony of estrus, however, the degree of synchrony may be influenced by pubertal status of heifers at the time treatments are imposed. Further studies are needed to define production systems in which the MGA Select protocol is warranted for use in beef heifers.  相似文献   

15.
The objectives were (1) to determine the effects of gonadorelin hydrochloride (GnRH) injection at controlled internal drug release (CIDR) insertion on Day 0 and the number of PGF2α doses at CIDR removal on Day 5 in a 5-day CO-Synch + CIDR program on pregnancy rate (PR) to artificial insemination (AI) in heifers; (2) to examine how the effect of systemic concentration of progesterone and size of follicles influenced treatment outcome. Angus cross beef heifers (n = 1018) at eight locations and Holstein dairy heifers (n = 1137) at 15 locations were included in this study. On Day 0, heifers were body condition scored (BCS), and received a CIDR. Within farms, heifers were randomly divided into two groups: at the time of CIDR insertion, the GnRH group received 100 μg of GnRH and No-GnRH group received none. On Day 5, all heifers received 25 mg of PGF2α at the time of CIDR insert removal. The GnRH and No-GnRH groups were further divided into 1PGF and 2PGF groups. The heifers in 2PGF group received a second dose of PGF2α 6 hours after the administration of the first dose. Beef heifers underwent AI at 56 hours and dairy heifers at 72 hours after CIDR removal and received 100 μg of GnRH at the time of AI. Pregnancy was determined approximately at 35 and/or 70 days after AI. Controlling for herd effect (P < 0.06), the treatments had significant effect on AI pregnancy in beef heifers (P = 0.03). The AI-PRs were 50.3%, 50.2%, 59.7%, and 58.3% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PRs were ranged from 50% to 62.4% between herds. Controlling for herd effects (P < 0.01) and for BCS (P < 0.05), the AI pregnancy was not different among the treatment groups in dairy heifers (P > 0.05). The AI-PRs were 51.2%, 51.9%, 53.9%, and 54.5% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PR varied among locations from 48.3% to 75.0%. The AI-PR was 43.5%, 50.4%, and 64.2% for 2.5 or less, 2.75 to 3.5, and greater than 3.5 BCS categories. Numerically higher AI-PRs were observed in beef and dairy heifers that exhibited high progesterone concentrations at the time of CIDR insertion (>1 ng/mL, with a CL). In addition, numerically higher AI-PRs were also observed in heifers receiving CIDR + GnRH with both high and low progesterone concentration (<1 ng/mL) initially compared with heifers receiving a CIDR only with low progesterone. In dairy heifers, there were no differences in the pregnancy loss between 35 and 70 days post-AI among the treatment groups (P > 0.1). In conclusion, GnRH administration at the time of CIDR insertion is advantageous in beef heifers, but not in dairy heifers, to improve AI-PR in the 5-day CIDR + CO-Synch protocol. In addition, in this study, both dairy heifers that received either one or two PGF2α doses at CIDR removal resulted in similar AI-PR in this study regardless of whether they received GnRH at CIDR insertion.  相似文献   

16.
Lactating Holstein cows (n=288) were grouped as pairs at parturition and randomly assigned to two treatments (control, C vs intervenient treatment, T). The reproductive management of the Group C cows (n=130) consisted of the intramuscular administration of 500 microg PGF2alpha analogue (PG) on Days 28 and 63 postpartum and breeding on the basis of estrus signs with the a.m.-p.m. rule after Day 63. Cows that were not bred by 77 d postpartum received another injection of PG and were bred at estrus or 84 h after PG treatment. Pregnancy diagnoses were perfomed by palpation of the uterus per rectum 42 to 48 d after AI. Cows in the T group (n=139) received intramuscular injections of 100 microg GnRH 14 d and PG 28 d after calving. On Day 56 postpartum, cows were given a second dose of GnRH followed by PG on Day 63 postpartum and a third GnRH injection 48 h after PG (OvSynch). Cows were inseminated at a fixed time (22+/-1 h) after GnRH. Five days after the fixed-time insemination cows were given 1500 IU hCG i.m.. Group C and T cows that returned to service or were diagnosed as non-pregnant continued to receive PG at intervals of 14 d with breeding at estrus or 84 h after the second PGF2alpha dose. A sustained increase in milk progesterone concentration was observed in 59.0% of T cows after GnRH administration on Day 14. A similar rise in milk progesterone concentrations was observed in 53.8% of C cows. The PG on Day 28 induced luteolysis more in Group T cows (53.2%) than in Group C cows (36.9%). The PG on Day 63 reduced milk progesterone concentrations to basal levels in 50.7% of T and 49.2% of Group C animals. The first service pregnancy rates (T, 40.3% vs C, 36.2%) and the overall pregnancy rates (all services, T, 83.5% vs C, 86.9%) were not different between the two groups. The two treatments did not differ in the interval from first service to pregnancy, calving to pregnancy or in calving interval, number of services per pregnancy or culling rates.  相似文献   

