首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

2.
Human placental adenosine kinase. Kinetic mechanism and inhibition   总被引:4,自引:0,他引:4  
The kinetic properties of human placental adenosine kinase, purified 3600-fold, were studied. The reaction velocity had an absolute requirement for magnesium and varied with the pH. Maximal activity was observed at pH 6.5 with a Mg2+:ATP ranging from 1:1 to 2:1. High concentrations of Mg2+ or free ATP were inhibitory. Double reciprocal plots of initial velocity studies yielded intersecting lines for both adenosine and MgATP2-. The Michaelis constant was 0.4 micro M for adenosine and 75 micro M for MgATP2-. Inhibition by adenosine was observed at concentrations greater than 2.5 micro M. AMP was a competitive inhibitor with respect to adenosine and a noncompetitive inhibitor with respect to ATP. ADP was a noncompetitive inhibitor with respect to adenosine and ATP. Hyperbolic inhibition was observed during noncompetitive inhibition of adenosine kinase by AMP and ADP. Other purine and pyrimidine nucleoside mono-, di-, and triphosphates were poor inhibitors in general. S-Adenosylhomocysteine and 2'-deoxyadenosine inhibited adenosine kinase. The data suggest that (a) MgATP2- is the true substrate of adenosine kinase, and both pH and [Mg2+] may regulate its activity; (b) the kinetic mechanisms of adenosine kinase is Ordered Bi Bi; and (c) adenosine kinase may be regulated by the concentrations of its products, AMP and ADP, but is relatively insensitive to other purine and pyrimidine nucleotides.  相似文献   

3.
The enzyme responsible for the direct phosphorylation of pyruvate during gluconeogenesis in Acetobacter xylinum has been purified 46-fold from ultrasonic extracts and freed from interfering enzyme activities. The enzyme was shown to catalyze the reversible Mg(2+) ion-dependent conversion of equimolar amounts of pyruvate, adenosine triphosphate (ATP), and orthophosphate (P(i)) into phosphoenolpyruvate (PEP), adenosine monophosphate (AMP), and pyrophosphate (PP). The optimal pH for PEP synthesis was pH 8.2; for the reversal it was pH 6.5. The ratio between the initial rates of the reaction in the forward and reverse directions was 5.1 at pH 8.2 and 0.45 at pH 6.5. The apparent K(m) values of the components of the system in the forward reaction were: pyruvate, 0.2 mm; ATP, 0.4 mm; P(i), 0.8 mm; Mg(2+), 2.2 mm; and for the reverse reaction: PEP, 0.1 mm; AMP, 1.6 mum; PP, 0.067 mm; Mg(2+), 0.87 mm. PEP formation was inhibited by AMP and PP. The inhibition by AMP was competitive with regard to ATP (K(i) = 0.2 mm). The reverse reaction was inhibited competitively by ATP and noncompetitively by pyruvate. The enzyme was strongly inhibited by p-hydroxymercuribenzoate. The inhibition was reversed by dithiothreitol and glutathione. The properties of the enzyme are discussed in relation to the regulation of the opposing enzymatic activities involved in the interconversion of PEP and pyruvate in A. xylinum.  相似文献   

4.
Isolated cell envelopes of a marine bacterium, M.B.3, have been prepared which possess a nonspecific, cation-activated nucleotidase. The cell envelope comprises approximately 35% (dry weight) of the whole cell and contains protein, 60.2%; lipids, 20.7%; hexose, 3.4%; and ribonucleic acid, 4.6%. No deoxyribonucleic acid could be detected in the preparations. The nucleotidase has an essential requirement for Mg(2+); maximum activation at pH 8.0 occurs at a divalent cation concentration of approximately 80 mm. At a Mg(2+) to adenosine 5'-triphosphate (ATP) ratio of 2:1, the enzyme was further stimulated by monovalent cations Na(+), K(+), NH(4) (+), and Li(+). Maximum activity was found at a monovalent ion concentration of approximately 0.3 m. The envelope preparation liberated inorganic orthophosphate (P(i)) from ATP, adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) at similar rates. Thin-layer and ion-exchange chromatography show that when AMP, ADP, and ATP were utilized as substrate, approximately 1, 2, and 3 moles of P(i), respectively, were produced per mole of adenosine. P(i) was also liberated from the 5'-triphosphates of guanosine, uridine, and cytidine. The enzyme preparation did not attack p-nitrophenyl phosphate, beta-glycerophosphate, or inorganic pyrophosphate. Sulfhydryl inhibitors p-chloromercuribenzoate, N-ethyl maleimide, and iodoacetate had little effect upon the nucleotidase activity. Ca(2+) and ethylenediaminetetraacetic acid caused complete inhibition of the system, whereas ouabain had no effect upon the enzyme activity. The concentrations of Na(+) (0.3 m) and Mg(2+) ions (60 to 80 mm) required for maximum ATP-hydrolyzing activity were similar to those concentrations necessary for maintenance of cell integrity and for the prevention of cell lysis.  相似文献   

