首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human tissue-type plasminogen activator (t-PA) catalyses the conversion of inactive plasminogen into active plasmin, the main fibrinolytic enzyme. This process is confined to the fibrin surface by specific binding of t-PA to fibrin and stimulation of its activity by fibrin. Tissue-type plasminogen activator contains five domains designated finger, growth factor, kringle 1, kringle 2 and protease. The involvement of the domains in fibrin specificity was investigated with a set of variant proteins lacking one or more domains. Variant proteins were produced by expression in Chinese hamster ovary cells of plasmids containing part of the coding sequence for the activator. It was found that kringle 2 domain only is involved in stimulation of activity by fibrin. In the absence of plasminogen and at low concentration of fibrin, binding of t-PA is mainly due to the finger domain, while at high fibrin concentrations also kringle 2 is involved in fibrin binding. In the presence of plasminogen, fibrin binding of the kringle 2 region of t-PA also becomes important at low fibrin concentrations.  相似文献   

2.
The effects of 4 monoclonal antibodies against human tissue-type plasminogen activator (t-PA) on binding of t-PA to lysine, fibrin, and heparin, and on fibrin-mediated activation of one-chain t-PA-amidolytic activity were investigated. The association constants of the antibodies were determined in a direct assay to be equal to 0.125 l/nmol, 0.225 l/nmol, 0.4 l/nmol, and 0.5 l/nmol for mAB 5, mAB 16, mAB 25, and mAB 31, respectively. All 4 monoclonal antibodies inhibited binding of intact t-PA to lysine-Sepharose and fibrin, and they suppressed fibrin-mediated activation of one-chain t-PA-amidolytic activity. Binding analysis demonstrated that mAB 25 inhibited t-PA binding to lysine-Sepharose and to fibrin as well as fibrin-mediated enhancement of one-chain t-PA-amidolytic activity in a competitive manner with inhibitor constants of 5 nmol/l, 3 nmol/l and 10 nmol/l, respectively. It was also shown that free lysine counteracts the association of t-PA with the antibodies. Binding of t-PA to heparin is only moderately affected by the 4 antibodies. Since t-PA possesses two homologous kringle domains which contain fibrin (lysine) binding sites, the results underline the importance of a lysine binding site for fibrin binding by intact t-PA and show that the binding of the enzyme to fibrin and lysine is mediated by the same binding site of a kringle domain. The parallel effects of antibodies on fibrin binding and on fibrin-mediated enhancement of one-chain t-PA amidolytic activity proves that the site of fibrin binding is identical with the site of fibrin activation. The binding site of heparin apparently differs from lysine and fibrin binding sites.  相似文献   

3.
Interactions of the developmentally regulated chondroitin sulfate proteoglycan NG2 with human plasminogen and kringle domain-containing plasminogen fragments have been analyzed by solid-phase immunoassays and by surface plasmon resonance. In immunoassays, the core protein of NG2 binds specifically and saturably to plasminogen, which consists of five kringle domains and a serine protease domain, and to angiostatin, which contains plasminogen kringle domains 1-3. Apparent dissociation constants for these interactions range from 12 to 75 nm. Additional evidence for NG2 interaction with kringle domains comes from its binding to plasminogen kringle domain 4 and to miniplasminogen (kringle domain 5 plus the protease domain) with apparent dissociation constants in the 18-71 nm range. Inhibition of plasminogen and angiostatin binding to NG2 by 6-aminohexanoic acid suggests that lysine binding sites are involved in kringle interaction with NG2. The interaction of NG2 with plasminogen and angiostatin has very interesting functional consequences. 1) Soluble NG2 significantly enhances the activation of plasminogen by urokinase type plasminogen activator. 2) The antagonistic effect of angiostatin on endothelial cell proliferation is inhibited by soluble NG2. Both of these effects of NG2 should make the proteoglycan a positive regulator of the cell migration and proliferation required for angiogenesis.  相似文献   

