首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
The pH- and time-dependent reactions of the anticancer drug cisplatin, cis-[PtCl(2)(NH(3))(2)], with the peptides Ac-Gly-Met-Gly-OH, Ac-Ser-Met-OH and Ac-Met-His-OH (Gly=glycyl, Met=methionyl, Ser=seryl, His=histidyl) at 313 K have been investigated by high-performance liquid chromatography, nuclear magnetic resonance and mass spectrometry. In the major equimolar reaction pathway for Ac-Gly-Met-Gly-OH, rapid anchoring at the methionine sulphur (kappaS) is followed by successive metalations of the methionine N(M) and glycyl N(G1) amide nitrogens in N-terminal direction to afford bidentate kappa(2)S,N(M) and tridentate kappa(3)S, N(M),N(G1) complexes. Cleavage of acetic acid at the second upstream amide bond is observed after 10 h leading to slow formation of [Pt(H-Gly-MetH(-1)-Gly-OH-kappa(3)S,N(M),N(G1))(NH(3))](+) at pH<6. [Pt(H-Ser-MetH(-1)-OH-kappa(3)S,N(M),N(S))(NH(3))](+) results from an analogous cisplatin-mediated regioselective hydrolytic cleavage reaction for Ac-Ser-Met-OH in moderately acid solution (pH<4). After passing through a minimum at pH 4.4, the concentration of the cleavage product in the reaction mixture after 500 h increases steadily on raising the pH and release of acetic acid is effectively quantitative for 7pH9.5. A competing mechanism involving nucleophilic attack of the serine side chain on the acetyl function can be inferred for pH>6 by the HPLC detection of a second intermediate kappa(3)S,N(M),N(S) species. In striking contrast, the reaction of cisplatin with Ac-Met-His-OH leads to release of acetylmethionine and formation of a final histidine product cis-[PtCl(H-His-OH-kappa(2)N3,N(H)) (NH(3))](+) at pH<6 by a kappaS-->kappa(2)S, N3-->kappa(3)S, N(H),N3-->kappa(2)N3,N(H)(H-His-OH) pathway.  相似文献   

2.
The results presented describe the effects of various spectator ligands, attached to a platinum 1,2-intrastand d(GpG) cross-link in duplex DNA, on the binding of high mobility group box (HMGB) domains and the TATA-binding protein (TBP). In addition to cisplatin-modified DNA, 15-base pair DNA probes modified by [Pt(1R,2R-diaminocyclohexane)](2+), cis-[Pt(NH(3))(cyclohexylamine)](2+), [Pt(ethylenediamine)](2+), cis-[Pt(NH(3))(cyclobutylamine)](2+), and cis-[Pt(NH(3))(2-picoline)](2+) were examined. Electrophoretic mobility shift assays show that both the A and B domains of HMGB1 as well as TBP discriminate between different platinum-DNA adducts. HMGB1 domain A is the most sensitive to the nature of the spectator ligands on platinum. The effect of the spectator ligands on protein binding also depends highly on the base pairs flanking the platinated d(GpG) site. Double-stranded oligonucleotides containing the AG*G*C sequence, where the asterisks denote the sites of platination, with different spectator ligands are only moderately discriminated by the HMGB proteins and TBP, but the recognition of dsTG*G*A is highly dependent on the ligands. The effects of HMGB1 overexpression in a BG-1 ovarian cancer cell line, induced by steroid hormones, on the sensitivity of cells treated with [Pt(1R,2R-diaminocyclohexane)Cl(2)] and cis-[Pt(NH(3))(cyclohexylamine)Cl(2)] were also examined. The results suggest that HMGB1 protein levels influence the cellular processing of cis-[Pt(NH(3))- (cyclohexylamine)](2+), but not [Pt((1R,2R)-diaminocyclohexane)](2+), DNA lesions. This result is consistent with the observed binding of HMGB1a to platinum-modified dsTG*G*A probes but not with the binding affinity of HMGB1a and HMGB1 to platinum-damaged dsAG*G*C oligonucleotides. These experiments reinforce the importance of sequence context in platinum-DNA lesion recognition by cellular proteins.  相似文献   

