首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1. Pacific salmon (Oncorhynchus spp.) deliver salmon‐derived nutrients (SDN) to the streams in which they spawn. However, many stream parameters, such as discharge and spawner abundance, can vary from year to year, which could alter the quantity and flux of SDN. 2. Over six consecutive years, we studied responses in streamwater chemistry and epilithon (i.e. the microbial community on submerged rocks) to salmon spawners in Fish Creek, southeastern Alaska, U.S.A. The lower reach of Fish Creek receives spawners of several salmon species, while the upper reach does not receive spawners because of an intervening waterfall. 3. We estimated salmon spawner biomass, analysed water chemistry [ammonium, nitrate, soluble reactive phosphorus (SRP) and dissolved organic carbon (DOC)], and measured epilithon abundance [as chlorophyll a (chl a) and ash‐free dry mass (AFDM)] in Fish Creek. Measurements were made in both the upper and lower reaches, before, during and after the major salmon runs. 4. Absolute values and relative differences indicated that the presence of salmon spawners consistently increased dissolved ammonium (by 58 μg L−1 on average, 41× over background), SRP (by 6 μg L−1, 14×), epilithon chl a (by 35 mg m−2, 16×), and epilithon AFDM (by 3 g m−2, 8×). Salmon spawners did not increase nitrate or DOC in either absolute or relative amounts. The persistence and magnitude of spawner effects varied among years and appeared to reflect weather‐driven hydrology as well as spawner biomass. 5. Salmon‐derived nutrients can stimulate the growth of primary producers by increasing streamwater nutrient concentrations, but this positive influence may be modulated by other factors, such as water temperature and discharge. To better assess the ecological influence of SDN on stream biota, future studies should explicitly consider the role of key environmental factors and their temporal and spatial dynamics in stream ecosystems.  相似文献   

2.
1. Pacific salmon and steelhead once contributed large amounts of marine‐derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of delivering nutrients to freshwater and linked riparian ecosystems where marine‐derived nutrients have been reduced or eliminated. 2. We compared four streams: two reference and two treatment streams using salmon carcass analogue(s) (SCA) as a treatment. Response variables measured included: surface streamwater chemistry; nutrient limitation status; carbon and nitrogen stable isotopes; periphyton chlorophyll a and ash‐free dry mass (AFDM); macroinvertebrate density and biomass; and leaf litter decomposition rates. Within each stream, upstream reference and downstream treatment reaches were sampled 1 year before, during, and 1 year after the addition of SCA. 3. Periphyton chlorophyll a and AFDM and macroinvertebrate biomass were significantly higher in stream reaches treated with SCA. Enriched stable isotope (δ15N) signatures were observed in periphyton and macroinvertebrate samples collected from treatment reaches in both treatment streams, indicating trophic transfer from SCA to consumers. Densities of Ephemerellidae, Elmidae and Brachycentridae were significantly higher in treatment reaches. Macroinvertebrate community composition and structure, as measured by taxonomic richness and diversity, did not appear to respond significantly to SCA treatment. Leaf breakdown rates were variable among treatment streams: significantly higher in one stream treatment reach but not the other. Salmon carcass analogue treatments had no detectable effect on measured water chemistry variables. 4. Our results suggest that SCA addition successfully increased periphyton and macroinvertebrate biomass with no detectable response in streamwater nutrient concentrations. Correspondingly, no change in nutrient limitation status was detected based on dissolved inorganic nitrogen to soluble reactive phosphorus ratios (DIN/SRP) and nutrient‐diffusing substrata experiments. Salmon carcass analogues appear to increase freshwater productivity. 5. Salmon carcass analogues represent a pathogen‐free nutrient enhancement tool that mimics natural trophic transfer pathways, can be manufactured using recycled fish products, and is easily transported; however, salmon carcass analogues should not be viewed as a replacement for naturally spawning salmon and the important ecological processes they provide.  相似文献   