5.
1. ATP sulphurylase was purified up to 1000-fold from spinach leaf tissue. Activity was measured by sulphate-dependent [(32)P]PP(i)-ATP exchange. The enzyme was separated from Mg(2+)-requiring alkaline pyrophosphatase (which interferes with the PP(i)-ATP-exchange assay) and from other PP(i)-ATP-exchange activities. No ADP sulphurylase activity was detected. 2. Sulphate was the only form of inorganic sulphur that catalysed PP(i)-ATP exchange; K(m) (sulphate) was 3.1mm, K(m) (ATP) was 0.35mm and the pH optimum was 7.5-9.0. The enzyme was insensitive to thiol-group reagents and required either Mg(2+) or Co(2+) for activity. 3. The enzyme catalysed [(32)P]PP(i)-dATP exchange; K(m) (dATP) was 0.84mm and V (dATP) was 30% of V (ATP). Competition between ATP and dATP was demonstrated. 4. Selenate catalysed [(32)P]PP(i)-ATP exchange and competed with sulphate; K(m) (selenate) was 1.0mm and V (selenate) was 30% of V (sulphate). No AMP was formed with selenate as substrate. Molybdate did not catalyse PP(i)-ATP exchange, but AMP was formed. 5. Synthesis of adenosine 5'-[(35)S]sulphatophosphate was demonstrated by coupling purified ATP sulphurylase and Mg(2+)-dependent alkaline pyrophosphatase (also prepared from spinach) with [(35)S]sulphate and ATP as substrates; adenosine 5'-sulphatophosphate was not synthesized in the absence of pyrophosphatase. Some parameters of the coupled system are reported.  相似文献   

6.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

7.
The properties of adenylate kinase in 2 ADP in equilibrium ATP + AMP reaction have been studied. The dependence of the enzyme activity on medium pH, protein concentration, substrates, Mg++ ions, AMP, adenine and adenosine has been also investigated. pH optimum is found to be 8.5 for forward reaction and 8-9--for the reverse one. The Michaelis constants are as follows: for ADP--1.17-10(-4) M, for ATP--3.33-10(-4) M at 24 degrees C, in 50 mM tris-HCl pH 7.6. The optimal ratio, Mg++ ions/substrates (ADP, ATP + AMP), is 1:2. The chelates of adenine nucleotides with Mg++ ions are proved to be "true" reaction substrates. Unlike adenine and adenosine, the product of AMP reaction inhibits adenylate kinase activity. It is concluded that the properties of adenylate kinase in plants are similar to those of animals and humans (moikinase).  相似文献   

8.
Adenylate kinase is a monomeric phosphotransferase with important biological function in regulating concentration of adenosine triphosphate (ATP) in cells, by transferring the terminal phosphate group from ATP to adenosine monophosphate (AMP) and forming two adenosine diphosphate (ADP) molecules. During this reaction, the kinase may undergo a large conformational transition, forming different states with its substrates. Although many structures of the protein are available, atomic details of the whole process remain unclear. In this article, we use both conventional molecular dynamics (MD) simulation and an enhanced sampling technique called parallel cascade selection MD simulation to explore different conformational states of the Escherichia coli adenylate kinase. Based on the simulation results, we propose a possible entrance/release order of substrates during the catalytic cycle. The substrate-free protein prefers an open conformation, but changes to a closed state once ATP·Mg enters into its binding pocket first and then AMP does. After the reaction of ATP transferring the terminal phosphate group to AMP, ADP·Mg and ADP are released sequentially, and finally the whole catalyze cycle is completed. Detailed contact and distance analysis reveals that the entrance/release order of substrates may be largely controlled by electrostatic interactions between the protein and the substrates.  相似文献   