3.
The pH- and time-dependent reaction of cis-[PtCl2(NH3)2] with the methionine- and histidine-containing peptides H-Gly-Met-OH, H-Gly-Gly-Met-OH, Ac-His-Gly-Met-OH, and Ac-His-(Ala)3-Met-OH at 313 K has been investigated by ion-pairing reverse phase HPLC and NMR spectroscopy. For equimolar solutions (c=0.8 mM, pH approximately equals 3 or 8.8), initial formation of the kinetically favored S-bound complex is followed by relatively rapid metallation of the neighboring methionine amide nitrogen NM to afford a kappa2NM,S six-membered chelate. The strong trans effect of the methionine S then favors facile NH3 substitution, leading to generation of tridentate complexes such as [Pt(H-Gly-MetH(-1)-OH)-kappa3NG,NM,S)(NH3)]+ or [Pt(H-Ac-His-GlyH(-1)-MetH(-1)-OH-kappa3NG,NM,S)(NH3)]. In the case of H-Gly-Gly-Met-OH, this reaction is accompanied by loss of a second NH3 ligand in alkaline solution to generate the tetradentate kappa4NG1,NG2,NM,S species. In contrast, cleavage of the backbone C(O)-N bond to the second metallated amide nitrogen after t>100 h is common to the tridentate complexes of the tri- and pentapeptides at pH<5. Although an imidazole-coordinated kappa2N3H,S macrochelate is formed throughout the whole range 2.5 < or = pH < or = 10 for Ac-His-Gly-Met-OH, it slowly decays (t=10-1000 h) to the thermodynamically more stable tridentate kappa3NG,NM,S complex. All major final products were separated and fully characterized by NMR and MS.  相似文献   

4.
Radiolabeling of biologically active molecules with the [(99m)Tc(CO)(3)](+) unit has been of primary interest in recent years. With this in mind, we herein report symmetric (L(1)) and asymmetric (L(2)-L(5)) pyrazolyl-containing chelators that have been evaluated in radiochemical reactions with the synthon [(99m)Tc(H(2)O)(3)(CO)(3)](+) (1a). These reactions yielded the radioactive building blocks [(99m)Tc(CO)(3)(k(3)-L)](+) (L = L(1)-L(5), 2a-6a), which were identified by RP-HPLC. The corresponding Re surrogates (2-6) allowed for macroscopic identification of the radiochemical conjugates. Complexes 2a-6a, with log P(o/w) values ranging from -2.35 to 0.87, were obtained in yields of > or =90% using ligand concentrations in the 10(-5-)10(-4) M range. Challenge studies with cysteine and histidine revealed high stability for all of these radioactive complexes, and biodistribution studies in mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, occurring primarily through the renal-urinary pathway. Based on the framework of the asymmetric chelators, the novel bifunctional ligands 3,5-Me(2)-pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(6)) and pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(7)) have been synthesized and their coordination chemistry toward (NEt(4))(2)[ReBr(3)(CO)(3)] (1) has been explored. The resulting complexes, fac-[Re(CO)(3)(k(3)-L)]Br (L(6)(7), L(7)(8)), contain tridentate ancillary ligands that are coordinated to the metal center through the pyrazolyl and amine nitrogen atoms, as observed for the other related building blocks. L(6) and L(7) were coupled to a glycylglycine ethyl ester dipeptide, and the resulting functionalized ligands were used to prepare the model complexes fac-[Re(CO)(3)(kappa(3)-3,5-Me(2)-pz(CH(2))(2)N(glygly)(CH(2))(2)NH(2))](+) (9/9a) and fac-[Re(CO)(3)(kappa(3)-pz(CH(2))(2)N(CH(2))(3)(glygly)(CH(2))(2)NH(2))](+) (10/10a) (M = Re, (99m)Tc). These small conjugates have been fully characterized and are reported herein. On the basis of the in vitro/in vivo behavior of the model complexes (2a-6a, 9a, 10a), we chose to evaluate the in vitro/in vivo biological behavior of a new tumor-seeking Bombesin pyrazolyl conjugate, [(L(6))-G-G-G-Q-W-A-V-G-H-L-M-NH(2)], that has been labeled with the [(99m)Tc(CO)(3)](+) metal fragment. Stability, in vitro cell binding assays, and pharmacokinetics studies in normal mice are reported herein.  相似文献   