3.
Grazer species effects on epilithon nutrient composition   总被引:3,自引:0,他引:3  
1. Field and laboratory experiments were conducted to investigate the excretion stoichiometry of nitrogen (N) and phosphorus (P) of two benthic macroinvertebrate grazers, the crayfish Orconectes propinquus and the snail Elimia livescens, that differ in body stoichiometry (mean body molar N : P 18 and 28, respectively). Crayfish excretion had a significantly higher ammonium : soluble reactive phosphorus (SRP) ratio in the laboratory and in three natural streams than did snails, as predicted by ecological stoichiometry theory. 2. In greenhouse recirculating artificial streams, treatments consisting of crayfish, snails, or no grazers were used to examine responses in dissolved nutrient concentrations and epilithon nutrient composition and limitation. SRP concentrations depended upon the grazer species, with the snail treatment having a higher SRP concentration than other treatments (P < 0.05). Dissolved inorganic N was not affected by grazers, but appeared to be rapidly incorporated in epilithon. 3. Epilithon N content was dependent upon the grazer species present, with the crayfish treatment having a significantly higher N content than other treatments (P = 0.001). No grazer species effects on epilithon P content were found. However, both grazer treatments had significantly lower epilithon P content than the no‐grazer treatment. 4. Traditionally, studies have focused on how grazer‐induced structural changes to epilithon can alter epilithon nutrient dynamics, but this structural mechanism could not solely explain differences in epilithon nutrient contents and ratios in the present study. Our results rather suggest that benthic grazers can alter epilithon nutrient composition and limitation via nutrient excretion. Consequently, macroinvertebrate grazers may serve as ‘nutrient pumps’ that partly regulate the availability of nutrients to algae in stream ecosystems.  相似文献   

4.
1. Adult Pacific salmon (Oncorhynchus spp.) transport marine nutrients to fresh waters and disturb sediments during spawning. The relative importance of nutrient fertilisation and benthic disturbance by salmon spawners can be modulated by environmental conditions (e.g. biological, chemical and physical conditions in the catchment, including human land use). 2. To determine the importance of the environmental context in modifying the uptake and incorporation of salmon‐derived material into stream biota, we measured the nitrogen (δ15N) and carbon (δ13C) isotopic composition of benthic algae (i.e. epilithon) and juvenile coho salmon (Oncorhynchus kisutch) in seven streams across a timber‐harvest gradient (8–69% catchment area harvested), both before and during the salmon run. Conditional bootstrap modelling simulations were used to assess variability in the response of epilithon and juvenile coho salmon to spawning salmon. 3. In response to spawning salmon, epilithon exhibited enrichment in both δ15N (mean: 1.5‰) and δ13C (2.3‰). Juvenile coho were also enriched in both δ15N (0.7‰) and δ13C (1.4‰). Conditional bootstrap models indicate decreased variation in data as spatial replication increases, suggesting that the number of study sites can influence the results of Pacific salmon isotope studies. 4. Epilithon isotopic enrichment was predicted by environmental conditions, with δ15N enrichment predicted by stream temperature and timber harvest (R2 = 0.87) and δ13C enrichment by discharge, sediment size, timber harvest and spawner density (R2 = 0.96). Furthermore, we found evidence for a legacy effect of salmon spawners, with pre‐spawner δ15N and δ13C of both epilithon and juvenile coho predicted by salmon run size in the previous year. 5. Our results show that the degree of incorporation of salmon‐derived nitrogen and carbon differs among streams. Furthermore, the environmental context, including putative legacy effects of spawning salmon, can influence background isotopic concentrations and utilisation of salmon‐derived materials in southeast Alaska salmon streams. Future studies should consider the variation in isotopic composition of stream biota when deciding on the number of study sites and samples needed to generate meaningful results.  相似文献   

