首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression is an important mechanism underlying ischemia-reperfusion (I/R) induced neutrophil activation and tissue injury in other organs. However, I/R of the lungs has not been shown to upregulate ICAM-1 expression. We determined the time course profile of lung I/R-induced ICAM-1 expression and assessed the role of ICAM-1 in mediating neutrophil sequestration, transmigration, and I/R injury in the isolated blood-perfused rat lungs. I/R had a biphasic effect on ICAM-1 expression, an early downregulation and a late-phase upregulation. Superoxide dismutase and neutrophil depletion prevented the early ICAM-1 downregulation. The late-phase ICAM-1 upregulation coincided with the I/R-induced increase in pulmonary microvascular leakage index. ICAM-1 monoclonal antibody (MAb) reversed the I/R-induced increase in pulmonary microvascular leakage index, with control antibody being ineffective. Neither I/R nor ICAM-1 MAb affected lung MPO activity and circulating neutrophil count. Lung I/R significantly increased bronchoalveolar lavage fluid neutrophil count and the GSSG-to-(GSSG+GSH) ratio. ICAM-1 MAb blocked the I/R-induced increase in GSSG-to-(GSSG+GSH) ratio but had no effect on bronchoalveolar lavage fluid neutrophil count. Our results demonstrated that lung I/R up- and downregulates ICAM-1 expression depending on the duration of reperfusion. ICAM-1 upregulation is an important mechanism of I/R-induced pulmonary endothelial injury.  相似文献   

2.
Acute renal failure (ARF) in response to ischemia-reperfusion is thought to be associated with neutrophil infiltration. Neutrophil recruitment depends on adhesion molecules, including P-selectin. Our study sought to characterize the role of P-selectin in ischemia-reperfusion (I/R) -induced acute renal failure (ARF). In wild-type (wt) and P-selectin-deficient (P-/-) mice (both C57BL/6), ARF was induced by 32 min bilateral renal ischemia, followed by reperfusion (I/R). Wt showed a 12- and 20-fold increase in creatinine at 24 and 48 h after I/R, respectively. Similar changes were seen in blood urea nitrogen (BUN). By contrast, in P-/- creatinine and BUN increased only moderately (fourfold over sham). In wt, renal myeloperoxidase activity, indicating neutrophil infiltration, peaked after 24 h (19-fold over sham). This was significantly attenuated in P-/- (fivefold over sham). Western blot analysis revealed maximum P-selectin expression 12 h after I/R in wt. Immunostaining detected P-selectin in glomerular endothelium and in platelets adherent in glomerular and peritubular vessels. Postischemic injection of P-selectin antibody at 10 min after reperfusion, but not isotype control antibody, protected wt from ARF similar to the protection seen in P-/-. We conclude that blocking P-selectin even after onset of reperfusion protects mice from I/R-induced ARF, suggesting potential therapeutic strategies aimed at blocking P-selectin.  相似文献   

3.
Expression of endothelial and leukocyte cell adhesion molecules is a principal determinant of polymorphonuclear neutrophil (PMN) recruitment during inflammation. It has been demonstrated that pharmacological inhibition of these molecules can attenuate PMN influx and subsequent tissue injury. We determined the temporal expression of alpha-granule membrane protein-40 (P-selectin), endothelial leukocyte adhesion molecule 1 (E-selectin), and intercellular cell adhesion molecule 1 (ICAM-1) after coronary artery occlusion and up to 3 days of reperfusion. The expression of all of these cell adhesion molecules peaked around 24 h of reperfusion. We determined the extent to which these molecules contribute to PMN infiltration by utilizing mice deficient (-/-) in P-selectin, E-selectin, ICAM-1, and CD18. Each group underwent 30 min of in vivo, regional, left anterior descending (LAD) coronary artery ischemia and 24 h of reperfusion. PMN accumulation in the ischemic-reperfused (I/R) zone was assessed using histological techniques. Deficiencies of P-selectin, E-selectin, ICAM-1, or CD18 resulted in significant (P < 0.05) attenuation of PMN infiltration into the I/R myocardium (MI/R). In addition, P-selectin, E-selectin, ICAM-1, and CD18 -/- mice exhibited significantly (P < 0.05) smaller areas of necrosis after MI/R compared with wild-type mice. These data demonstrate that MI/R induces coronary vascular expression of P-selectin, E-selectin, and ICAM-1 in mice. Furthermore, genetic deficiency of P-selectin, E-selectin, ICAM-1, or CD18 attenuates PMN sequestration and myocardial injury after in vivo MI/R. We conclude that P-selectin, E-selectin, ICAM-1, and CD18 are involved in the pathogenesis of MI/R injury in mice.  相似文献   