17.
A study was done to evaluate the effect of using progesterone (P4) intravaginal device (CIDR: controlled internal drug-releasing dispenser) to synchronise the return to oestrus of previously timed inseminated (TAI) dairy heifers, and to evaluate embryo survival and pregnancy rate (PR) in the return to oestrus heifers. At the onset of the artificial insemination (AI) breeding period (day -9), heifers were randomly assigned into two groups (treated group CGPG, n = 79) and (control group GPG, n = 83). Every heifer in both groups was injected with gonadotropin-releasing hormone (GnRH) agonist and prostaglandin F2-alpha (PGF2α) as follows: GnRH on day -9; PGF2α on day -2; GnRH and TAI on day 0. Heifers in both groups received TAI within 30 min after the second GnRH injection. Artificial insemination at first breeding was conducted for all heifers during 55 days from day 0. On day 14 after timed insemination, every heifer in the CGPG group received CIDR device for 6 days. Within 3 days after CIDR removal, more heifers in CGPG group showed oestrus within 1.9 days compared to heifers that showed oestrus within 2.9 days in the control. Within 10 days after CIDR removal, more heifers in the CGPG group showed oestrus within 2.4 days compared to heifers that showed oestrus within 6.7 days in the control. PRs on days 30 and 55 were not different between both groups, while PR on day 55 during September were higher (P = 0.032) in CGPG group (58.0%) than GPG group (37.0%). In addition, PR from first to second AI was higher (P = 0.037) for CGPG group (79.8%) than for GPG group (65.1%) but it was similar after that. Pregnancy losses between days 30 and 55 tended to be lower (P = 0.089) for the CGPG group (12.7%) compared to 25.1% for the GPG group. Interval between first and second AI was lower (P = 0.052) for the CGPG group (27.5 ± 1.6 days) compared to 31.6 ± 1.3 days for heifers in the GPG group but no differences were detected for intervals from second to third AI and from third to fourth AI between the two groups. Number of services per pregnancy was not different between CGPG and GPG groups. Results indicate that the CIDR device improved synchronisation to return to oestrus and increased PR to first AI during high temperature months by reducing embryonic losses.  相似文献   

18.
The objective of this study was to evaluate protocols for synchronizing ovulation in beef cattle. In Experiment 1, Nelore cows (Bos indicus) at random stages of the estrous cycle were assigned to 1 of the following treatments: Group GP controls (nonlactating, n=7) received GnRH agonist (Day 0) and PGF2alpha (Day 7); while Groups GPG (nonlactating, n=8) and GPG-L (lactating, n=9) cows were given GnRH (Day 0), PGF2alpha (Day 7) and GnRH again (Day 8, 30 h after PGF2alpha). A new follicular wave was observed 1.79+/-0.34 d after GnRH in 19/24 cows. After PGF2alpha, ovulation occurred in 19/24 cows (6/7 GP, 6/8 GPG, 7/9 GPG-L). Most cows (83.3%) exhibited a dominant follicle just before PGF2alpha, and 17/19 ovulatory follicles were from a new follicular wave. There was a more precise synchrony of ovulation (within 12 h) in cows that received a second dose of GnRH (GPG and GPG-L) than controls (GP, ovulation within 48 h; P<0.01). In Experiment 2, lactating Nelore cows with a visible corpus luteum (CL) by ultrasonography were allocated to 2 treatments: Group GPE (n=10) received GnRH agonist (Day 0), PGF2alpha (Day 7) and estradiol benzoate (EB; Day 8, 24 h after PGF2alpha); while Group EPE (n=11), received EB (Day 0), PGF2alpha (Day 9) and EB (Day 10, 24 h after PGF2alpha). Emergence of a new follicular wave was observed 1.6+/-0.31 d after GnRH (Group GPE). After EB injection (Day 8) ovulation was observed at 45.38+/-2.03 h in 7/10 cows within 12 h. In Group EPE the emergence of a new follicular wave was observed later (4.36+/-0.31 d) than in Group GEP (1.6+/-0.31 d; P<0.001). After the second EB injection (Day 10) ovulation was observed at 44.16+/-2.21 h within 12 (7/11 cows) or 18 h (8/11 cows). All 3 treatments were effective in synchronizing ovulation in beef cows. However, GPE and, particularly, EPE treatments offer a promising alternative to the GPG protocol in timed artificial insemination of beef cattle, due to the low cost of EB compared with GnRH agonists.  相似文献   