9.
Factors affecting hexose phosphorylation in Acetobacter xylinum   总被引:4,自引:1,他引:3       下载免费PDF全文
Fructose was oxidized and converted to cellulose by cells of Acetobacter xylinum grown on fructose or succinate, but not by cells grown on glucose. In resting fructose-grown cells, glucose strongly suppressed fructose utilization. Extracts obtained from fructose- or succinate-grown cells catalyzed the adenosine triphosphate (ATP)-dependent formation of the 6-phosphate esters of glucose and fructose, whereas glucose-grown cell extracts phosphorylated glucose but not fructose. Fructokinase and glucokinase activities were separated and partially purified from cells grown on glucose, fructose, or succinate. Whereas fructokinase phosphorylated fructose only, glucokinase was active towards glucose and less active towards mannose and glucosamine. The optimal pH for the fructokinase was 7.4 and for the glucokinase was 8.5. The K(m) values for the fructokinase were: fructose, 6.2 mm; and ATP, 0.83 mm. The K(m) values for the glucokinase were: glucose, 0.22 mm; and ATP, 4.2 mm. Fructokinase was inhibited by glucose, glucosamine, mannose, and deoxyglucose in a manner competitive with respect to fructose, with K(i) values of 0.1, 0.14, 0.5, and 7.5 mm, respectively. Adenosine diphosphate (ADP) and adenosine monophosphate (AMP) inhibited both kinases noncompetitively with respect to ATP. The K(i) values were: 1.8 mm (ADP) and 2.1 mm (AMP) for fructokinase, and 2.2 mm (ADP) and 9.6 mm (AMP) for glucokinase. Fructose metabolism in A. xylinum appears to be regulated by the synthesis and activity of fructokinase.  相似文献   

10.
1. Evidence has been produced for the formation of 5-phosphomevalonate from potassium dl-mevalonate by the latex of Hevea brasiliensis and by reconstituted freeze-dried serum obtained from this latex. 2. The enzyme, mevalonate kinase, catalysing the formation of 5-phosphomevalonate from potassium dl-mevalonate and ATP has been partially purified. 3. 5-Phosphomevalonate formed by the purified mevalonate kinase from potassium [2-(14)C]mevalonate has been shown to be incorporated by latex into rubber to about 2.4 times the extent of dl-mevalonate. 4. The enzyme can utilize inosine triphosphate as effectively as adenosine triphosphate as a phosphate donor and is also slightly active with uridine triphosphate. 5. The enzyme was fairly stable to a range of pH values and temperatures, the activity being optimum at pH7.5 and 60-70 degrees . The energy of activation was 10.7kcal./mole. The K(m) values were 0.13mm for potassium dl-mevalonate and 2.0mm for ATP at 30 degrees . 6. The enzyme required the presence of Mn(2+) (1mm) for maximum activity; this could be replaced by Mg(2+) (4mm), which was less effective, and by Ca(2+), which was far less effective. 6. Although the enzyme did not require cysteine or reduced glutathione for activation in aerobic conditions, it was inhibited by reagents known to react with thiol groups.  相似文献   

11.
Some aspects of the kinetics of rat liver pyruvate carboxylase   总被引:9,自引:9,他引:0  
1. The kinetics of rat liver pyruvate carboxylase were examined and the effect of various agents as activators or inhibitors determined. 2. Essentially similar results were obtained in comparisons of kinetics determined by a radioactivity method involving extracts of acetone-dried powders from whole livers and with a spectrophotometric assay using partially purified enzyme from the mitochondrial fraction. Activity per g of liver from fed or starved rats assayed under optimum substrate and activator conditions was 3 or 6 mumol of oxaloacetate formed/min at 30 degrees C, respectively. 3. The enzyme exhibited cold-lability and lost activity on standing, even in 1.5m-sucrose. 4. The K(m) towards pyruvate was about 0.33mm and towards bicarbonate 4.2mm. K(m) towards MgATP(2-) was 0.14mm. Mg(2+) ions activated the enzyme, in addition to their role in MgATP(2-) formation. From calculations of likely concentrations of free Mg(2+) in the assay medium a K(a) towards Mg(2+) of about 0.25mm was deduced. Mn(2+) also activated the enzyme as well as Mg(2+), but at much lower concentrations. It appeared to be inhibitory when concentrations of free Mn(2+) as low as 0.1mm were present. 5. Excess of ATP is inhibitory, and this appears at least in part independent of the trapping of Mg(2+). 6. Both Co(2+) and Zn(2+) were inhibitory; 2mol of the latter appeared to be bound even in the presence of excess of Mg(2+) and the inhibition was time-dependent. 7. Ca(2+) inhibited by competition with Mg(2+) (K(i) about 0.38mm). The inhibition due to Ca(2+) was less pronounced when activation was with Mn(2+). Inhibition by Ca(2+) and ATP appeared to be additive. 8. Hill plots suggested that no interactions occurred between ATP-binding sites. Although similar plots for total Mg(2+) gave n=3.6, no conclusions could be drawn due to the chelation of the cation with other components of the assay. Similar difficulties arose in assessing the values for Ca(2+). 9. The enzyme was inactive in the absence of acetyl-CoA and showed a sigmoidal response in its presence. K(a) was about 0.1mm with possibly up to four binding sites. Malonyl-CoA was a competitive inhibitor, with K(i) 0.01mm. 10. There was no apparent inhibition by glucose, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-diphosphate, acetoacetate, beta-hydroxybutyrate, malate, aspartate, pyruvate, palmitoylcarnitine, octanoate, glutathione, butacaine, triethyltin or potassium chloride under the conditions used. Inhibition was found with citrate (possibly by chelation) and adenosine, and also by phosphoenolpyruvate, AMP, ADP and cyclic AMP, K(i) towards the last four being 0.55, 0.76, 0.25 and 1.4mm respectively.  相似文献   

