首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The evolution of selfing from outcrossing ancestors is known to have occurred repeatedly in angiosperms. Theoretical studies have argued that the transition from outcrossing to selfing is accomplished more easily than the reverse case, and phylogenetic analyses involving self-compatible (SC) and self-incompatible (SI) species has basically supported this assumption. The evolutionary direction of self-compatibility and self-incompatibility was examined in Trillium camschatcense, which contains geographically widespread SC populations, and restricted SI populations. Ecological surveys have revealed that the SC populations were suitable for outcrossing, and selfing in these populations did not confer any fitness advantage. Since reproductive fitness indicates the possibility of an evolutionary shift from self-compatibility to self-incompatibility, the phylogenetic relationships of SI and SC populations of T. camschatcense were investigated based on cpDNA variations and nuclear DNA microsatellite polymorphisms. Although phylogenetic analyses did not provide credible evidence to determine evolutionary direction, the SI populations turned out to be monophyletic with extremely low genetic differentiation. Based on these results, we proposed two possible scenarios for the evolutionary backgrounds of SI and SC populations in T. camschatcense. The plausibility of each scenario was evaluated based on the reproductive and geographical features of the mating systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Many angiosperms prevent inbreeding through a self‐incompatibility (SI) system, but the loss of SI has been frequent in their evolutionary history. The loss of SI may often lead to an increase in the selfing rate, with the purging of inbreeding depression and the ultimate evolution of a selfing syndrome, where plants have smaller flowers with reduced pollen and nectar production. In this study, we used approximate Bayesian computation (ABC) to estimate the timing of divergence between populations of the plant Linaria cavanillesii that differ in SI status and in which SI is associated with low inbreeding depression but not with a transition to full selfing or a selfing syndrome. Our analysis suggests that the mixed‐mating self‐compatible (SC) population may have begun to diverge from the SI populations around 2810 generation ago, a period perhaps too short for the evolution of a selfing syndrome. We conjecture that the SC population of L. cavanillesii is at an intermediate stage of transition between outcrossing and selfing.  相似文献   

3.
The transition to self-compatibility from self-incompatibility is often associated with high rates of self-fertilization, which can restrict gene flow among populations and cause reproductive isolation of self-compatible (SC) lineages. Secondary contact between SC and self-incompatible (SI) lineages might re-establish gene flow if SC lineages remain capable of outcrossing. By contrast, intrinsic features of SC plants that reinforce high rates of self-fertilization could maintain evolutionary divergence between lineages. Arabidopsis lyrata subsp. lyrata is characterized by multiple origins of self-compatibility and high rates of self-fertilization in SC-dominated populations. It is unclear whether these high rates of selfing by SC plants have intrinsic or extrinsic causes. We estimated outcrossing rates and examined patterns of pollinator movement for 38 SC and 40 SI maternal parents sampled from an admixed array of 1509 plants sourced from six SC and six SI populations grown under uniform density. Although plants from SI populations had higher outcrossing rates (mean tm = 0.78 ± 0.05 SE) than plants from SC populations (mean tm = 0.56 ± 0.06 SE), outcrossing rates among SC plants were substantially higher than previous estimates from natural populations. Patterns of pollinator movement appeared to contribute to lower outcrossing rates for SC plants; we estimated that 40% of floral visits were geitonogamous (between flowers of the same plant). The relatively high rates of outcrossing for SC plants under standardized conditions indicate that selfing rates in natural SC populations of A. lyrata are facultative and driven by extrinsic features of A. lyrata, including patterns of pollinator movement.Subject terms: Plant evolution, Self incompatability, Ecological genetics, Population genetics  相似文献   