4.
The objective of this study was to define the relationship among Kupffer cells, O(2)(-) production, and TNF-alpha expression in the pathophysiology of postischemic liver injury following short and long periods of ischemia. Using different forms of superoxide dismutase with varying circulating half-lives, a monoclonal antibody directed against mouse TNF-alpha, and NADPH oxidase-deficient mice, we found that 45 or 90 min of partial (70%) liver ischemia and 6 h of reperfusion (I/R) produced time-dependent increases in liver injury and TNF-alpha expression in the absence of neutrophil infiltration. Furthermore, we observed that hepatocellular injury induced by short periods of ischemia were not dependent on formation of TNF-alpha but were dependent on Kupffer cells and NADPH oxidase-independent production of O(2)(-). However, liver injury induced by extended periods of ischemia appeared to require the presence of Kupffer cells, NADPH oxidase-derived O(2)(-), and TNF-alpha expression. We conclude that the sources for O(2)(-) formation and the relative importance of TNF-alpha in the pathophysiology of I/R-induced hepatocellular injury differ depending on the duration of ischemia.  相似文献   

5.
Nitric oxide synthase and postischemic liver injury   总被引:8,自引:0,他引:8  
The objective of this study was to determine what roles the endothelial cell and inducible isoforms of nitric oxide synthase (eNOS, iNOS) play in ischemia and reperfusion (I/R)-induced liver injury in vivo in mice genetically deficient in each isoform of NOS. We found that 45 min of partial (70%) liver ischemia and 5 h of reperfusion induced substantial liver injury as assessed by the release of large and significant amounts of the liver-specific enzyme alanine aminotransferase (ALT) into the serum of wild-type (wt) mice. The enhanced ALT levels were not due to increased recruitment of potentially damaging PMNs, which could mediate hepatocyte injury, as neither histopathological inspection nor quantitative MPO determinations revealed the presence of PMNs in the liver at this time point. In addition, we observed a significant enhancement in liver injury in eNOS-deficient but not iNOS-deficient mice subjected to liver I/R compared to postischemic wt mice. Taken together, these data suggest that eNOS- but not iNOS-derived NO plays an important role in limiting or downregulating I/R-induced liver injury in vivo following 5 h of reperfusion.  相似文献   

6.
The acute phase of intestinal ischemia-reperfusion (I/R) injury is mediated by leukocytes and is characterized by oxidative stress and blood cell recruitment. Upregulation of angiotensin II type 1 receptors (AT1-R) has been implicated in the pathogenesis of conditions associated with oxidative stress. The AT1-R-antagonist Losartan (Los) attenuates leukocyte recruitment following I/R. However, the role of AT1-R in intestinal I/R injury and the associated platelet-leukocyte interactions remains unclear. The objective of this study was to define the contribution of AT1-R to I/R-induced blood cell recruitment in intestinal venules. Leukocyte and platelet adhesion were quantified by intravital microscopy in the small bowel of C57Bl/6 [wild-type (WT)] mice exposed to sham operation or 45 min of ischemia and 4 h of reperfusion. A separate WT group received Los for 7 days before gut I/R (WT-I/R + Los). AT1-R bone marrow chimeras that express AT1-R on the vessel wall but not blood cells also underwent I/R. Platelet and leukocyte adhesion as well as AT1-R expression in the gut microvasculature were significantly elevated after I/R. All of these responses were attenuated in the WT-I/R + Los group, compared with untreated I/R mice. A comparable abrogation of I/R-induced blood cell adhesion was noted in AT1-R bone marrow chimeras. I/R-induced platelet adhesion was unaltered in mice overexpressing Cu,Zn-SOD or mice deficient in NAD(P)H oxidase. These data suggest that although gut I/R upregulates endothelial expression of AT1-R, engagement of these angiotensin II receptors on blood cells is more important in eliciting the prothrombogenic and proinflammatory state observed in postischemic gut venules, through a superoxide-independent pathway.  相似文献   