4.
The binding of tissue-type plasminogen activator (t-PA) to fibrin is mediated both by its finger domain and by its kringle-2 domain. In this report, we investigate the relative affinities of these domains for lysine. Human recombinant t-PA deletion-mutant proteins were prepared and their ability to bind to lysine-Sepharose was investigated. Mutants containing the kringle-2 domain bound to lysine-Sepharose, whereas mutants lacking this domain but containing the finger domain, the epidermal growth factor domain or the kringle-1 domain did not bind to lysine-Sepharose. Mutant proteins containing the kringle-2 domain could be specifically eluted from lysine-Sepharose with epsilon-amino caproic acid. This lysine derivative also abolished fibrin binding by the kringle-2 domain but had no effect on the fibrin-binding property of the finger domain. Thus, a lysine-binding site is involved in the interaction of the kringle-2 domain with fibrin but not in the interaction of the finger domain with fibrin. The implications of the nature of these two distinct interactions of t-PA with fibrin on plasminogen activation by t-PA will be discussed.  相似文献   

5.
L A Miles  E F Plow 《Biochemistry》1986,25(22):6926-6933
An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [125I]EDP I, [125I]Glu-plasminogen, and [125I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [125I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and 1730 microM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region (EDP I, Glu-plasminogen, Lys-plasminogen, and the plasmin heavy chain) and did not react with those lacking an EDP I region [miniplasminogen, the plasmin light chain or EDP II (kringle 4)] or with tissue plasminogen activator or prothrombin, which also contain kringles. By immunoblotting analyses, a chymotryptic degradation product of Mr 20,000 was derived from EDP I that retained reactivity with the antibody. The high-affinity lysine binding site was equally available to the antibody probe in Glu- and Lys-plasminogen and also appeared to be unoccupied in the plasmin-alpha 2-antiplasmin complex. alpha 2-Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Fibronectin is a dimeric glycoprotein (Mr 440,000) involved in many adhesive processes. During blood coagulation it is bound and cross-linked to fibrin. Fibrin binding is achieved by structures (type I repeats) which are homologous to the "finger" domain of tissue plasminogen activator. Tissue plasminogen activator also binds to fibrin via the finger domain and additionally via the "kringle 2" domain. Fibrin binding of tissue plasminogen activator results in stimulation of its activity and plays a crucial role in fibrinolysis. Since fibronectin might interfere with this binding, we studied the effect of fibronectin on plasmin formation by tissue plasminogen activator. In the absence of fibrin, fibronectin had no effect on plasminogen activation. In the presence of stimulating fibrinogen fragment FCB-2, fibronectin increased the duration of the initial lag phase (= time period until maximally stimulated plasmin formation occurs) and decreased the rate of maximal plasmin formation which occurs after that lag phase mainly by increasing the Michaelis constant (Km). These effects of fibronectin were dose-dependent and were similar with single- and two-chain tissue plasminogen activator. They were also observed with plasmin-pretreated FCB-2. An apparent Ki of 43 micrograms/ml was calculated for the inhibitory effect of fibronectin when plasminogen activation by recombinant single-chain tissue plasminogen activator was studied in the presence of 91 micrograms/ml FCB-2. When a recombinant tissue plasminogen activator mutant lacking the finger domain was used in a system containing FCB-2, no effect of fibronectin was seen, indicating that the inhibitory effect of fibronectin might in fact be due to competition of fibronectin and tissue plasminogen activator for binding to fibrin(ogen) via the finger domain.  相似文献   

7.
Chemical modification of human degraded form of plasminogen with NH2-terminal lysine (Lys-plasminogen) and the elastase fragments kringle 1 + 2 + 3 and kringle 4 with the tryptophan reagent [14C]dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide results in the incorporation of label and the parallel loss of lysine binding ability. In the case of kringle 4, only one-half of the lysine binding sites could be inactivated, but the modified and unmodified forms could be separated by affinity chromatography. The modified form contained 1 mol of 2-hydroxy-5-nitrobenzyl groups/mol of kringle 4 and did not bind to lysine-Sepharose. Lysine analogs such as 6-aminohexanoic acid protected kringle 4 against modification. Peptide-mapping studies on this form showed that essentially all of the label was in two chymotryptic peptides containing a tryptophan corresponding to Trp426 in the plasminogen sequence. Competition experiments with anti-kringle 4 antibodies having an affinity for the lysine binding site showed that the binding of 2-hydroxy-5-nitrobenzyl-kringle 4 to antibodies was about 10 times weaker than for unmodified kringle 4. These results indicate that the integrity of specific tryptophan residue is critical to the binding of lysine and related amino acids to kringle 4of human plasminogen.  相似文献   