5.
We tested the hypothesis that the carcasses of anadromous Pacific salmon (Oncorhynchus spp.) constitute a significant source of nutrients in the nutrient-poor freshwaters where these fish migrate, spawn, senesce, and die. In a 110 m-long stream reach in Southeast Alaska, we retained nearly 3000 salmon carcasses and compared streamwater nitrogen (N), phosphorus (P), and the biomass of benthic biofilm in this reach with an upstream reference reach. The study spanned 5 months, bracketed the entire salmon run, and encompassed significant seasonal variation in abiotic stream conditions. Concentrations of dissolved and particulate N and P followed distinctly unimodal patterns through time, which tracked the abundance of live salmon, and we observed strong predictive relationships between live-salmon abundance and streamwater-nutrient concentrations. In contrast, we did not observe clear relationships between salmon carcasses and streamwater nutrients. Biofilm biomass within our study reaches seemed to more closely track the abundance of live salmon than the abundance of carcasses. The experimental retention of carcasses had a minor or undetectable influence on nutrient concentrations and biofilm within the study reach as compared to the reference reach. We conclude that physical factors such as temperature, discharge, nutrient limitation, and irradiance vary seasonally in ways that maximize the influence of nutrients provisioned by live salmon and minimize the influence of carcass-derived nutrients on the aspects of stream ecosystems that we examined. Overall, our results promote a new perspective on the ecological role of salmon in freshwaters, and contribute to a more mechanistic understanding of how migratory fishes can influence aquatic ecosystems.  相似文献   

6.
1. We monitored streams within the Gila River drainage in south‐western New Mexico, U.S.A., over a 5‐year period, to investigate the influence of ash input on water quality and stream biota following forest wildfires. 2. Nutrients [ammonium, nitrate, soluble reactive phosphate (SRP)], potassium and alkalinity were most affected by fires; all were increased in stream water following ash input. Concentrations of each returned to prefire conditions within 4 months. Ammonium and nitrate also increased in stream water as a result of atmospheric fallout (e.g. smoke) from fires outside the catchment. 3. Periphyton biomass was not affected significantly by wildfires, although there was a shift in diatom assemblage to smaller more adnate taxa. Cocconeis placentula was frequently the dominant postfire species. 4. The influence of wildfires on macroinvertebrates ranged from minimal to dramatic reductions in density depending upon the duration of ash flows and the characteristics of the ash material that entered each system. Macroinvertebrate densities returned to prefire conditions within 1 year. 5. An in‐situ ashing experiment was conducted on a first‐order stream in the Gila River drainage to monitor on‐site physiochemical and biotic responses during and after fire ash addition, for comparison with ash delivery from real wildfires on monitored streams. Physical–chemical parameters and algae and macroinvertebrates were monitored in an ashed and upstream reference reach for 13 months. Results generally substantiated findings from monitored streams. 6. Concentrations of major ions and nutrients, as well as turbidity, conductivity and pH, increased immediately in stream water below the point of ashing, while dissolved oxygen decreased. Changes in water chemistry were short‐lived (=24 h) except for SRP. The concentration of SRP in stream water was significantly higher in the ashed reach than the control reach for at least 1 month after ash input. 7. Periphyton biomass and diatom assemblages were not significantly altered in the ashing study, whereas macroinvertebrate density was measurably lower in the ashed reach for nearly a year. Macroinvertebrate drift was over 10‐fold greater in the ashed reach compared with the reference reach during ashing. Dissimilarity between macroinvertebrate communities in the reference and ashed reaches was significantly greater than variation within reaches for nearly a year.  相似文献   