7.
8.
Whereas both ethanol and gut ischemia/reperfusion (I/R) are known to alter hepatic microvascular function, little is known about the influence of ethanol consumption on the hepatic microvascular responses to I/R. The objective of this study was to determine whether acute ethanol administration exacerbates the hepatic microvascular dysfunction induced by gut I/R. Rats were exposed to gut ischemia for 30 min followed by reperfusion. Intravital videomicroscopy was used to monitor leukocyte recruitment and the number of nonperfused sinusoids (NPS). Plasma alanine aminotransferase (ALT), tumor necrosis factor-alpha (TNF-alpha), and endotoxin concentrations were monitored. In separate experiments, ethanol was administered 15 min or 24 h before gut ischemia. In control rats, gut I/R increased the number of stationary leukocytes and NPS. It also elevated the plasma ALT, TNF-alpha, and endotoxin with a corresponding increase in intestinal mucosal permeability. Low-dose ethanol consumption 15 min before gut ischemia blunted the gut I/R-induced leukostasis and elevations in plasma TNF-alpha and ALT. However, high-dose ethanol consumption aggravated the gut I/R-induced increases in leukostasis and increases in plasma endotoxin and ALT. When ethanol was administered 24 h before, high-dose ethanol aggravated the gut I/R-induced hepatocellular injury, but low-dose ethanol did not have any effects on it. These results suggest that low-dose ethanol consumption shortly before gut ischemia attenuates the hepatic inflammatory responses, microvascular dysfunction, and hepatocellular injury elicited by gut I/R, whereas high-dose ethanol consumption appears to significantly aggravate these gut I/R-induced responses.  相似文献   

9.
Activation of the nuclear enzyme poly(ADP-ribose) synthetase (PARS) is important in the cellular response to oxidative stress. During ischemia and reperfusion (I/R) increased free radical production leads to DNA breakage that stimulates PARS which in turn results in an energy-consuming metabolic cycle and initiation of the apoptotic process. Previous studies have reported that PARS inhibition confers protection in various models of I/R-induced cardiovascular damage. The purpose of this study was to determine the role of PARS inhibition in I/R-induced injury of smooth muscle cells and endothelium in the coronary circulation of the isolated guinea-pig heart. Control hearts and those treated with a PARS inhibitor--benzamide (100 micromol L(-1)), were subjected to 30 min of subglobal ischemia and subsequent reperfusion (90 min). To analyze the functional integrity of smooth muscle cells and endothelium, one-minute intracoronary infusions of endothelium-independent (sodium nitroprusside, NaNP; 3 micromol L(-1)) and endothelium-dependent (substance P, SP; 10 nmol L(-1)) vasodilators were used before ischemia and at the reperfusion time. The degree of the injury of coronary smooth muscle and endothelial cells induced by I/R was estimated in terms of diminished vasodilator responses to NaNP (at 55 min and 85 min of reperfusion) and to SP (at 70 min of reperfusion), respectively, and expressed as the percentage of preischemic response. I/R reduced vasorelaxant responses to both vasodilators by half (to 54.1 +/- 5.1% and to 53.6 +/- 4.9% of preischemic value for NaNP at 55 min and 85 min of reperfusion, respectively and to 45.9 +/- 6.5% for SP at 70 min of reperfusion). PARS inhibition provided complete restoration of vasorelaxation induced by NaNP (107.6 +/- 13.3% and 104 +/- 14.4% of preischemic response at the two time points of reperfusion, respectively). However, there was no effect on the SP-induced response (48+12.1% of preischemic response). We conclude that pharmacological PARS inhibition with benzamide protects coronary smooth muscle cells but not endothelium against I/R-induced reperfusion injury in the coronary circulation of the guinea-pig heart.  相似文献   