8.
The heavy chain of tissue plasminogen activator (t-PA) consists of four domains [finger, epidermal-growth-factor (EGF)-like, kringle 1 and kringle 2] that are homologous to similar domains present in other proteins. To assess the contribution of each of the domains to the biological properties of the enzyme, site-directed mutagenesis was used to generate a set of mutants lacking sequences corresponding to the axons encoding the individual structural domains. The mutant proteins were assayed for their ability to hydrolyze artificial and natural substrates in the presence and absence of fibrin, to bind to lysine-Sepharose and to be inhibited by plasminogen activator inhibitor-1. All the deletion mutants exhibit levels of basal enzymatic activity very similar to that of wild-type t-PA assayed in the absence of fibrin. A mutant protein lacking the finger domain has a 2-fold higher affinity for plasminogen than wild-type t-PA, while the mutant that lacks both finger and EGF-like domains is less active at low concentrations of plasminogen. Mutants lacking both kringles neither bind to lysine-Sepharose nor are stimulated by fibrin. However, mutants containing only one kringle (either kringle 1 or kringle 2) behave indistinguishably from one another and from the wild-type protein. We conclude that kringle 1 and kringle 2 are equivalent in their ability to mediate stimulation of catalytic activity by fibrin.  相似文献   

9.
Interaction of tissue plasminogen activator with alpha-2-antiplasmin and its influence on tissue activator binding to fibrin was studied. Alpha-2-Antiplasmin decreases the binding of tissue activator to fibrin by 20%. The inhibitor formed a complex with tissue plasminogen activator (Kd 78.2 nM) and had no effect on amidolytic activity of the activator. The tissue activator binding to alpha-2-antiplasmin decreases by 20-35% in the presence of 6-aminohexanoic acid. It indicates that not only kringle 2 of the tissue activator molecule takes part in complex formation with alpha-2-antiplasmin, but also other activator domains. Two models were proposed to explain the alpha-2-antiplasmin effect on the Glu-plasminogen activation by tissue activator on fibrin. In the first place, the inhibitor binds to fibrin in the site where the activator complex is localized. It can create steric hindrances for the proenzyme interaction with its activator on fibrin. In the second place, alpha-2-antiplasmin in a complex with tissue plasminogen activator can bring to a change in the activator conformation and a decrease of its functional activity.  相似文献   

10.
Heparin has been shown recently to stimulate the activity of human tissue-type plasminogen activator (t-PA). To investigate this effect further, mutant proteins lacking various domains of t-PA were screened for the ability to be stimulated by heparin. Those mutants harboring either the finger domain or the 2nd kringle were found to have enhanced enzymatic activity in the presence of heparin. Only mutants containing these structures would bind to heparin-agarose beads; monoclonal antibodies directed against these domains blocked binding. The stimulatory effect of heparin was more pronounced in finger-containing mutants than kringle-2 proteins. Earlier results had localized the fibrin-binding domains to the same two structures. Unlike heparin, the 2nd kringle was shown to be more important than the finger for fibrin stimulation. Our results have implications for producing recombinant t-PA variants for use in thrombolytic therapy.  相似文献   

11.
1. Possible interactions between fibrin(ogen) and heparin in the control of plasminogen activation were studied in model systems using the thrombolytic agents tissue-type plasminogen activator (t-PA), urokinase and streptokinase.plasminogen activator complex and the substrates Glu- and Lys-plasminogen. 2. Both t-PA and urokinase activities were promoted by heparin and by pentosan polysulphate, but not by chondroitin sulphate or hyaluronic acid. The effect was on Km. 3. In the presence of soluble fibrin (and its mimic, CNBr-digested fibrinogen) the effect of heparin on t-PA was attenuated, although not abolished. In studies using a monoclonal antibody and 6-aminohexanoic acid, it was found that heparin and fibrin did not seem to share a binding site on t-PA. 4. The activity of t-PA B-chain was unaffected by heparin, so the binding site is located on the A-chain of t-PA (and urokinase). 5. Fibrin potentiated the activity of heparin on urokinase. The activity of streptokinase.plasminogen was unaffected by heparin whether or not fibrin was present. 6. If these influences of heparin and fibrin also occur in vivo, then, in the presence of heparin, the relative fibrin enhancement of t-PA will be diminished and the likelihood of systemic activation by t-PA is increased.  相似文献   