7.
1. Variation in resource subsidies can create or reinforce heterogeneity in recipient ecosystems. Related activities of organisms delivering resource subsidies, such as ecosystem engineering by Pacific salmon spawners (Oncorhynchus spp.), also alter heterogeneity. We studied whether heterogeneity in stream environmental conditions and spawner abundances were reflected in the net ecological effects of salmon (i.e. enrichment by resource subsidies and disturbance by ecosystem engineering) on benthic biofilm. 2. We sampled seven Southeast Alaska streams over 3 years, both before and during the salmon run. In each stream and year, stream environmental characteristics and their influence on responses of benthic biofilm [mean and coefficient of variation of chlorophyll a (chl a), ash‐free dry mass (AFDM) and autotrophic index (AFDM:chl a)] to spawners were assessed. 3. Streams and periods before and during the salmon run were distinct based on their environmental characteristics. The responses of most biofilm metrics to spawners were stream‐ and year‐specific, suggesting that the ecological effect of spawners ranged from net enrichment to net disturbance depending on the stream or year studied. The environmental context, especially temperature, large wood, and sediment size, explained >50% of biofilm variability during the run, but <30% over the entire study, suggesting that salmon can alter environmental constraints. 4. Precision of biofilm estimates improved by increasing either the number of streams or the number of years sampled (i.e. spatial or temporal replication). However, combining data from different North Pacific Rim ecoregions inflated the confidence interval as compared with a single ecoregion, indicating the importance of regional environmental contexts for net salmon effects. 5. Our results suggest that biofilm responses to salmon can vary greatly, even within a single ecoregion, and that environmental conditions can modify net salmon effects. Consequently, generalisations about biofilm responses across the native range of salmon may be challenging.  相似文献   

8.
Pacific salmon (Oncorhynchus spp.) disturb sediments and fertilize streams with marine-derived nutrients during their annual spawning runs, leading researchers to classify these fish as ecosystem engineers and providers of resource subsidies. While these processes strongly influence the structure and function of salmon streams, the magnitude of salmon influence varies widely across studies. Here, we use meta-analysis to evaluate potential sources of variability among studies in stream ecosystem responses to salmon. Results obtained from 37 publications that collectively included 79 streams revealed positive, but highly inconsistent, overall effects of salmon on dissolved nutrients, sediment biofilm, macroinvertebrates, resident fish, and isotopic enrichment. Variation in these response variables was commonly influenced by salmon biomass, stream discharge, sediment size, and whether studies used artificial carcass treatments or observed a natural spawning run. Dissolved nutrients were positively related to salmon biomass per unit discharge, and the slope of the relationship for natural runs was five to ten times higher than for carcass additions. Mean effects on ammonium and phosphorus were also greater for natural runs than carcass additions, an effect attributable to excretion by live salmon. In contrast, we observed larger positive effects on benthic macroinvertebrates for carcass additions than for natural runs, likely because disturbance by live salmon was absent. Furthermore, benthic macroinvertebrates and biofilm associated with small sediments (<32 mm) displayed a negative response to salmon while those associated with large sediments (>32 mm) showed a positive response. This comprehensive analysis is the first to quantitatively identify environmental and methodological variables that influence the observed effects of salmon. Identifying sources of variation in salmon–stream interactions is a critical step toward understanding why engineering and subsidy effects vary so dramatically over space and time, and toward developing management strategies that will preserve the ecological integrity of salmon streams. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
1. Rates of whole‐system metabolism (production and respiration) are fundamental indicators of ecosystem structure and function. Although first‐order, proximal controls are well understood, assessments of the interactions between proximal controls and distal controls, such as land use and geographic region, are lacking. Thus, the influence of land use on stream metabolism across geographic regions is unknown. Further, there is limited understanding of how land use may alter variability in ecosystem metabolism across regions. 2. Stream metabolism was measured in nine streams in each of eight regions (n = 72) across the United States and Puerto Rico. In each region, three streams were selected from a range of three land uses: agriculturally influenced, urban‐influenced, and reference streams. Stream metabolism was estimated from diel changes in dissolved oxygen concentrations in each stream reach with correction for reaeration and groundwater input. 3. Gross primary production (GPP) was highest in regions with little riparian vegetation (sagebrush steppe in Wyoming, desert shrub in Arizona/New Mexico) and lowest in forested regions (North Carolina, Oregon). In contrast, ecosystem respiration (ER) varied both within and among regions. Reference streams had significantly lower rates of GPP than urban or agriculturally influenced streams. 4. GPP was positively correlated with photosynthetically active radiation and autotrophic biomass. Multiple regression models compared using Akaike’s information criterion (AIC) indicated GPP increased with water column ammonium and the fraction of the catchment in urban and reference land‐use categories. Multiple regression models also identified velocity, temperature, nitrate, ammonium, dissolved organic carbon, GPP, coarse benthic organic matter, fine benthic organic matter and the fraction of all land‐use categories in the catchment as regulators of ER. 5. Structural equation modelling indicated significant distal as well as proximal control pathways including a direct effect of land‐use on GPP as well as SRP, DIN, and PAR effects on GPP; GPP effects on autotrophic biomass, organic matter, and ER; and organic matter effects on ER. 6. Overall, consideration of the data separated by land‐use categories showed reduced inter‐regional variability in rates of metabolism, indicating that the influence of agricultural and urban land use can obscure regional differences in stream metabolism.  相似文献   