10.
This study investigates the role of neutrophils in ischemia-induced aspermatogenesis in the mouse. Previous studies in the rat have demonstrated that ischemia-inducing testicular torsion followed by torsion repair and reperfusion resulted in germ cell-specific apoptosis. This was correlated with an increase in neutrophil adhesion to subtunical venules, an increase in reactive oxygen species, and increased expression of several apoptosis-associated molecules. In the present investigation, wild-type C57BL/6 mice were subjected to various degrees and duration of testicular torsion. A torsion of 720 degrees for 2 h caused disruption of the seminiferous epithelium and significantly reduced testis weight and daily sperm production. An immunohistochemical method specific for apoptotic nuclei indicated that these effects were due to germ cell-specific apoptosis. An increase in myeloperoxidase (MPO) activity and an increase in the number of neutrophils adhering to testicular subtunical venules after torsion repair/reperfusion demonstrated an increase in neutrophil recruitment to the testis. In contrast, E-selectin knockout mice and wild-type mice rendered neutropenic showed a significant decrease in neutrophil recruitment as evidenced by MPO activity and microscopic examination of subtunical venules. Importantly, germ cell-specific apoptosis was also reduced. Thus, germ cell-specific apoptosis is observed after ischemia/reperfusion of the murine testis, and this apoptosis is directly linked to the recruitment of neutrophils to subtunical venules. Endothelial cell adhesion molecules, particularly E-selectin, play an important role in mediating this pathology.  相似文献   

11.
Hepatic resection with concomitant periods of ischemia and reperfusion (I/R) is required to perform reduced size liver transplantation such as split liver or liver donor transplantation. Although great progress has been made using these types of surgeries, there remains substantial risk to both donors and recipients, with a significant number of patients developing liver injury and failure. The objective of this study was to assess the roles of superoxide (O(2)(-)) and tumor necrosis factor-alpha (TNF-alpha) in the pathophysiology of a mouse model of reduced size liver combined with ischemia and reperfusion (RSL+I/R). We found that all male mice subjected to RSL+I/R died within 3-5 days following surgery. Mortality was always preceded by dramatic increases in liver injury and TNF-alpha expression in the absence of neutrophil infiltration. Using a long-lived, polycationic form of human manganese superoxide dismutase (pcMnSOD), NADPH oxidase-deficient mice (gp91(-/-)) or a monoclonal antibody directed against mouse TNF-alpha, we demonstrated that hepatocellular injury (and mortality) were significantly attenuated. In addition, we found that pcMnSOD administration or NADPH deficiency reduced expression of TNF-alpha. Taken together, our data suggest that NADPH oxidase-derived O(2)(-) plays an important role in the pathophysiology of RSL+I/R-induced liver injury via its ability to enhance expression of TNF-alpha. We propose that therapies directed toward scavenging of O(2)(-), inhibiting NADPH oxidase, and/or immuno-neutralizing TNF-alpha may prove useful in limiting the liver injury induced by surgical procedures that require resection and I/R such as split liver or living donor liver transplantation.  相似文献   

12.
Hepatic ischemia and reperfusion injury (I/R) is accompanied by excessive reactive oxygen species and resultant sterile inflammation. Chlorogenic acid (CGA), one of the most abundant polyphenols in the human diet, has been shown to exert potent anti-inflammatory, antibacterial and antioxidant activities. Thus, the purpose of the present study was to investigate protective effects of CGA and its molecular mechanisms against hepatic I/R injury. Rats were subjected to 60 min of partial hepatic ischemia followed by 5 h of reperfusion. CGA (2.5, 5 and 10 mg/kg, ip) was administered twice: 10 min prior to ischemia and 10 min before reperfusion. CGA treatment resulted in marked improvement of hepatic function and histology, and suppressed oxidative stress, as indicated by hepatic lipid peroxidation and glutathione level. Levels of serum tumor necrosis factor-α, inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expressions were up-regulated after I/R; these effects were attenuated by CGA. Immunoblot results showed that CGA reduced I/R-induced toll-like receptor 4 overexpression, nuclear translocation of nuclear factor kappa B and interferon regulatory factor-1, high-mobility group box-1 release into extracellular milieu, and enhanced heme oxygenase-1 expression and nuclear translocation of nuclear factor erythroid 2-related factor 2. Our results suggest that CGA alleviates I/R-induced liver injury and that this protection is likely due to inhibition of inflammatory response and enhancement of antioxidant defense systems. Therefore, CGA might have potential as an agent for use in clinical treatment of hepatic I/R injury.  相似文献   

13.
Role of nitric oxide in liver ischemia and reperfusion injury   总被引:5,自引:0,他引:5  
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h of reperfusion in wt mice while iNOS deficient mice exhibited substantial increases at 1 but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.  相似文献   