12.
Structure and function of human tissue-type plasminogen activator (t-PA)   总被引:5,自引:0,他引:5  
Full-length tissue-type plasminogen activator (t-PA) cDNA served to construct deletion mutants within the N-terminal "heavy" (H)-chain of the t-PA molecule. The H-chain cDNA consists of an array of structural domains homologous to domains present on other plasma proteins ("finger," "epidermal growth factor," "kringles"). These structural domains have been located on an exon or a set of exons. The endpoints of the deletions nearly coincide with exon-intron junctions of the chromosomal t-PA gene. Recombinant t-PA deletion mutant proteins were obtained after transient expression in mouse Ltk- cells, transfected with SV40-pBR322-derived t-PA cDNA plasmids. It is demonstrated that the serine protease moiety of t-PA and its substrate specificity for plasminogen is entirely contained within the C-terminal "light" (L)-chain of the protein. The presence of cDNA, encoding the t-PA signal peptide preceding the remaining portion of t-PA, suffices to achieve secretion of (mutant) t-PA into the medium. The stimulatory effect of fibrin on the plasminogen activator activity of t-PA was shown to be mediated by the kringle K2 domain and, to a lesser extent, by the finger domain. The other domains on the H-chain, kringle K1, and the epidermal growth-factor-like domain, do not contribute to this property of t-PA. These findings correlate well with the fibrin-binding properties of the rt-PA deletion-mutant proteins, indicating that stimulation of the activity is based on aligning of the substrate plasminogen and its enzyme t-PA on the fibrin matrix. The primary target for endothelial plasminogen activator inhibitor (PAI) is located within the L-chain of t-PA. Deleting specific segments of t-PA H-chain cDNA and subsequent transient expression in mouse Ltk- cells of t-PA deletion-mutant proteins did not affect the formation of a stable complex between mutant t-PA and PAI.  相似文献   

13.
Modification of glutamic and aspartic acid residues of tissue-type plasminogen activator (t-PA) with 1-ethyl-3(3-dimethyl-aminopropyl)-carbodiimide leads to a decrease in affinity for lysine and fibrin, to a decrease of plasminogen activation activity in the presence of a fibrin mimic, but leaves amidolytic activity and plasminogen activation without fibrin mimic unaffected. Experiments with kringle-2 ligands and a deletion mutant of t-PA (K2P) suggests that glutamic or aspartic acid residues in K2 of t-PA are involved in stimulation of activity, lysine binding and fibrin binding. Mutant t-PA molecules were constructed by site-directed mutagenesis in which one or two of the five aspartic or glutamic acid residues in K2 were changed to asparagine or glutamine respectively. Mutation of Asp236 and/or Asp238 leads to t-PA molecules with 3- to 4-fold lower specific activity in the presence of fibrin mimic and having no detectable affinity for lysine analogs. However, fibrin binding was not influenced. Mutation of Glu254 also leads to a 3- to 4-fold lower activity, but to a much smaller reduction of lysine or fibrin binding. Residues Asp236 and Asp238 are both essential for binding to lysine derivatives, while Glu254 might be involved but is not essential. Residues Asp236, Asp238 and Glu254 are all three involved in stimulation of activity. Remarkably, mutation of residues Asp236 and/or Asp238 appears not to influence fibrin binding of t-PA whereas that of Glu254 does.  相似文献   