11.
1. Pacific salmon (Oncorhynchus spp.) deliver marine‐derived nutrients to the streams in which they spawn and die, and these resource subsidies can increase the abundance of stream biota. In strong contrast, physical disturbance from salmon spawning activity can reduce the abundance of benthic organisms. Previous experimental designs have not established the relative effects of these two contrasting processes on stream organisms during a salmon run. 2. We combined manipulative and observational field studies to assess the degree of nutrient enrichment, physical disturbance, and the net effect of salmon on the abundance of benthic periphyton. Related salmon‐mediated processes were also evaluated for benthic macroinvertebrates. Mesh exclosures (2 × 2 m plots) prevented salmon from disturbing areas of the stream channel, which were compared with areas to which salmon had access. Sampling was conducted both before and during the late‐summer spawning run of pink (O. gorbushca) and chum (O. keta) salmon. 3. Streamwater nitrogen and phosphorus concentrations increased sharply with the onset of the salmon run, and highly significant positive relationships were observed between the numbers of salmon present in the stream and these dissolved nutrients. Before the salmon run, periphyton biomass (as chlorophyll a) and total macroinvertebrate abundance were very similar between control and exclosure plots. During the salmon run, exclosures departed substantially from controls, suggesting significant disturbance imparted on benthic biota. 4. Comparing exclosures before and during the salmon run enabled us to estimate the effects of salmon in the absence of direct salmon disturbance. This ‘nutrient enrichment potential’ was significant for periphyton biomass, as was a related index for macroinvertebrate abundance (although enhanced invertebrate drift into exclosures during the salmon run could also have been important). Interestingly, however, the net effect of salmon, evaluated by comparing control plots before and during the salmon run, was relatively modest for both periphyton and macroinvertebrates, suggesting that nutrient enrichment effects were largely offset by disturbance. 5. Our results illustrate the importance of isolating the specific mechanisms via which organisms affect ecosystems, and indicate that the relative magnitude of salmon nutrient enrichment and benthic disturbance determines the net effect that these ecologically important fish have on stream ecosystems.  相似文献   

12.
Spawning salmon deliver nutrients (salmon-derived nutrients, SDN) to natal watersheds that can be incorporated into terrestrial and aquatic food webs, potentially increasing ecosystem productivity. Peterson Creek, a coastal watershed in southeast Alaska that supports several species of anadromous fish, was sampled over the course of a storm during September 2006 to test the hypothesis that stormflows re-introduce stored SDN into the stream. We used stable isotopes and PARAFAC modeling of fluorescence excitation–emission spectroscopy to detect flushing of DOM from salmon carcasses in the riparian zone back into a spawning stream. During the early storm hydrograph, streamwater concentrations of NH4–N and total dissolved phosphorus (TDP), the fluorescent protein tyrosine and the δ15N content of DOM peaked, followed by a rapid decrease during maximum stormflow. Although δ15N has previously been used to track SDN in riparian zones, the use of fluorescence spectroscopy provides an independent indicator that SDN are being returned from the riparian zone to the stream after a period of intermediate storage outside the stream channel. Our findings further demonstrate the utility of using both δ15N of streamwater DOM and fluorescence spectroscopy with PARAFAC modeling to monitor how the pool of streamwater DOM changes in spawning salmon streams.  相似文献   