5.
5-Fluorouracil-cisplatin adducts with potential antitumor activity   总被引:1,自引:0,他引:1  
Using 5-fluorouracil (5-FU) and cis-diamminedichloroplatinum(II) (cisplatin, CDDP) as starting compounds, 5-FU-cisplatin adducts cis-[Pt(NH(3))(2)(HFU)Cl] (1) and cis-[Pt(NH(3))(2)(HFU)(2)] (2) were prepared. The obtained complexes were characterized by IR, ES-MS and 1H NMR spectroscopy. Complex 1 reacted with guanosine-5'-monophosphate (5'-GMP) and gave rise to a stable mixed-ligand complex cis-[Pt(NH(3))(2)(HFU)(GMP)] (3), whereas 2 did not undergo a similar reaction. In vitro cell growth inhibition tests of complexes 1 and 2 exhibited moderate antitumor activities against the melanoma B16-BL6 cell line. This work provides the basis for a potential alternative for the combinational use of 5-FU and CDDP in cancer therapy.  相似文献   

6.
7.
The reactions of Pt(II) complexes, cis-[Pt(NH3)2Cl2], [Pt(terpy)Cl]+, [Pt(terpy)(S-cys)]2+, and [Pt(terpy)(N7-guo)]2+, where terpy=2,2':6',2'-terpyridine, S-cys=L-cysteine, and N7-guo=guanosine, with some biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), L-cysteine, glutathione (GSH) and some strong sulfur-containing nucleophiles such as diethyldithiocarbamate (dedtc), thiosulfate (sts), and thiourea (tu), were studied in aqueous 0.1 M Hepes at pH of 7.4 using UV-vis, stopped-flow spectrophotometry, and 1H NMR spectroscopy.  相似文献   

8.
A spectroscopic study was performed showing that the [Fe(III)(L(2-))(2)](1-) (L(2-)=dopacatecholate) complex reacts with Ni(II), Co(II) and Zn(II) in an aqueous solution containing S(2)O(3)(2-) resulting in the soluble [M(L(1-))(3)](1-) (L(1-)=dopasemiquinone; M=Ni(II), Co(II) or Zn(II) complex species. The Raman and IR spectra of the [CTA][M(L(1-))(3)] complexes, CTA=hexadecyltrimethylammonium cation, in the solid state were obtained. The kinetic constants for the metal substitution reactions were determined at four different temperatures, providing values for DeltaH(not equal), DeltaS(not equal) and DeltaG(not equal). The reactions were slow (k=10(-11) Ms(-1)) and endothermic. The system investigated can be considered as a simplified model to explain some aspects of siderophore chemistry.  相似文献   

9.
Four new complexes of uracilato and 5-halouracilato with the divalent metal ions Cu(II), Zn(II) and Ni(II) were obtained and structurally characterized. [Cu(uracilato- N(1))(2)(NH(3))(2)].2(H(2)O) (1) and [Cu(5-chlorouracilato-N(1))(2)(NH(3))(2)](H(2)O)(2) (2) complexes present distorted square planar co-ordination geometry around the metal ion. Although an additional axial water molecule is present [Cu(II)-OH(2)=2.89 A (for 1) and 2.52 A (for 2)] in both cases, only in the complex 2 would be considered in the limit of a bond distance. The Zn(II) in [Zn(5-chlorouracilato-N(1))(NH(3))(3)].(5-chlorouracilato-N(1)).(H(2)O) presents a tetrahedral co-ordination with three ammonia molecules and the N(1) of the corresponding uracilato moiety. A non-coordinated uracilato molecule is present as a counterion and a recognition between co-ordinated and free ligands, by means a tandem of H-bonds, should be mentioned. Finally, the complex [Ni(5-chlorouracilato-N(1))(2)(en)(2)] (H(2)O)(2) (where en is ethylenediamine) presents a typical octahedral trans co-ordination with additional hydrogen bonds between 5-chlorouracilato and the NH(2) groups of ethylenediamine units.  相似文献   