14.
A novel triple-kringle plasminogen activator protein, PK1 delta FE1X, has been produced which is a genetic chimera between the fibrin binding kringle 1 domain of plasminogen and the two kringles and serine protease domains of naturally occurring wild-type tissue plasminogen activator (wt t-PA). This chimera also contains a modification to prevent high mannose type N-linked glycosylation on kringle 1 of t-PA. PK1 delta FE1X is biochemically and fibrinolytically similar to wt t-PA in vitro but retains the decreased plasma clearance rate characteristic of other t-PA variants which lack fibronectin finger-like and epidermal growth factor domains. The serine protease domain of PK1 delta FE1X exhibits the amidolytic activity characteristic of wt t-PA. In an indirect coupled plasminogen activator assay, the specific activity of PK1 delta FE1X is approximately 1.4 times greater than that of wt t-PA. In a fibrin film-binding assay, greater binding to untreated fibrin is observed with wt t-PA than with PK1 delta FE1X. However, following limited plasmin digestion of the fibrin film, PK1 delta FE1X binding increases to the level observed with wt t-PA. The incremental binding to plasmin-digested fibrin observed with PK1 delta FE1X is eliminated if plasmin digestion of the fibrin film is followed by carboxypeptidase B treatment. This result suggests that plasminogen kringle 1 binds plasmin-digested fibrin even after recombination with a heterologous protein. The fibrinolytic activity of PK1 delta FE1X in human plasma clot lysis assays was similar to that of wt t-PA at activator concentrations of approximately 1 microgram/ml. At substantially lower concentrations, approximately 0.1 microgram/ml, PK1 delta FE1X was only slightly less active than wt t-PA. Pharmacokinetic analysis showed that wt t-PA activity is cleared approximately 15 times as rapidly as PK1 delta FE1X following intravenous bolus injection. In a rabbit jugular vein clot lysis model, intravenous bolus injection of 0.06 mg/kg of PK1 delta FE1X showed greater thrombolytic potency than a similar administration of 0.5 mg/kg of wt t-PA. Thus it appears that in vitro exon shuffling techniques can be used to generate novel fibrinolytic agents which biochemically and pharmacologically represent the combination of individual domains of naturally occurring proteins.  相似文献   

15.
It was demonstrated that plasminogen and the plasmin heavy chain form a complex with an immobilized fibrinogen fragment E. The E-fragment interacts, in its turn, with the immobilized heavy chain; this interaction is provided for by the lysin binding sites of the plasminogen molecule. The plasmin light chain having no lysin binding sites is specifically absorbed on the immobilized fragment D, whereas the D-fragment--on the immobilized light chain. The elution is caused by arginine or benzamidine; 6-aminohexanoic acid does not affect this interaction. It is assumed that the interaction of plasminogen and plasmin with fibrin is provided for not only by the lysine binding but also by the benzamidine binding sites of the plasminogen molecule.  相似文献   

16.
Surface-associated plasmin(ogen) may contribute to the invasive properties of various cells. Analysis of plasmin(ogen)-binding surface proteins is therefore of interest. The N-terminal variable regions of M-like (ML) proteins from five different group A streptococcal serotypes (33,41,52,53 and 56) exhibiting the plasminogen-binding phenotype were cloned and expressed in Escherichia coli . The recombinant proteins all bound plasminogen with high affinity. The binding involved the kringle domains of plasminogen and was blocked by a lysine analogue, 6-aminohexanoic acid, indicating that lysine residues in the M-like proteins participate in the interaction. Sequence analysis revealed that the proteins contain common 13–16-amino-acid tandem repeats, each with a single central lysine residue. Experiments with fusion proteins and a 30-amino-acid synthetic peptide demonstrated that these repeats harbour the major plasminogen-binding site in the ML53 protein, as well as a binding site for the tissue-type plasminogen activator. Replacement of the lysine in the first repeat with alanine reduced the plasminogen-binding capacity of the ML53 protein by 80%. The results precisely localize the binding domain in a plasminogen surface receptor, thereby providing a unique ligand for the analysis of interactions between kringles and proteins with internal kringle-binding determinants.  相似文献   

17.
The ligand binding of kringle 1 + 2 + 3 and kringle 1 from human plasminogen has been investigated by fluorescence spectroscopy. Analysis of fluorescence titration of kringle 1 + 2 + 3 with 6-aminohexanoic acid shows that this fragment, besides the high-affinity lysine-binding site with Kd = 2.9 microM, contains two additional lysine-binding sites which differ in binding strength (Kd = 28 microM and Kd = 220 microM). This strongly suggests the existence of a lysine-binding site in each of the first three kringles. 6-Aminohexanoic acid, pentylamine, pentanoic acid and arginine were used for investigation of the ligand specificity of isolated kringle 1 prepared by pepsin hydrolysis of kringle 1 + 2 + 3. It has been established that kringle 1 has high affinity to 6-aminohexanoicacid, pentylamine and arginine (Kd values are 3.2 microM, 4.8 microM and 4.3 microM, respectively). At the same time pentanoic acid did not bind with kringle 1. These facts indicate, firstly, a broad ligand specificity of kringle 1 and, secondly, the paramount importance of the positively charged group of the ligand for its interaction with lysine-binding site of this kringle.  相似文献   