13.
1. Tallgrass prairies and their streams are highly endangered ecosystems, and many remaining streams are threatened by the encroachment of woody riparian vegetation. An increase in riparian vegetation converts the naturally open‐canopy prairie streams to closed‐canopy systems. The effects of a change in canopy cover on stream metabolism are unknown. 2. Our goal was to determine the effects of canopy cover on prairie stream metabolism during a 4‐year period in Kings Creek, KS, U.S.A. Metabolic rates from forested reaches were compared to rates in naturally open‐canopy reaches and restoration reaches, the latter having closed canopies in 2006 and 2007 and open canopies in 2008 and 2009. Whole‐stream metabolism was estimated using the two‐station diurnal method. Chlorophyll a concentrations and mass of filamentous algae were measured after riparian removal to assess potential differences in algal biomass between reaches with open or closed canopies. 3. Metabolic rates were spatially and temporally variable even though the sites were on very similar streams or adjacent to each other within streams. Before riparian vegetation removal, whole‐stream community respiration (CR) and net ecosystem production were greater with greater canopy cover. In the vegetation removal reaches, gross primary production was slightly greater after removal. 4. Chlorophyll a concentrations were marginally significantly greater in open (naturally open and removal reaches) than in closed canopy and differed significantly between seasons. Filamentous algal biomass was greater in open than in closed‐canopy reaches. 5. Overall, the restoration allowed recovery of some features of open‐canopy prairie streams. Woody expansion apparently increases CR and moves prairie stream metabolism towards a more net heterotrophic state. An increase in canopy cover decreases benthic chlorophyll, decreases dominance of filamentous algae and potentially alters resources available to the stream food web. The results of this study provide insights for land managers and conservationists interested in preserving prairie streams in their native open‐canopy state.  相似文献   

14.
1. Pacific salmon (Oncorhynchus spp.) returning to streams deliver substantial quantities of nutrients (nitrogen and phosphorus) that may stimulate primary production. Salmon can also affect the phytobenthos negatively via physical disturbance during nest excavation, a process that may counteract the positive effects of salmon‐derived nutrients on benthic algae. The ability of salmon to disturb benthic habitats may be a function of substratum particle size, and therefore, the geomorphology of streams could determine the net effect of salmon on benthic communities. 2. Based on surveys of 17 streams in southwest Alaska before the salmon run and during peak salmon density, we identified size thresholds for the disturbance of substratum particles by salmon and classified particles as vulnerable (<60 mm B‐axis), invulnerable (>110 mm) or transitional (61–110 mm). At the scale of individual rocks, algal biomass on vulnerable substrata decreased at peak spawning (relative to values before the run) as a power function of salmon density; transitional and invulnerable substrata showed no quantifiable pattern. However, invulnerable substrata in streams with more than 0.11 salmon m?2 showed net algal accrual, or relatively smaller declines in algal biomass, than vulnerable substrata, indicating that large rocks provide refuge for benthic algae from salmon disturbance. 3. We expected that streams with proportionally larger rocks would respond positively to salmon at the whole‐stream scale, after accounting for the relative abundance of rocks of different sizes within streams. Invulnerable rocks made up only 0–12% of the total substratum particle size distribution in salmon‐bearing streams, however, and algal accrual on invulnerable substrata did not outweigh the strong disturbance effects on the more spatially extensive vulnerable substrata. The change in whole‐stream benthic algal biomass among streams was negatively related to salmon density. 4. Stable isotopes of nitrogen (δ15N) were used to track nutrients from salmon into benthic biota. Periphyton δ15N on rocks of all size classes was higher at peak salmon spawning than before the salmon run, indicating the uptake of salmon‐derived nitrogen. Peak δ15N values were positively related to salmon abundance and followed a two‐isotope mixing relationship. The per cent of N from salmon in periphyton was also related to salmon density and was best explained by a saturating relationship. Spring δ15N was unrelated to salmon returns in the previous year, suggesting little annual carryover of salmon nutrients.  相似文献   