4.
Floral traits that increase self-fertilization are expected to spread unless countered by the effects of inbreeding depression, pollen discounting (reduced outcross pollen success by individuals with increased rates of self-fertilization), or both. Few studies have attempted to measure pollen discounting because to do so requires estimating the male outcrossing success of plants that differ in selfing rate. In natural populations of tristylous Eichhornia paniculata, selfing variants of the mid-styled morph are usually absent from populations containing all three style morphs but often predominate in nontrimorphic populations. We used experimental garden populations of genetically marked plants to investigate whether the effects of population morph structure on relative gamete transmission by unmodified (M) and selfing variants (M‘) of the mid-styled morph could explain their observed distribution. Transmission through ovules and self and outcross pollen by plants of the M and M’ morphs were compared under trimorphic, dimorphic (S morph absent), and monomorphic (L and S morphs absent) population structures. Neither population structure nor floral morphology affected female reproductive success, but both had strong effects on the relative transmission of male gametes. The frequency of self-fertilization in the M' morph was consistently higher than that of the M morph under all morph structures, and the frequency of self-fertilization by both morphs increased as morph diversity of experimental populations declined. In trimorphic populations, total transmission by the M and M' morphs did not differ. The small, nonsignificant increase in selfing by the M' relative to the M morph was balanced by decreased outcross siring success, particularly on the S morph. In populations lacking the S morph, male gamete transmission by the M' morph was approximately 1.5 times greater than that by the M morph because of both increased selfing and increased success through outcross pollen donation. Therefore, gamete transmission strongly favored the M' morph only in the absence of the S morph, a result consistent with the distribution of the M' morph in nature. This study indicates that floral traits that alter the selfing rate can have large and context-dependent influences on outcross pollen donation.  相似文献   

5.
植物交酸系统的进化、资源分配对策与遗传多样性   总被引:37,自引:10,他引:27       下载免费PDF全文
影响植物自交率进化的选择力量主要体现在两个方面:当外来花粉量不足时,自交可以提高植物的结实率,即雌性适合度(繁殖保障);而如果进行自交的花粉比异交花粉更易获得使胚珠受精的机会,那么自交也可以提高植物的雄性适合度(自动选择优势)。但是,鉴别什么时候是繁殖保障、什么时候是自动选择优势导致了自交的进化却是极其困难的。花粉贴现降低了自交植物通过异交花粉途径获得的适合度,即减弱了自动选择优势,而近交衰退既减少了自动选择优势也减少了繁残给自交者带来的利益。具有不同交配系统的植物种群将具有不同的资源分配对策。理论研究已经说明,自交率增加将减少植物对雄性功能的资源分配比例,但将使繁殖分配加大,而且在一定条件下交配系统在改变甚至可以导致植物生活史发生剧烈变化,即从多年生变为一年生。文献中支持自交减少植物雄性投入的证据有很多,但是对繁殖分配与自交率的关系目前还没有系统的研究,资源分配理论可以解释植物繁育系统的多样性,尤其是能够3说明为什么大多数植物都是雌雄同体的,自交对植物种群遗传结构的影响是减少种群内的遗传变异,增加种群间的遗传分化,长期以来人们一直猜测,自交者可能会丢掉一些长期进化的潜能,目前这个假说得到了一些支持。  相似文献   

6.
Simple theories for the evolution of breeding systems suggest that the fate of an allele that modifies the rate of self-fertilization hinges only on the degree to which selfing reduces opportunities for outcrossing ("pollen discounting") and the extent of inbreeding depression. These theories predict that outcrossing evolves whenever deleterious mutations have a more severe effect in combination than expected from their individual effects. We study the evolutionary dynamics of a modifier of the rate of self-fertilization in populations subject to complete pollen discounting and recurrent mutations which impair viability at a single locus in diploids and at two loci in haploids. Our analysis indicates that genetic associations arising immediately upon the introduction of a rare modifier allele generate substantial quantitative and qualitative departures from expectation. Higher rates of segregation under selfing in our one-locus diploid model generate positive associations between enhancers of selfing and wild-type viability alleles, which in turn favor the evolution of selfing under a wider range of conditions than expected. Greater opportunities for recombination under outcrossing in our two-locus haploid model generate positive associations between enhancers of outcrossing and wild-type viability alleles. These associations favor the evolution of outcrossing under a wider range of conditions, and introduce the possibility of stable mixed mating systems involving both selfing and outcrossing. Our explicit analysis of genetic associations between loci affecting viability and the rate of self-fertilization indicates that modifiers that enhance the production of offspring with very high (and very low) viability by promoting segregation or recombination develop positive associations with high viability. This advantage of producing extremes can compensate for an initial disadvantage in offspring number.  相似文献   

