首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
W Han  M Tu  R Zeng  J Zhao  C Zhou 《Carbohydrate polymers》2012,90(3):1353-1361
Two types of polyurethane/liquid crystal (PU/LC) composite membranes with different LC contents, namely polyurethane/octyl hydroxypropyl cellulose ester (PU/OPC) and polyurethane/propyl hydroxypropyl cellulose ester (PU/PPC), were prepared and studied. The effects of surface properties on cell compatibility of the membranes were elucidated. PPC tended to assemble to independent phases in the composite membranes, while OPC formed uniformly distributed LC domains. As the introduction of LC, phase separation occurred, and the crystallization of PU was disrupted. The surface of PU/LC composite membranes showed fingerprint texture and two-phase morphology. Hydrophilicity of the two types of composite membranes exhibited a reversal tendency with the increase of LC contents. Cells seeded on the composite membranes presented favorable growth when the content of LC was over 30%, especially on PU/OPC complex. The surface morphology, phase separation between LC and PU as well as the type of LC showed significant effects on the cell behaviors.  相似文献   

2.
A multiple-unit indomethacin delivery system based on hydroxypropyl methylcellulose as the hydrophilic carrier material was developed by a novel technique using the insolubility of the cellulose ether at elevated temperatures and the ionotropic gelation of the polysaccharide, sodium alginate with calcium ions. Spherical beads were prepared by dropping hot sodium alginate solution (60°C) containing dispersed drug and dispersed hydroxypropyl methylcellulose into the heated calcium chloride solution. Beads with a combined hydroxypropyl methylcellulose-indomethacin solids content of up to 98% could be prepared because of the processing of a hydroxypropyl methylcellulose dispersion rather than a solution. The beads were characterized by dissolution and scanning electron microscopy. The drug release was controlled by the viscosity grade of the hydroxypropyl methylcellulose and the rate of polymer gelation, and could be sustained over an 8-h period.  相似文献   

3.
Pharmaceutical availability of erythromycin granules with polymeric coating of different composition+ was studied. With an account of the ++anatomo-physiological features of a child organism and the properties of the antibiotic, acetylphthalyl cellulose in combination with hydroxypropyl methylcellulose or methyl cellulose was used as a film forming agent. The coated granules were estimated by such parameters as the time of disintegration and the rate of dissolution in various media. The results of the study showed that coating of the erythromycin granules with the film composed of acetylphthalyl cellulose and hydroxypropyl methylcellulose in the ratio of 8 to 2 provided the required protection of the antibiotic in acid media and high pharmaceutical availability of the drug.  相似文献   

4.
Transdermal films of the furosemide were developed employing ethyl cellulose and hydroxypropyl methylcellulose as film formers. The effect of binary mixture of polymers and penetration enhancers on physicochemical parameters including thickness, moisture content, moisture uptake, drug content, drug–polymer interaction, and in vitro permeation was evaluated. In vitro permeation study was conducted using human cadaver skin as penetration barrier in modified Keshary–Chein diffusion cell. In vitro skin permeation study showed that binary mixture, ethyl cellulose (EC)/hydroxypropyl methylcellulose (HPMC), at 8.5:1.5 ratio provided highest flux and also penetration enhancers further enhanced the permeation of drug, while propylene glycol showing higher enhancing effect compared to dimethyl sulfoxide and isopropyl myristate. Different kinetic models, used to interpret the release kinetics and mechanism, indicated that release from all formulations followed apparent zero-order kinetics and non-Fickian diffusion transport except formulation without HPMC which followed Fickian diffusion transport. Stability studies conducted as per International Conference on Harmonization guidelines did not show any degradation of drug. Based on the above observations, it can be reasonably concluded that blend of EC–HPMC polymers and propylene glycol are better suited for the development of transdermal delivery system of furosemide.  相似文献   

5.
《Chirality》2017,29(6):315-324
Chiral solid membranes of cellulose, sodium alginate, and hydroxypropyl‐β‐cyclodextrin were prepared for chiral dialysis separations. After optimizing the membrane material concentrations, the membrane preparation conditions and the feed concentrations, enantiomeric excesses of 89.1%, 42.6%, and 59.1% were obtained for mandelic acid on the cellulose membrane, p ‐hydroxy phenylglycine on the sodium alginate membrane, and p ‐hydroxy phenylglycine on the hydroxypropyl‐β‐cyclodextrin membrane, respectively. To study the optical resolution mechanism, chiral discrimination by membrane adsorption, solid phase extraction, membrane chromatography, high‐pressure liquid chromatography ultrafiltration were performed. All of the experimental results showed that the first adsorbed enantiomer was not the enantiomer that first permeated the membrane. The crystal structures of mandelic acid and p ‐hydroxy phenylglycine are the racematic compounds. We suggest that the chiral separation mechanism of the solid membrane is “adsorption – association – diffusion,” which is able to explain the optical resolution of the enantioselective membrane. This is also the first report in which solid membranes of sodium alginate and hydroxypropyl‐β‐cyclodextrin were used in the chiral separation of p ‐hydroxy phenylglycine.  相似文献   