15.
N2‐fixing trees can affect stream water quality. This has been documented in temperate streams, but not in tropical ones, even though N2‐fixing trees are prevalent in the tropics. We investigated the effects of the introduced, invasive tree, Falcataria moluccana (albizia) on water quality of Hawaiian streams. Nutrient concentrations were measured in reaches above and below F. moluccana‐dominated riparian zones of four streams over 14 mo, and benthic algal nutrient limitation was examined in one stream. NO3?+NO2? concentrations were up to 600 percent higher in reaches below F. moluccana stands than in ones above them. In contrast, dissolved organic nitrogen concentrations were 24 percent lower in most reaches below F. moluccana stands, and NH4+ and particulate nitrogen concentrations were similar above and below the stands. Dissolved organic carbon concentrations were up to 30 percent lower below F. moluccana stands, but particulate carbon concentrations were similar between reaches. Total dissolved phosphorus concentrations were similar above and below F. moluccana stands, whereas H4SiO4 concentrations were higher below the stands. In the stream where benthic chlorophyll a was measured, concentrations were three times higher below the F. moluccana stand than above it. Benthic algae were co‐limited by nitrogen and phosphorus above the F. moluccana stand, and limited by phosphorus below it. These results suggest that F. moluccana's presence relieved nitrogen‐limitation and caused the benthic algae to become solely phosphorus‐limited. Overall, our results demonstrate that F. moluccana can strongly affect the chemistry and primary producers of these tropical streams.  相似文献   

16.
Streams are important sites of nutrient transport and transformation in the landscape but little is known about the way in which individual taxa or individual habitats (riffles and pools) influence nutrient dynamics within stream reaches. We used 5-week additions of a stable isotope (15NH4Cl) tracer to investigate nitrogen dynamics in pools and riffles of two New Zealand streams, one with native fish (Galaxias depressiceps) and the other with invasive brown trout (Salmo trutta). In New Zealand, brown trout initiate a trophic cascade leading to increased algal biomass that we predicted would lead to higher N uptake and retention. Uptake of NO3, but not ammonium, was greater in the trout stream. Rather than causing a large increase in N demand, trout may induce a reallocation of N uptake and retention among food web compartments in different habitats. The largest differences between streams were apparent in riffles, where most uptake and retention of N occurred. In the trout stream, uptake rate by epilithon in riffles was more than six times greater than uptake rates of any other compartment. In the Galaxias stream, several compartments in both habitats had similar uptake rates. Epilithon also accounted for a larger percentage of the 15N retained in the study reach in the trout stream (51%) than the Galaxias stream (34%). Our results show that an individual predatory taxon (in our case an invader) can influence N dynamics in streams but that the magnitude and location of the impact depend on a range of abiotic and biotic factors involved in N dynamics in streams.  相似文献   

17.
1. We investigated the effect of trophic status on the organic matter budget in freshwater ecosystems. During leaf litter breakdown, the relative contribution of the functional groups and the quantity/quality of organic matter available to higher trophic levels are expected to be modified by the anthropogenic release of nutrients. 2. Carbon budgets were established during the breakdown of alder leaves enclosed in coarse mesh bags and submerged in six streams: two oligotrophic, one mesotrophic, two eutrophic and one hypertrophic streams. Nitrate concentrations were 4.5–6.7 mg L−1 and the trophic status of each stream was defined by the soluble reactive phosphorus concentration ranging from 3.4 (oligotrophic) to 89 μg L−1 (hypertrophic). An ammonium gradient paralleled the phosphate gradient with mean concentrations ranging from 1.4 to 560 μg L−1 NH4‐N. The corresponding unionised ammonia concentrations ranged from 0.08 to 19 μg L−1 NH3‐N over the six streams. 3. The dominant shredder taxa were different in the oligo‐, meso‐ and eutrophic streams. No shredders were observed in the hypertrophic stream. These changes may be accounted for by the gradual increase in the concentration of ammonia over the six streams. The shredder biomass dramatically decreased in eu‐ and hypertrophic streams compared with oligo‐ and mesotrophic. 4. Fungal biomass increased threefold from the most oligotrophic to the less eutrophic stream and decreased in the most eutrophic and the hypertrophic. Bacterial biomass increased twofold from the most oligotrophic to the hypertrophic stream. Along the trophic gradient, the microbial CO2 production followed that of microbial biomass whereas the microbial fine particulate organic matter and net dissolved organic carbon (DOC) did not consistently vary. These results indicate that the microorganisms utilised the substrate and the DOC differently in streams of various trophic statuses. 5. In streams receiving various anthropogenic inputs, the relative contribution of the functional groups to leaf mass loss varied extensively as a result of stimulation and the deleterious effects of dissolved inorganic compounds. The quality/quantity of the organic matter produced by microorganisms slightly varied, as they use DOC from stream water instead of the substrate they decompose in streams of higher trophic status.  相似文献   