7.
In plants capable of both self-fertilization and outcrossing, the selfing rate depends on the proportion of self pollen in pollen loads and on the relative postpollination success of self pollen in siring offspring. While the composition of pollen loads is subject to unpredictable variation, paternity success of self vs. outcross pollen following pollen deposition may be controlled by maternal plants. This study examined postpollination paternity success in Clarkia gracilis ssp. sonomensis, in which deposition of self pollen is common. Pure loads of self and outcross pollen produced similar numbers of mature seeds, but equal mixtures of self and outcross pollen yielded more than three times as many outcrossed offspring as selfed offspring. The finding that the paternity success of self pollen depends on whether it is in competition with outcross pollen helps to explain an earlier finding that the selfing rate in experimental populations was highest when pollinator activity was lowest. Cryptic self-incompatibility allows paternity by self pollen when outcross pollen is unavailable.  相似文献   

8.
? Premise of the study: Embryonic inbreeding depression is a key influence on mating system evolution and can be difficult to estimate in self-incompatible species. A pollen chase experiment was used to estimate the magnitude of embryonic inbreeding depression in Costa Rican Witheringia solanacea, a species polymorphic for self-incompatibility (SI). In a pollen chase experiment, bud self-pollinations are followed after anthesis by outcross pollinations, with a comparable pair of outcross pollinations used as a control. Lowered seed set for the self-precedence treatment indicates embryonic inbreeding depression. ? Methods: Embryonic inbreeding depression was assayed for self-compatible (SC) individuals and for SI plants from two populations that differ quantitatively in the onset and enzymatic activity of their SI response. Microsatellite markers were used to assay the selfing rate of a sample of surviving progeny from the prior self-pollination treatment. ? Key results: SC individuals showed no evidence of embryonic inbreeding depression. In SI plants, prior self-pollination reduced seed number by 28-70%, depending on population. Microsatellite genotyping revealed that embryonic inbreeding depression was even more severe than estimated by the phenotypic data: for mature fruits resulting from self-pollination precedence, the majority of the progeny were the result of outcross fertilization. ? Conclusions: Lineage-specific purging of recessive lethals has accompanied the evolution of SC in this species. SI populations show contrasting levels of embryonic inbreeding depression, with nearly complete embryonic lethality upon selfing in the Monteverde population. In the face of high embryonic inbreeding depression, an increase in selfing rate can evidently occur only under severe pollen limitation.  相似文献   

9.
植物交配系统的进化、资源分配对策与遗传多样性   总被引:13,自引:1,他引:12       下载免费PDF全文
影响植物自交率进化的选择力量主要体现在两个方面:当外来花粉量不足时,自交可以提高植物的结实率,即雌性适合度(繁殖保障);而如果进行自交的花粉比异交花粉更易获得使胚珠受精的机会,那么自交也可以提高植物的雄性适合度(自动选择优势)。但是,鉴别什么时候是繁殖保障、什么时候是自动选择优势导致了自交的进化却是极其困难的。花粉贴现降低了自交植物通过异交花粉途径获得的适合度,即减弱了自动选择优势,而近交衰退既减少了自动选择优势也减少了繁殖保障给自交者带来的利益。具有不同交配系统的植物种群将具有不同的资源分配对策。理论研究已经说明,自交率增加将减少植物对雄性功能的资源分配比例,但将使繁殖分配加大,而且在一定条件下交配系统的改变甚至可以导致植物生活史发生剧烈变化,即从多年生变为一年生。文献中支持自交减少植物雄性投入的证据有很多,但是对繁殖分配与自交率的关系目前还没有系统的研究。资源分配理论可以解释植物繁育系统的多样性,尤其是能够说明为什么大多数植物都是雌雄同体的。自交对植物种群遗传结构的影响是减少种群内的遗传变异,增加种群间的遗传分化。长期以来人们一直猜测,自交者可能会丢掉一些长期进化的潜能,目前这个假说得到了一些支持。  相似文献   