6.
壳聚糖基角膜细胞载体的制备及其细胞相容性   总被引:1,自引:0,他引:1  
为探讨羟丙基壳聚糖基共混膜作为组织工程技术中角膜细胞培养载体的可行性, 分别制备了羟丙基壳聚糖/硫酸软骨素、羟丙基壳聚糖/明胶/硫酸软骨素以及羟丙基壳聚糖/氧化透明质酸/硫酸软骨素三种共混膜。测定其透光率、含水量和蛋白吸附性能; 在共混膜上培养兔角膜上皮细胞, 通过观察角膜上皮细胞在不同载体膜上的生长状态、贴附情况, 测定细胞活性以及上清液中乳酸脱氢酶的活性, 研究三种壳聚糖基载体膜片与角膜上皮细胞的相容性。膜片理化性质测定结果表明三种共混膜片具有良好的透明度, 适宜的含水量和较强的蛋白吸附性能; 细胞相容性实验结果表明羟丙基壳聚糖/明胶/硫酸软骨素共混膜对细胞的损伤最小, 有利于细胞在膜上的贴附和生长, 表现出良好的细胞相容性, 有望作为角膜细胞载体体外构建组织工程化角膜。  相似文献   

7.
Ding B  Ye Yq  Cheng J  Wang K  Luo J  Jiang B 《Carbohydrate research》2008,343(18):3112-3116
2,2,6,6-Tetramethyl-1-piperidinyloxy radical (TEMPO)-mediated oxidations of substituted polysaccharides were studied at pH 10.2 and at a temperature of 0 °C with NaOCl as the oxidant. The reaction is highly selective, and it was shown that the oxidation can proceed to a yield of nearly 100%. The oxidation process was investigated for several substituted polysaccharides, especially for a series of hydroxypropyl guar gums with different molar degrees of substitution. It was shown that this oxidation can be used for the determination of the degree of substitution at C-6 of the polysaccharide by comparing the difference in oxidation yield between substituted and natural polysaccharides. Studies on several hydroxypropyl guar gums showed that the degrees of substitution at C-6—for MS of 0.08, 0.34, 0.62, and 1.08—are 0.06, 0.24, 0.40, and 0.44, respectively. The results were extended to other polysaccharides such as carboxymethyl cellulose, cationic guar gum, carboxymethyl pullulan, and methyl cellulose. It can be concluded that the TEMPO-mediated oxidation is a useful method for the determination of the DS at the substituted C-6 position for different kinds of modified polysaccharides.  相似文献   

8.
Bacterial cellulose (BC) is a biopolymer with applications in numerous industries such as food and pharmaceutical sectors. In this study, various hydrocolloids including modified starches (oxidized starch—1404 and hydroxypropyl starch—1440), locust bean gum, xanthan gum (XG), guar gum, and carboxymethyl cellulose were added to the Hestrin-Schramm medium to improve the production performance and microstructure of BC by Gluconacetobacter entanii isolated from coconut water. After 14-day fermentation, medium supplemented with 0.1% carboxymethyl cellulose and 0.1% XG resulted in the highest BC yield with dry BC content of 9.82 and 6.06 g/L, respectively. In addition, scanning electron microscopy showed that all modified films have the characteristic three-dimensional network of cellulose nanofibers with dense structure and low porosity as well as larger fiber size compared to control. X-ray diffraction indicated that BC fortified with carboxymethyl cellulose exhibited lower crystallinity while Fourier infrared spectroscopy showed characteristic peaks of both control and modified BC films.  相似文献   

9.
Water soluble cellulose ethers, including methylcellulose and two hydroxyethylcelluloses with different molecular weights, were conjugate with indomethacin at room temperature. The chemical structures of the conjugates were characterized by FTIR, 1H NMR and UV–vis spectroscopy. The results confirmed that different amounts of IND residues were covalently bonded to cellulose ether backbones through ester linkages. Their anaerobic biodegradation in colonic fermentation was investigated by gel permeation chromatography, gas chromatography and UV–vis spectroscopy. These conjugates were found to have different biodegradabilities, depending on the cellulose ether used and the amount of conjugated indomethacin residues. In vitro release experiments showed that hydroxyethylcellulose-based conjugates with low IND residues content could exhibit a sustained drug release behavior in colonic fermentation and were stable in the simulated media of the stomach and small intestine. Therefore, they are promising candidates for future applications in colon-specific drug delivery.  相似文献   