14.
Innate immune response after transient ischemia is the most common cause of myocardial inflammation and may contribute to injury, yet the detailed signaling mechanisms leading to such a response are not well understood. Herein we tested the hypothesis that myocardial ischemia activates interleukin receptor-associated kinase-1 (IRAK-1), a kinase critical for the innate immune signaling such as that of Toll-like receptors (TLRs), via a mechanism that involves heat shock proteins (HSPs) and TLRs. Coronary artery occlusion induced a rapid myocardial IRAK-1 activation within 30 min in wild-type (WT), TLR2(-/-), or Trif(-/-) mice, but not in TLR4(def) or MyD88(-/-) mice. HSP60 protein was markedly increased in serum or in perfusate of isolated heart following ischemia/reperfusion (I/R). In vitro, recombinant HSP60 induced IRAK-1 activation in cells derived from WT, TLR2(-/-), or Trif(-/-) mice, but not from TLR4(def) or MyD88(-/-) mice. Both myocardial ischemia- and HSP60-induced IRAK-1 activation was abolished by anti-HSP60 antibody. Moreover, HSP60 treatment of cardiomyocytes (CMs) led to marked activation of caspase-8 and -3, but not -9. Expression of dominant-negative mutant of Fas-associated death domain protein or a caspase-8 inhibitor completely blocked HSP60-induced caspase-8 activation, suggesting that HSP60 likely activates an apoptotic program via the death-receptor pathway. In vivo, I/R-induced myocardial apoptosis and cytokine expression were significantly attenuated in TLR4(def) mice or in WT mice treated with anti-HSP60 antibody compared with WT controls. Taken together, the current study demonstrates that myocardial ischemia activates an innate immune signaling via HSP60 and TLR4, which plays an important role in mediating apoptosis and inflammation during I/R.  相似文献   

15.
Helium, a noble gas, has been used safely in humans. In animal models of regional myocardial ischemia/reperfusion (I/R) it was shown that helium conditioning reduces infarct size. Currently, it is not known how helium exerts its cytoprotective effects and which cell death/survival pathways are affected. The objective of this study, therefore, was to investigate the cell protective effects of helium postconditioning by PCR array analysis of genes involved in necrosis, apoptosis and autophagy. Male rats were subjected to 25 min of ischemia and 5, 15 or 30 min of reperfusion. Semiquantitative histological analysis revealed that 15 min of helium postconditioning reduced the extent of I/R-induced cell damage. This effect was not observed after 5 and 30 min of helium postconditioning. Analysis of the differential expression of genes showed that 15 min of helium postconditioning mainly caused upregulation of genes involved in autophagy and inhibition of apoptosis versus I/R alone. The results suggest that the cytoprotective effects of helium inhalation may be caused by a switch from pro-cell-death signaling to activation of cell survival mechanisms, which appears to affect a wide range of pathways.  相似文献   

16.
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-alpha) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h ofreperfusion in wt mice while iNOS deficient mice exhibited substantial increases at I but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.  相似文献   

17.
We tested the hypothesis that myocardial ischemia-reperfusion (I/R)-induced apoptosis is attenuated in transgenic mice overexpressing cardiac A(1) adenosine receptors. Isolated hearts from transgenic (TG, n = 19) and wild-type (WT, n = 22) mice underwent 30 min of ischemia and 2 h of reperfusion, with evaluation of apoptosis, caspase 3 activity, function, and necrosis. I/R-induced apoptosis was attenuated in TG hearts. TG hearts had less I/R-induced apoptotic nuclei (0.88 +/- 0.10% vs. 4.22 +/- 0.24% terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells in WT, P < 0.05), less DNA fragmentation (3.30 +/- 0.38-fold vs. 4.90 +/- 0.39-fold over control in WT, P < 0.05), and less I/R-induced caspase 3 activity (145 +/- 25% over nonischemic control vs. 234 +/- 31% in WT, P < 0.05). TG hearts also had improved recovery of function and less necrosis than WT hearts. In TG hearts pretreated with LY-294002 (3 microM) to evaluate the role of phosphosinositol-3-kinase in acute signaling, there was no change in the functional protection or apoptotic response to I/R. These data suggest that cardioprotection with transgenic overexpression of A(1) adenosine receptors involves attenuation of I/R-induced apoptosis that does not involve acute signaling through phosphoinositol-3-kinase.  相似文献   