10.
The novel phase II anticancer drug BBR3464 ([[ trans-PtCl(NH(3))(2)](2)- micro -[ trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2)]](NO(3))(4)) forms a 1,4-interstrand cross-link adduct with the self-complementary DNA octamer 5'-d(ATG*TACAT)(2)-3', with the two platinum atoms coordinated in the major groove at the N7 positions of guanines that are four base pairs apart on opposite DNA strands. The "central" tetraamine linker [ trans-H(2)N(CH(2))(6)NH(2)Pt(NH(3))(2)NH(2)(CH(2))(6)NH(2)] was located in or close to the minor groove. The adduct was characterized and analyzed by MS, UV and NMR spectroscopy. NMR analysis of the adduct shows strong H8/H1' intraresidue crosspeaks observed for the A1 and A7 resonances, consistent with a syn conformation for these bases which is usually not observed for adenine residues and bases not directly involved in the cross-link in oligonucleotides. The strong intraresidue H8/H1' crosspeak is also observed for G3. Examination of the structure thus reveals unusual cooperative effects unique to this class of anticancer drugs and is the first demonstration of cooperative effects in solution for an anticancer drug. The significant characteristic of the structure is the lack of severe DNA distortion such as a kink, directed bend or significant unwinding of the helices which are characteristic for DNA adducts of mononuclear complexes. This may contribute to the lack of protein recognition of the cross-link by HMG-domain proteins, a biological consequence significantly different from that of mononuclear complexes such as cisplatin. Since DNA is the principal target in vivo for these Pt cross-linking agents, the unique structural perturbations induced by BBR3464 cross-links are likely related to its increased cytotoxicity and antitumor activity as compared to cisplatin ( cis-DDP).  相似文献   

11.
The reactions of cis-[PtCl(NH3)2(H2O)]+ with L-methionine have been studied by 1D 195Pt and 15N NMR, and by 2D[1H, 15N] NMR. When the platinum complex is in excess, the initial product, cis-[PtCl(NH3)2(Hmet-S)]+ undergoes slow ring closure to [Pt(NH3)2(Hmet-N,S)]2+. Slow ammine loss then occurs to give the isomer of [PtCl(NH3)(Hmet-N,S)]+ with chloride trans to sulfur. When methionine is in excess, a reaction sequence is proposed in which trans-[PtCl(NH3)(Hmet-S)2]+ isomerises to the cis-isomer, with subsequent ring closure reactions leading to cis-[Pt(Hmet-N,S)2]2+. Near pH 7, methionine is unreactive toward cis-[PtCl(OH)(NH3)2]. By contrast, L-cysteine reacts readily with cis-[PtCl(OH)(NH3)2] at pH 7, but there were many reaction products, including bridged species. Cis-[PtCl(OH)(NH3)2] reacts with reduced thiols in ultrafiltered plasma but these are oxidized if the plasma is not fresh or appropriately stored. With very low concentrations of the platinum complexes (35.5 microM), HPLC experiments (UV detection at 305 nm) indicate that the thiolate (probably cysteine) reactions become simpler as bridging becomes less important.  相似文献   