10.
Mating systems are among the most labile characteristics of flowering plants, with transitions frequently occurring among populations or in association with speciation. The frequency of mating system shifts has made it difficult to reconstruct historical evolutionary dynamics unless transitions have been very recent. Here, we examine molecular and phenotypic variation to determine the polarity, timescale, and causes of a transition between outcrossing and self-fertilization in sister subspecies of Clarkia xantiana. Phylogenetic analyses and coalescent-based estimates of the time to most recent common ancestor indicated that outcrossing is ancestral to selfing and that there has been a single origin of selfing. Estimates of divergence time between outcrossing and selfing subspecies were 10,000 (95% CI [credible interval]: 3169-66,889) and 65,000 years ago (95% CI: 33,035-151,448) based on two different methods, suggesting a recent and rapid evolutionary transition. Population genetic data indicated that the transition to selfing was associated with a 80% reduction in molecular diversity, which is much greater than the 50% reduction expected under a shift from obligate outcrossing to obligate self-fertilization alone. Our data also suggest that this severe loss of diversity was caused by colonization bottlenecks. Together with previous studies, evidence for reproductive assurance in C. xantiana now connects variation in plant-pollinator interactions in the field to phenotypic and molecular evolution.  相似文献   

11.
The fact that selfing increases seed set (reproductive assurance) has often been put forward as an important selective force for the evolution of selfing. However, the role of reproductive assurance in hermaphroditic populations is far from being clear because of a lack of theoretical work. Here, I propose a theoretical model that analyzes self-fertilization in the presence of reproductive assurance. Because reproductive assurance directly influences the per capita growth rate, I developed an explicit demographic model for partial selfers in the presence of reproductive assurance, specifically when outcrossing is limited by the possibility of pollen transfer (Allee effect). Mating system parameters are derived as a function of the underlying demographical parameters. The functional link between population demography and mating system parameters (reproductive assurance, selfing rate) can be characterized. The demographic model permits the analysis of the evolution of self-fertilization in stable populations when reproductive assurance occurs. The model reveals some counterintuitive results such as the fact that increasing the fraction of selfed ovules can, in certain circumstances, increase the fraction of outcrossed ovules. Moreover, I demonstrate that reproductive assurance per se cannot account for the evolution of stable mixed selfing rates. Also, the model reveals that the extinction of outcrossing populations depends on small changes in population density (ecological perturbations), while the transition from outcrossing to selfing can, in certain cases, lead the population to extinction (evolutionary suicide). More generally, this paper highlights the fact that self-fertilization affects both the dynamics of individuals and the dynamics of selfing genes in hermaphroditic populations.  相似文献   

12.
Self-fertilization and apomixis have often been seen as alternative evolutionary strategies of flowering plants that are advantageous for colonization scenarios and in bottleneck situations. Both traits have multiple origins, but different genetic control mechanisms; possible connections between the two phenomena have long been overlooked. Most apomictic plants, however, need a fertilization of polar nuclei for normal seed development (pseudogamy). If self-pollen is used for this purpose, self-compatibility is a requirement for successful pollen tube growth. Apomictic lineages usually evolve from sexual self-incompatible outcrossing plants, but pseudogamous apomicts frequently show a breakdown of self-incompatibility. Two possible pathways may explain the evolution of SC: (1) Polyploidy not only may trigger gametophytic apomixis, but also may result in a partial breakdown of SI systems. (2) Alternatively, frequent pseudo self-compatibility (PSC) via aborted pollen may induce selfing of pseudogamous apomicts (mentor effects). Self-fertile pseudogamous genotypes will be selected for within mixed sexual–apomictic populations because of avoidance of interploidal crosses; in founder situations, SC provides reproductive assurance independent from pollinators and mating partners. SI pseudogamous genotypes will be selected against in mixed populations because of minority cytotype problems and high pollen discounting; in founder populations, SI reactions among clone mates will reduce seed set. Selection for SC genotypes will eliminate SI unless the apomict maintains a high genotypic diversity and thus a diversity of S-alleles within a population, or shifts to pollen-independent autonomous apomixis. The implications of a breakdown of SI in apomictic plants for evolutionary questions and for agricultural sciences are being discussed.  相似文献   