19.
The objective of this study was to compare the conception rate for fixed-timed artificial insemination (FTAI) and observed heat artificial insemination (HAI) prior to the scheduled FTAI in Ovsynch and Heatsynch synchronization protocols. In Experiment 1, lactating dairy cows (n=535) received two set-up injections of 25mg prostaglandin F(2alpha) (PGF(2alpha)) i.m., 14 days apart starting at 36+/-3 days in milk (DIM). Cows were blocked by parity and were randomly allocated to either Ovsynch or Heatsynch groups. All cows received 100 microg of GnRH i.m. 14 days after the second set-up injection of PGF(2alpha), followed by a third injection of 25mg PGF(2alpha) i.m., 7 days later. In the Ovsynch group, HAI cows (n=29) were bred on standing estrus after the third PGF(2alpha) before the scheduled second GnRH, whereas FTAI cows (n=218) that were not observed in estrus, received a second injection of 100 microg of GnRH i.m., 48 h after the third PGF(2alpha) and received TAI 8 h after the second GnRH. In the Heatsynch group, all cows (n=288) received 0.5 mg of estradiol cypionate (ECP) 24 h after third PGF(2alpha) and HAI cows (n=172) were bred on standing estrus and FTAI cows (n=116) that were not observed in estrus, received TAI 72 h after the third PGF(2alpha). In Experiment 2, repeat breeder cows (n=186) were randomly assigned to either Ovsynch or Heatsynch groups. The FTAI and HAI cows were inseminated similar to Experiment 1. All cows were observed for estrus three times daily. The associations with the conception rate were modeled with logistic regression separately for Experiments 1 and 2. Of all the variables included in the model in Experiment 1, type of AI (HAI versus FTAI, P=0.0003) and parity (primiparous versus multiparous, P=0.05) influenced the first service conception rate. Over-all conception rate and first service conception rate for HAI cows were higher compared to FTAI cows (33.8% versus 21.3%, and 35.3% versus 21.0%; P=0.001). In the Heatsynch group, cows that received HAI had significantly higher over-all conception rate and first service conception rate compared to FTAI (35.2% versus 17.3% and 36.0% versus 15.5%; P=0.0001). The conception rates in repeat breeder cows for HAI and FTAI (30.1% versus 22.3%) were not different (P>0.1). In conclusion, it was recommended to include AI at observed estrus and fixed-time AI for cows not observed in estrus in order to improve the conception rate in synchronization protocols.  相似文献   

20.
The objective was to determine the appropriate timing of fixed-time artificial insemination (AI) following administration of the MGA Select protocol. Cows at two locations (Location 1, n=114; Location 2, n=97 ) were assigned to fixed-time AI at 72 or 80 h by age, body condition score (BCS), days postpartum (DPP), AI technician, and sire. All cows were synchronized with the MGA Select protocol, consisting of oral administration of melengestrol acetate (MGA; 0.5mg/hd per day) for 14 days, GnRH (Cysotrelin, 100 microg, i.m.; Day 26) 12 days after MGA withdrawal, followed in 7 days with PGF(2alpha) (PG; Lutalyse, 25mg i.m.; Day 33). Cows were inseminated at 72 h ( n=108 ) or 80 h ( n=103 ) after PG and GnRH (100 microg) was given at insemination. Location was not significant and, therefore, was removed from the model. Mean BCS ( 5.2+/-0.1, 72 h; 5.3+/-0.1, 80 h) and DPP ( 34+/-2, 72 h; 35+/-2, 80 h) did not differ ( P>0.1 ) between treatments. Serum progesterone concentrations 7 and 1 day prior to MGA were used to determine pre-treatment cyclicity: cows with at least one sample with progesterone > or =1 ng/ml were defined as cyclic (33/108, 31%, 72 h, versus 32/103, 31%, 80 h; P>0.1). Cows with serum progesterone concentrations > or =1 ng/ml on the day of PG were defined as responding to the synchronization protocol (74/108 (69%), 72 h versus 69/103 (67%), 80 h; P>0.1 ). Although pregnancy rates were higher ( P<0.05 ) for cows inseminated at 72 h (69/108, 64%) versus 80 h (52/103, 50%) after PG, pregnancy rates at the end of the breeding season did not differ ( P>0.1 ) between treatments (98/108 (91%), 72 h; 88/103 (85%), 80 h). In conclusion, pregnancy rates were higher when postpartum beef cows synchronized with the MGA Select protocol were inseminated at 72 h versus 80 h after PG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号