12.
We prepared platinum(IV) complexes containing dipeptide and diimine or diamine, the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complex, where -N,N,O means dipeptide coordinated as a tridentate chelate, dipeptide=glycylglycine (NH(2)CH(2)CON(-)CH(2)COO(-), digly, where two protons of dipeptide are detached when the dipeptide coordinates to metal ion as a tridentate chelate), glycyl-L-alanine (NH(2)CH(2)CON(-)CHCH(3)COO(-), gly-L-ala), L-alanylglycine (NH(2)CH CH(3)CON(-)CH(2)COO(-), L-alagly), or L-alanyl-L-alanine (NH(2)CHCH(3)CON(-)CHCH(3)COO(-), dil-ala), and diimine or diamine=bipyridine (bpy), ethylenediamine (en), N-methylethylenediamine (N-Me-en), or N,N'-dimethylethylenediamine (N,N'-diMe-en). In the complexes containing gly-L-ala or dil-ala, two separate peaks of the (195)Pt NMR spectra of the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complexes appeared in, but in the complexes containing digly or L-alagly, one peak which contained two overlapped signals appeared. One of the two complexes containing gly-L-ala and bpy, [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3), crystallized and was analyzed. This complex has the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions of a=9.7906(3)A, b=11.1847(2)A, c=16.6796(2)A, Z=4. The crystal data revealed that this [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex has the near- (Cl, CH(3)) configuration of two possible isomers. Based on elemental analysis, the other complex must have the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) configuration. The (195)Pt NMR chemical shifts of the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex and the far- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex are 0 ppm and -19 ppm, respectively (0 ppm for the Na(2)[PtCl(6)] signal). The additive property of the (195)Pt NMR chemical shift is discussed. The (195)Pt NMR chemical shifts of [PtCl(dipeptide-N,N,O)(bpy)]Cl appeared at a higher field when the H attached to the dipeptide carbon atom was replaced with a methyl group. On the other hand, the (195)Pt NMR chemicals shifts of [PtCl(dipeptide-N,N,O)(diamine)] appeared at a lower field when the H attached to the diamine nitrogen atom was replaced with a methyl group, in the order of [PtCl(digly-N,N,O)(en)]Cl, [PtCl(digly-N,N,O)(N-Me-en)]Cl, and [PtCl(digly-N,N,O)(N,N'-diMe-en)]Cl.  相似文献   

13.
The telomeric sequence (T(2)G(4))(4) was platinated in aqueous solutions containing 50 mM LiClO(4), NaClO(4), or KClO(4). The identification of the guanines which reacted with [Pt(NH(3))(3)(H(2)O)](2+) revealed that the same type of folding exists in the presence of the three cations and that the latter determine the relative stabilities of the G-quadruplex structures in the order K(+) > Na(+) > Li(+). The tri-ammine complex yielded ca. 40--90% of adducts, mono- and poly-platinated, bound to 4 guanines out of the 16 guanines in the sequence, in the decreasing amounts G9 > G15 > G3 > G21. The formation of these adducts was interpreted with a G-quadruplex structure obtained by restrained molecular dynamics (rMD) simulations which confirms the schematic model proposed by Williamson et al. [(1989) Cell 59, 871--880]. The bifunctional complexes cis- and trans-[Pt(NH(3))(2)(H(2)O)(2)](2+) also first reacted with G9 and G15 and gave cross-linked adducts between two guanines, which did not exceed 5% each of the products formed. Both the cis and trans isomers formed a G3-G15 platinum chelate, and the second also formed bis-chelates at both ends of the G-quadruplex structure: G3-G15/G9-G21 and G3-G15/G9-G24. The rMD simulations showed that the cross-linking reactions by the trans complex can occur without disturbing the stacking of the three G-quartets.  相似文献   

14.
15.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

16.
The novel anticancer drug ([[trans-PtCl(NH(3))(2)](2)-mu-[trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2)]](NO(3))(4)) (BBR3464, 1,0,1/t,t,t, TPC) forms a 1,4-interstrand cross-linked adduct with the self-complementary DNA octamer 5'-d(ATG*TACAT)(2)-3', with the two platinum atoms coordinated in the major groove at N7 positions of guanines four base pairs apart on opposite DNA strands [Y. Qu, N.J. Scarsdale, M.-C. Tran, N. Farrell, J. Biol. Inorg. Chem. 8 (2003) 19-28]. The structure of the identical cross-link formed by the dinuclear [[trans-PtCl(NH(3))(2)](2)-mu-NH(2)(CH(2))(6)NH(2)]](NO(3))(2) (BBR3005, 1,1/t,t, DPC) was examined for comparison. The adduct was characterized and analyzed by MS, UV and NMR spectroscopy. NMR analysis of the adduct shows platination of the unique guanine residues. The strong H8/H1' intraresidue cross-peaks observed for all purine residues (A1, G3, A5 and A7) are consistent with a syn-conformation of the nucleoside unit in all cases. Thus, the structure resembles closely that formed by the trinuclear compound. Further confirmation of this similarity comes from the increase in melting temperature (66 degrees for DPC, 60 degrees for TPC, 22 degrees for free oligonucleotide). Since DNA is the principal target in vivo for these Pt cross-linking agents, the unique structural perturbations induced by these cross-links may be related to the increased cytotoxicity and antitumor activity of polynuclear platinum compounds as compared to cisplatin (cis-DDP). The similarity in the structures suggests opportunities to "deliver" the cross-link in a more efficient manner than the current clinically tested drug.  相似文献   