18.
Nuisance biomass levels of periphytic algae in streams   总被引:3,自引:3,他引:0  
Relative coverage of filamentous periphytic algae increased with chlorophyll a (chl a) biomass on natural substrata in 22 northwestern United States and Swedish streams. A biomass range of 100–150 mg chl a m−2 may represent a critical level for an aesthetic nuisance; below those levels, filamentous coverage was less than 20%. Other indices of water quality (dissolved oxygen content and measures of benthic macroinvertebrate diversity) were apparently unaffected by periphytic biomass or filamentous coverage in these streams. Neither was biomass related to limiting nutrient content (soluble reactive phosphorus, SRP), as has been observed in previous experiments using bare rocks in streams and slides in artificial channels. Ambient SRP concentration may not be a useful predicter of periphyton accrual on natural substrates, due to uptake and recycling of P throughout the stream and undetermined losses such as sloughing and grazing.  相似文献   

19.
1. To elucidate factors contributing to dissolved oxygen (DO) depletion in the Stockton Deep Water Ship Channel in the lower San Joaquin River, spatial and temporal changes in algae and nutrient concentrations were investigated in relation to flow regime under the semiarid climate conditions. 2. Chlorophyll‐a (chl‐a) concentration and loads indicated that most algal biomass was generated by in‐stream growth in the main stem of the river. The addition of algae from tributaries and drains was small (c.15% of total chl‐a load), even though high concentrations of chl‐a were measured in some source waters. 3. Nitrate and soluble‐reactive phosphorus (SRP) were available in excess as a nutrient source for algae. Although nitrate and SRP from upstream tributaries contributed (16.9% of total nitrate load and 10.8% of total SRP load), nutrients derived from agriculture and other sources in the middle and lower river reaches were mostly responsible (20.2% for nitrate and 48.0% for SRP) for maintaining high nitrate and SRP concentrations in the main stem. 4. A reduction in nutrient discharge would attenuate the algal blooms that accelerate DO depletion in the Stockton Deep Water Ship Channel. The N : P ratio, in the main stem suggests that SRP reduction would be a more viable option for algae reduction than nitrogen reduction. 5. Very high algal growth rates in the main stem suggest that reducing the algal seed source in upstream areas would also be an effective strategy.  相似文献   

20.
Streamwater chemistry was measured at 100-m intervals in all streams of the Hubbard Brook Valley, NH during ‘spring’ (May–July) and during ‘fall’ (October–December) 2001. Overall, streamwater chemistry was very similar during these two periods, but fall median concentrations were consistently higher than spring values, except for ANC, pH, NO3 and PO43−, which had lower values in fall. Median concentrations for NH4+ were approximately the same in spring and fall. Stream chemistry varied throughout the Hubbard Brook Valley by elevation, channel length, drainage area and type of drainage, but most of the variability in stream chemistry was subtle and relatively small. Overall, there were relatively large (two- to 10-fold) changes in chemistry with longitudinal distance of wetted channel, elevation and/or size of drainage area in some streams and for some elements (e.g., H+, Aln+, DOC), but other chemical concentrations changed relatively little (e.g., Cl, dissolved Si). The main Hubbard Brook, a fifth-order stream at the mouth of the Valley, was remarkably constant in chemistry throughout its length, except where human disturbance near the mouth changed the chemistry. Differences in vegetation, geologic substrates and wetland areas were related to changes in pattern of streamwater chemistry throughout the Valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号