13.
High inbreeding depression is thought to be one of the major factors preventing evolutionary transitions in hermaphroditic plants from self‐incompatibility (SI) and outcrossing toward self‐compatibility (SC) and selfing. However, when selfing does evolve, inbreeding depression can be quickly purged, allowing the evolution of complete self‐fertilization. In contrast, populations that show intermediate selfing rates (a mixed‐mating system) typically show levels of inbreeding depression similar to those in outcrossing species, suggesting that selection against inbreeding might be responsible for preventing the transition toward complete self‐fertilization. By implication, crosses among populations should reveal patterns of heterosis for mixed‐mating populations that are similar to those expected for outcrossing populations. Using hand‐pollination crosses, we compared levels of inbreeding depression and heterosis between populations of Linaria cavanillesii (Plantaginaceae), a perennial herb showing contrasting mating systems. The SI population showed high inbreeding depression, whereas the SC population displaying mixed mating showed no inbreeding depression. In contrast, we found that heterosis based on between‐population crosses was similar for SI and SC populations. Our results are consistent with the rapid purging of inbreeding depression in the derived SC population, despite the persistence of mixed mating. However, the maintenance of outcrossing after a transition to SC is inconsistent with the prediction that populations that have purged their inbreeding depression should evolve toward complete selfing, suggesting that the transition to SC in L. cavanillesii has been recent. SC in L. cavanillesii thus exemplifies a situation in which the mating system is likely not at an equilibrium with inbreeding depression.  相似文献   

14.
? Premise of the study: A mixture of outcrossing and selfing is often observed in plant populations. Although mixed mating is ubiquitous, it has several potential evolutionary explanations. Mixed mating may be actively maintained by selection, passively determined by the pollination environment, or a transitional stage during the evolution of self-fertilization. ? Methods: We studied patterns of self-compatibility and selfing rates in a population of Leavenworthia alabamica that recently lost self-incompatibility. We also experimentally tested whether natural selection against selfing at the pre- or postzygotic stage is sufficient to explain mixed mating in this population. ? Key results: Visualizing pollen tube growth following self-pollination, we found that nearly all plants were fully self-compatible. Progeny array analysis revealed that the average selfing rate of the population was s = 0.523. The inbreeding coefficient in the parents (F = 0.539) exceeded the amount expected if the selfing rate (s) were constant [F(eq) = s/(2 - s)], indicating either population subdivision or higher selfing rates in the past. Inference of family-level selfing rates revealed substantial variation. Experiments found that self and outcross pollen fertilized nearly equal numbers of ovules in competition. Comparison of seed production following self- or cross-pollination failed to implicate early acting inbreeding depression as a factor maintaining mixed mating. ? Conclusions: The results of our experiments suggest that mixed mating is not maintained by selection against self-pollen or zygotes in this population. Mixed mating is most likely a byproduct of the pollination process but may also be a transitional stage during the evolution of higher selfing rates.  相似文献   

15.
The transition from outcrossing to predominant self-fertilization is one of the most common evolutionary transitions in flowering plants. This shift is often accompanied by a suite of changes in floral and reproductive characters termed the selfing syndrome. Here, we characterize the genetic architecture and evolutionary forces underlying evolution of the selfing syndrome in Capsella rubella following its recent divergence from the outcrossing ancestor C. grandiflora. We conduct genotyping by multiplexed shotgun sequencing and map floral and reproductive traits in a large (N= 550) F2 population. Our results suggest that in contrast to previous studies of the selfing syndrome, changes at a few loci, some with major effects, have shaped the evolution of the selfing syndrome in Capsella. The directionality of QTL effects, as well as population genetic patterns of polymorphism and divergence at 318 loci, is consistent with a history of directional selection on the selfing syndrome. Our study is an important step toward characterizing the genetic basis and evolutionary forces underlying the evolution of the selfing syndrome in a genetically accessible model system.  相似文献   

16.
The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability directly influenced variation in the strength of selection on herkogamy among populations. The striking parallels between our experimental results and patterns of variation in ecological factors across the geographic range of outcrossing and selfing populations suggest that reproductive assurance may play a central role in directing mating system evolution in C. xantiana.  相似文献   

17.
In plants, selfing and outcrossing may be affected by maternal mate choice and competition among pollen and zygotes. To evaluate this in Silene nutans, we pollinated plants with mixtures of (1) self‐ and outcross pollen and (2) pollen from within a population and from another population. Pollen fitness and zygote survival was estimated from the zygote survival and paternity of seeds. Self pollen had a lower fitness than outcross pollen, and selfed zygotes were less likely, or as likely, to develop into seeds. Hybrid zygotes survived as frequently or more than local zygotes, and pollen from one of the populations fertilized most ovules in both populations. Our results thus indicate strong maternal discrimination against selfing, whereas the success of outbreeding seems mostly affected by divergent pollen performance. The implications for the evolution of maternal mate choice are discussed.  相似文献   