18.
Inducible nitric oxide synthase (iNOS) participates in many pathological events, and selective inhibition of iNOS has been shown to reduce ischemia-reperfusion (I/R) injury in different tissues. To further confirm its role in this injury process, I/R injury was observed in denervated cremaster muscles of iNOS-deficient (iNOS-/-) and wild-type mice. After 3-h ischemia and 90-min reperfusion, blood flow in reperfused muscle was 80 +/- 8.5% (mean +/- SE) of baseline at 10-min reperfusion and completely returned to the preischemia baseline after 20 min in iNOS-/- mice. In contrast, blood flow was 32 +/- 7.4% at 10 min and increased to 60 +/- 20% of the baseline level at 90 min in wild-type mice (P < 0.001 vs. iNOS-/- mice at all time points). The increased muscle blood flow in iNOS-/- mice was associated with significantly less vasospasm in all three sizes of arterial vessel size categories. The weight ratio to the contralateral muscle not subjected to I/R was greater in wild-type mice (173 +/- 11%) than in iNOS-/- mice (117 +/- 3%; P < 0.01). Inflammation and neutrophil extravasation were also more severe in wild-type mice. Western blot analysis demonstrated an absence of iNOS protein band in iNOS-/- mice and upregulation of iNOS protein expression in wild-type mice. Our results confirm the importance of iNOS in I/R injury. Upregulated iNOS exacerbates I/R injury and appears to be a therapeutic target in protection of tissues against this type of injury.  相似文献   

19.
The aim of the present study was to assess the role of endothelin (ET) in ischemia-reperfusion (I/R)-induced mucosal injury. Mucosal permeability ((51)Cr-EDTA clearance) and tissue myeloperoxidase (MPO) activity were significantly increased after 30 min of ischemia followed by 30 min of reperfusion. The I/R-induced increases in mucosal permeability and polymorphonuclear leukocyte (PMN) infiltration were significantly attenuated by pretreatments with ET(A) (BQ-485) and/or ET(B) (BQ-788) receptor antagonists. Monoclonal antibody (MAb) directed against intercellular adhesion molecule-1 (ICAM-1; MAb 1A29) and superoxide dismutase (SOD) pretreatments significantly attenuated the increased mucosal permeability and PMN infiltration in a similar manner as with ET receptor antagonists. Superior mesenteric artery blood flow was significantly reduced during the reperfusion period. Both ET receptor antagonists caused a significant rise in blood flow compared with an untreated I/R group. In conclusion, our data suggest that ET(A) and/or ET(B) receptors, ICAM-1, and superoxide play an important role in I/R-induced mucosal dysfunction and PMN infiltration. Furthermore, ET is involved in the pathogenesis of post-reperfusion-induced damage and beneficial effects of ET receptor antagonism are related to an improvement of disturbed blood flow during the reperfusion period.  相似文献   

20.
PNA+Tempol, albumin containing conjugated (polynitroxyl albumin; PNA) and free (4-hydroxyl-2,2,6,6-tetramethyl-piperidinyl-1-oxyl; Tempol) nitroxide may protect against injury caused by reactive oxygen species. Therefore, the actions of PNA+Tempol on liver injury and inflammation induced by hepatic ischemia and reperfusion (I/R) were examined. Rats were subjected to 1 h ischemia followed by 24 h reperfusion in the absence (I/R) or presence of PNA+Tempol (25%; 15 mL/kg, i.v.) (I/R+PNA+Tempol) or human serum albumin (23%; 13.5 mL/kg, i.v.) (I/R+HSA). Test solutions were administered prior to and for 2 h during reperfusion. Sham-operated rats underwent surgery with neither ischemia nor infusion. I/R+PNA+Tempol rats had significantly less liver injury and inflammation than I/R rats. I/R+PNA+Tempol livers exhibited focal lesions whereas I/R livers exhibited global necrosis. Likewise, plasma ALT activity was significantly lower in I/R+PNA+Tempol rats. PNA+Tempol reduced I/R-induced neutrophil accumulation and intercellular adhesion molecule-1 (ICAM-1) expression. HSA did not alter I/R-induced liver injury or inflammation. Sham-operated rats exhibited normal liver morphology and no inflammation. Attenuation of I/R liver injury by PNA+Tempol may be mediated by its effect on inflammation, the major contributor to I/R injury. Reduction of inflammation by PNA+Tempol is most likely due to the antioxidative nature of the nitroxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号