18.
Pretreatment of native plasminogen with plasmin or activators resulted in a pronounced increase in the binding of plasminogen to fibrin. The pretreated plasminogen was considered to be identical to the proteolytically degraded proenzyme with NH2-terminal lysine, valine or methionine, which is formed as an intermediate stage during activation of plasminogen. Bound plasminogen could be extracted by 6-aminohexanoic acid indicating a reversible binding between plasminogen and fibrin. Adsorption of pretreated plasminogen decreased when increasing concentrations of 6-aminohexanoic acid or trans-4-aminomethylcyclohexane-1-carboxylic acid (t-AMCHA) were present during fibrin formation. The concentration of amino acid producing a decrease in the binding of pretreated plasminogen to 0.5 of the amount bound in the absence of amino acid was 8.0-10(-5) M with 6-aminohexanoic acid and 1.7.10-5 M with t-AMCHA. The decrease in binding is most likely related to an effect of the amino acids on plasminogen, since agarose gel electrophoresis of pretreated plasminogen in the presence of 6-aminohexanoic acid or t-AMCHA showed a cathodic shift in mobility at the same range of concentrations of amino acid, which produced the decrease in binding of plasminogen to fibrin. Evidence is provided that the decrease in binding of proteolytically degraded plasminogen may result in an inhibition of fibrinolysis caused by activators.  相似文献   

19.
The crystal structure of the kringle 2 domain of tissue plasminogen activator was determined and refined at a resolution of 2.43 A. The overall fold of the molecule is similar to that of prothrombin kringle 1 and plasminogen kringle 4; however, there are differences in the lysine binding pocket, and two looping regions, which include insertions in kringle 2, take on very different conformations. Based on a comparison of the overall structural homology between kringle 2 and kringle 4, a new sequence alignment for kringle domains is proposed that results in a division of kringle domains into two groups, consistent with their proposed evolutionary relation. The crystal structure shows a strong interaction between a lysine residue of one molecule and the lysine/fibrin binding pocket of a noncrystallographically related neighbor. This interaction represents a good model of a bound protein ligand and is the first such ligand that has been observed in a kringle binding pocket. The structure shows an intricate network of interactions both among the binding pocket residues and between binding pocket residues and the lysine ligand. A lysine side chain is identified as the positively charged group positioned to interact with the carboxylate of lysine and lysine analogue ligands. In addition, a chloride ion is located in the kringle-kringle interface and contributes to the observed interaction between kringle molecules.  相似文献   

20.
The binding of recombinant tissue-type plasminogen activator (rt-PA) to fibrin increases upon digestion of fibrin with plasmin. Optimal binding is observed following a limited plasmin digestion of fibrin, coinciding with the generation of fibrin fragment X polymers. We studied the involvement of the separate domains of the amino-terminal "heavy" (H) chain of rt-PA in this augmentation of fibrin binding. The fibrin-binding characteristics of a set of rt-PA deletion mutants, lacking either one or more of the structural domains of the H chain, were determined on intact fibrin matrices and on fibrin matrices that were subjected to limited digestion with plasmin. The augmented fibrin binding of rt-PA is partially abolished when the plasmin-degraded fibrin matrices are subsequently treated with carboxypeptidase B, demonstrating that this increased binding is dependent on the generation of carboxyl-terminal lysine residues in the fibrin matrix. Evidence is provided that this increase of fibrin binding is mediated by the kringle 2 (K2) domain that contains a lysine-binding site. Further increase of the fibrin binding of rt-PA is independent of the presence of carboxyl-terminal lysines. It is shown that the latter increase is not mediated by the K2 domain. Based on our data, we propose that the increase in fibrin binding, unrelated to the presence of carboxyl-terminal lysine residues, is mediated by the finger (F) domain, provided that this domain is correctly exposed in the remainder of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号