10.
The effect of moisture content on flowability of six pharmaceutical powders (microcrystalline cellulose (MCC), hydroxypropyl methylcellulose (HPMC), carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), corn starch, and potato starch) was investigated. Powder flowability was measured using established static techniques and emerging dynamic avalanche behavior measurements. Static techniques did not provide enough resolution to clearly identify changes in flowability due to increasing powder moisture content. Avalanche time and its standard deviation showed that flowability of MCC, CMC, PVP, and potato starch decreased after a critical moisture content, flowability of corn starch increased and flowability did not significantly change for HPMC. The moisture decreased flowability by forming stronger interparticle liquid bridges and increased flowability by acting as a lubricant. The dynamic density of the celluloses and PVP decreased linearly with increasing moisture content as the particles swelled with water. The starches also swelled and decreased in dynamic density, but only after a moisture content corresponding to monolayer coverage of water around the particles was reached. As flowability and dynamic density change with moisture content, to ensure consistent production of high-quality tablets, the moisture content of the powders must be measured and controlled.  相似文献   

11.
Oligosaccharides of hydroxypropylmethyl cellulose, hydroxypropyl cellulose, and methyl cellulose were investigated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The cellulose ether oligosaccharides were produced either by enzymatic depolymerization utilizing the purified family 5 endoglucanase from Bacillus agaradhaerens or by partial acidic depolymerization. To lower the limit of detection in MALDI-MS three dilakylamines, dimethyl-, diethyl-, and dipropylamine were studied as reagents for reductive amination of the oligosaccharides. All three amines contributed to a significant increase in sensitivity in MALDI-MS, especially for oligosaccharides with a degree of polymerization (DP) < 3. These reagents were also attractive due to their high volatility, which facilitated the purification of the reaction mixtures. It was established that low-mass discrimination in MALDI-MS in the DP range 1-7 was substantially reduced with dialkylamine derivatization. Hence, dialkylamine derivatization of cellulose ether oligosaccharides obtained by endoglucanase depolymerization increased the number of detected analyte components. Dimethylamine was concluded to be the preferred reagent of those evaluated.  相似文献   

12.
Buccal patches for the delivery of atenolol using sodium alginate with various hydrophilic polymers like carbopol 934 P, sodium carboxymethyl cellulose, and hydroxypropyl methylcellulose in various proportions and combinations were fabricated by solvent casting technique. Various physicomechanical parameters like weight variation, thickness, folding endurance, drug content, moisture content, moisture absorption, and various ex vivo mucoadhesion parameters like mucoadhesive strength, force of adhesion, and bond strength were evaluated. An in vitro drug release study was designed, and it was carried out using commercial semipermeable membrane. All these fabricated patches were sustained for 24 h and obeyed first-order release kinetics. Ex vivo drug permeation study was also performed using porcine buccal mucosa, and various drug permeation parameters like flux and lag time were determined.  相似文献   

13.
Purified flax waste was obtained from flax processing wastes via subjecting the latter to alkali treatment followed by peracetic acid bleaching. The so obtained purified flax wastes were chemically modified via reacting with propylene oxide in alkaline medium. The resultant hydroxypropyl cellulose (HPC) was incorporated in a polymerization medium containing acrylic acid and potassium bromate/thiourea mixture as initiation system. The polymerization reaction was monitored by determining the total conversion percent and the rheological properties of the resultant polyacrylic acid–hydroxypropyl cellulose composite [poly(AA)–HPC]. Results obtained indicate that the optimum conditions of polymerization process were: 12 mmole KBrO3, 4 mmole thiourea and 100 g acrylic acid/100 g HPC at 50 °C for 2 h using a material to liquor ratio of 1:5.  相似文献   

14.
The effects of a prolonged subcutaneous administration of SCH 13521 dissolved in 0.3% hydroxypropyl cellulose (2-8 weeks in daily doses of 0.2 or 1.0 mg amounting to an estimated equivalent of experimental and curative doses used by others in laboratory animals and men) were studied in males of the mouse inbred strain C57BL/6. Following the treatment, the activity of spermatogenesis (expressed as the mean number of seminiferous tubules containing mature sperm and epididymal sperm count) was inhibited while the testis weight was not reduced, obviously due to an absolute increase of the interstitial tissue which was a marked histological feature of the testes, particularly following the higher doses of SCH 13521. Lower doses and shorter-lasting administration of the compound seem to inhibit the activity more effectively because after a prolonged administration reparatory processes tend to be triggered via a stimulatory effect on the synthesis of testosterone in Leydig cells. The solvent alone, hydroxypropyl cellulose, had some inhibitory effect on spermatogenesis. The lymphoid system remained both morphologically and functionally unaffected by SCH 13521 unlike the steroidal antiandrogen cyproterone actetate.  相似文献   