18.
Reproductive assurance through selfing during colonization events or when population densities are low has often been put forward as a mechanism selecting for the evolution of self-fertilization. Such arguments emphasize on the role of both local demography and metapopulation processes. We developed a model for the evolution of self-fertilization in a structured metapopulation in which local densities are not steady because of population growth. Reproduction by selfing is density-independent (reproductive assurance) but selfed seeds endure inbreeding depression, whereas reproduction by outcrossing is density-dependent (Allee effect). First, we derived an analytical criterion for metapopulation viability as a function of the selfing rate and metapopulation parameters. We show that outcrossers can develop a viable metapopulation when they produce a high amount of dispersal seeds that counterbalances their incapacity to found new populations from low densities. Second, the model shows there is a positive feedback between demography and outcrossing rates, leading to either complete outcrossing or selfing. Specifically, we illustrate that inbreeding depression can paradoxically favor the evolution of selfing because of its negative effect on density. Also, complete outcrossing can be selected despite pollen limitation, although it does not provide a full seed set. This model underlines the influence of the mating system both on demography and gene dynamics in a metapopulation context.  相似文献   

19.
The evolution of selfing from outcrossing is a common transition, yet little is known about the mutations and selective factors that promote this shift. In the mustard family, single-locus self-incompatibility (SI) enforces outcrossing. In this study, we test whether mutations causing self-compatibility (SC) are linked to the self-incompatibility locus (S-locus) in Leavenworthia alabamica, a species where two selfing races (a2 and a4) co-occur with outcrossing populations. We also infer the ecological circumstances associated with origins of selfing using molecular sequence data. Genealogical reconstruction of the Lal2 locus, the putative ortholog of the SRK locus, showed that both selfing races are fixed for one of two different S-linked Lal2 sequences, whereas outcrossing populations harbor many S-alleles. Hybrid crosses demonstrated that S-linked mutations cause SC in each selfing race. These results strongly suggest two origins of selfing in this species, a result supported by population admixture analysis of 16 microsatellite loci and by a population tree built from eight nuclear loci. One selfing race (a4) shows signs of a severe population bottleneck, suggesting that reproductive assurance might have caused the evolution of selfing in this case. In contrast, the population size of race a2 cannot be distinguished from that of outcrossing populations after correcting for differences in selfing rates. Coalescent-based analyses suggest a relatively old origin of selfing in the a4 race (~150 ka ago), whereas selfing evolved recently in the a2 race (~12-48 ka ago). These results imply that S-locus mutations have triggered two recent shifts to selfing in L. alabamica, but that these transitions are not always associated with a severe population bottleneck, suggesting that factors other than reproductive assurance may play a role in its evolution.  相似文献   

20.
The mating system of flowering plant populations evolves through selection on genetically based phenotypic variation in floral traits. The physical separation of anthers and stigmas within flowers (herkogamy) is expected to be an important target of selection to limit self-fertilization. We investigated the pattern of phenotypic and genetic variation in herkogamy and its effect of self-fertilization in a broad sample of natural populations of Aquilegia canadensis, a species that is highly selfing despite strong inbreeding depression. Within natural populations, plants exhibit substantial phenotypic variation in herkogamy caused primarily by variation in pistil length rather than stamen length. Compared to other floral traits, herkogamy is much more variable and a greater proportion of variation is distributed among rather than within individuals. We tested for a genetic component of this marked phenotypic variation by growing naturally pollinated seed families from five populations in a common greenhouse environment. For three populations, we detected a significant variation in herkogamy among families, and a positive regression between parental herkogamy measured in the field and progeny herkogamy in the greenhouse, suggesting that there is often genetic variation in herkogamy within natural populations. We estimated levels of self-fertilization for groups of flowers that differed in herkogamy and show that, as expected, herkogamy was associated with reduced selfing in 13 of 19 populations. In six of these populations, we performed floral emasculations to show that this decrease in selfing is due to decreased autogamy (within-flower selfing), the mode of selfing that herkogamy should most directly influence. Taken together, these results suggest that increased herkogamy should be selected to reduce the production of low-quality selfed seed. The combination of high selfing and substantial genetic variation for herkogamy in A. canadensis is enigmatic, and reconciling this observation will require a more integrated analysis of how herkogamy influences not only self-fertilization, but also patterns of outcross pollen import and export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号