17.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

18.
19.
The pH- and time-dependent reactions of the antitumor drug cisplatin, cis-[PtCl(2)(NH(3))(2)], with the methionine- and histidine-containing pentapeptides Ac-Met-Gly-His-Gly-Gly-OH, Ac-Met-Gly-Gly-His-Gly-OH and Ac-Gly-Met-Gly-His-Gly-OH (Gly=glycyl, Met=L-methionyl, His=L-histidyl) at 313K have been investigated by high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. Cisplatin mediates a rapid "downstream" hydrolytic cleavage of the Met-Gly amide bond in weakly acid solution (pH < or =5) for all three peptides, leading to release of H-Gly-His-Gly-Gly-OH, H-Gly-Gly-His-Gly-OH and H-Gly-His-Gly-OH, respectively, and formation of kappa(2)S,N(M) chelate complexes of the methionine-containing residuals Ac-Met-OH or Ac-Gly-Met-OH. An alternative reaction pathway affords tridentate kappa(3)S,N(M),N(imidazole) macrochelates of the original pentapeptide following ammine loss. The downstream cleavage pathway is competitive with the likewise cisplatin-mediated upstream cleavage of the Ac-Gly linkage in the pentapeptide Ac-Gly-Met-Gly-His-Gly-OH. This leads to formation of both the kappa(3)S,N(M),N(G1) complex of H-Gly-Met-Gly-His-Gly-OH due to upstream cleavage and the analogous tridentate complex for H-Gly-Met-OH due to initial downstream loss of H-Gly-His-Gly-OH followed by upstream loss of acetic acid. As downstream cleavage is not observed for Ac-(Gly)(2)-Met-(Gly)(2)-OH under similar conditions, it may be concluded that rapid histidine imidazole substitution of the ammine ligand in trans-position to an anchoring methionine S atom must assist hydrolytic cleavage of the Met-Gly amide bond.  相似文献   

20.
The reaction of [PtCl(en)(ACRAMTU)](NO(3))(2) (PT-ACRAMTU, 1; ACRAMTU=1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, en=ethane-1,2-diamine) and the [(15)N]-en labeled analogue, 1', with 2'-deoxyguanosine (dG) was studied by (1)H NMR and two-dimensional [(1)H,(15)N] HSQC (heteronuclear single quantum coherence) spectroscopy. Reactions were performed in phosphate buffered solution at 37 degrees C at various ratios and total concentrations of reactants. The (1)H NMR data suggest that the hydrolyzed form of the drug, [Pt(H(2)O)(en)(ACRAMTU)](3+) (1a), forms at a rate (k(1)) similar to that observed in classical platinum chloroam(m)ines but to only a minor extent ( approximately 15%). Attempts to detect and characterize 1'a by two-dimensional NMR spectroscopy, however, were unsuccessful, and 1' and dG( *) were the only species observed in the HSQC spectra. Reaction of the putative aqua intermediate 1a with dG to yield [Pt(en)(dG-N7)(ACRAMTU)](3+) (dG( *)) is slow and is highly dependent on the initial concentrations of the reactants. This unusual observation is consistent with a mechanism in which a second-order term becomes rate-determining (k(2)相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号