15.
Mixing of aqueous solutions of poly(acrylic acid) and (hydroxypropyl)cellulose results in formation of hydrogen-bonded interpolymer complexes, which precipitate and do not allow preparation of homogeneous polymeric films by casting. In the present work the effect of pH on the complexation between poly(acrylic acid) and (hydroxypropyl)cellulose in solutions and miscibility of these polymers in solid state has been studied. The pH-induced complexation-miscibility-immiscibility transitions in the polymer mixtures have been observed. The optimal conditions for preparation of homogeneous polymeric films based on blends of these polymers have been found, and the possibility of radiation cross-linking of these materials has been demonstrated. Although the gamma-radiation treatment of solid polymeric blends was found to be inefficient, successful cross-linking was achieved by addition of N,N'-methylenebis(acrylamide). The mucoadhesive potential of both soluble and cross-linked films toward porcine buccal mucosa is evaluated. Soluble films adhered to mucosal tissues undergo dissolution within 30-110 min depending on the polymer ratio in the blend. Cross-linked films are retained on the mucosal surface for 10-40 min and then detach.  相似文献   

16.
Cultivation of Mycoplasmas on Cellulose Ester Substrates   总被引:1,自引:1,他引:0       下载免费PDF全文
The ability of mycoplasmas to grow on cellulose ester substrates was evaluated. Mycoplasma pneumoniae, M. hominis, M. arthritidis, M. gallisepticum, and Acholeplasma laidlawii grew on Millipore (mixed cellulose ester) filters and Sepraphore III (cellulose polyacetate) membranes.  相似文献   

17.
The distribution of substituents along the polymer backbone will have a strong influence on the properties of modified cellulose. Endoglucanases were used to degrade a series of hydroxypropyl cellulose (HPC) derivatives with a high degree of substitution. The HPCs were characterized with cloud-point analysis prior to degradation. The extent of enzymatic degradation was determined with size-exclusion chromatography with online multi-angle light scattering and refractive index detection and also with high-pH anion exchange chromatography with pulsed amperometric detection. To further characterize the formed products, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for analysis of short-chained oligosaccharides. The different endoglucanases showed varying degradation capability depending on structure of the active site. The highly substituted HPCs had different susceptibility to degradation by the endoglucanases. The results show a difference in substituent distribution between HPCs, which would explain the differing cloud-point behaviors. Increased number of regions with low substitution could be correlated with lower polymer cloud point. The study shows the usefulness of enzymatic degradation to study the distribution of substituents in soluble biopolymer derivates.  相似文献   

18.
Itraconazole (ITZ) crystalline nanoparticles were prepared using relatively simple, low-cost sonoprecipitation technique, in which both the solvent and antisolvent were organic in nature. The effect of stabilizer type (hydroxypropyl methylcellulose, hydroxypropyl cellulose, Inutec SP1®, and pluronic F127), drying method (oven and freeze drying) and matrix former used (Avicel PH101, and Aerosil®200) on the dissolution performance as a key characteristic of nanocrystals was evaluated. In 10 min, all of the prepared nanocrystals showed 3.77−8.59 times improvement in percent drug dissolved compared to pure ITZ. Concerning the effect of stabilizer type, the following rank order can be given: pluronic F127 ≥ hydroxypropyl cellulose ≥ hydroxypropyl methylcellulose (HPMC) > inutec SP1. Freeze-dried ITZ nanocrystals containing Avicel PH 101 showed better dissolution rate compared to other nanocrystals. The chemical structure of itraconazole nanocrystals was not changed as revealed by Fourier transform infrared. Stability study of selected nanocrystals (F5, F7, and F8) revealed physical and chemical stability of F7 and F8, while a decrease in dissolution rate of F5 was observed (although being chemically stable) when stored under high relative humidity conditions. Although inutec is less potent than pluronic F127 and HPMC regarding their effect on dissolution rate enhancement, it is equipotent to pluronic F127 in preserving the rapid drug dissolution.Key words: itraconazole, nanocrystals, nanoparticles, stability study  相似文献   

19.
The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.  相似文献   

20.
The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号