12.
1. Isolated outer membranes from rat spleen mitochondria can be stored in liquid N(2) for several weeks without significant loss of ATPase (adenosine triphosphatase) activity. 2. The ATPase reaction has a broad pH optimum centering on neutral pH, with little significant activity above pH9.0 or below pH5.5. 3. A sigmoidal response of the ATPase activity to temperature is observed between 0 and 55 degrees C, with complete inactivation at 60 degrees C. The Arrhenius plot shows that the activation energy above the transition temperature (22 degrees C) (E(a)=144kJ/mol) is one-third of that calculated for below the transition temperature (E'(a)=408kJ/mol). 4. The outer-membrane ATPase (K(m) for MgATP=50mum) is inactive unless Mg(2+) is added, whereas the inner-membrane ATPase (K(m) for ATP=11mum) is active without added Mg(2+) unless the mitochondria have been depleted of all endogenous Mg(2+) (by using ionophore A23187). 5. The substrate for the outer-membrane ATPase is a bivalent metal ion-nucleoside triphosphate complex in which Mg(2+) (K(m)=50mum) can be replaced effectively by Ca(2+) (K(m)=6.7mum) or Mn(2+), and ATP by ITP. Cu(2+), Co(2+), Sr(2+), Ba(2+), Ni(2+), Cd(2+) and Zn(2+) support very little ATP hydrolysis. 6. Univalent metal ions (Na(+), K(+), Rb(+), Cs(+) and NH(4) (+), but not Li(+)) stimulate the MgATPase activity (<10%) at low concentrations (50mm), but, except for K(+), are slightly inhibitory (20-30%) at higher concentrations (500mm). 7. The Mg(2+)-stimulated ATPase activity is significantly inhibited by Cu(2+) (K(i)=90mum), Ni(2+) (K(i)=510mum), Zn(2+) (K(i)=680mum) and Co(2+) (K(i)=1020mum), but not by Mg(2+), Ca(2+), Ba(2+) or Sr(2+). 8. The outer-membrane ATPase is insensitive to the inhibitors oligomycin, NN'-dicyclohexylcarbodiimide, NaN(3), ouabain and thiol-specific reagents. A significant inhibition is observed at high concentrations of AgNO(3) (0.5mm) and NaF (10mm). 9. The activity towards MgATP is competitively inhibited by the product MgADP (K(i)=0.7mm) but not by the second product P(i) or by 5'-AMP.  相似文献   

13.
The isolated cells were obtained from hog thyroid glands treated with dispase. More than 95% of the cells obtained were intact and viable immediately after preparation, and the cell viability did not change during incubation in the experimental conditions. ATP added to the external medium of whole cell suspensions was hydrolyzed in the presence of various divalent cations, especially Mg, and the rate of hydrolysis of ATP was not significantly different between the Mg-ion system and the completed ion system (Mg+Na+K). When whole cell suspensions were disrupted with homogenizer, the hydrolysis of ATP was markedly increased by adding Na plus K. But there was no difference in the Mg-ion system between cell homogenates and whole cell suspensions. ADP, AMP and adenosine as reaction products were found in the reaction mixture which resulted from the hydrolysis of ATP by whole cell suspensions. Our data suggest that Mg-ATPase in the thyroidal isolated cells is an ectoenzyme whose active site(s) are exposed to the external surface of plasma membrane, and that ATP is finally hydrolyzed to adenosine via ADP and AMP by the enzyme(s).  相似文献   

14.
The specific activity of the Mg2+-ATPase and the (Ca2+ + Mg2+)-ATPase has been measured in a microsomal fraction from pig antral smooth muscle with the phosphate-release assay and the NADH-coupled enzyme assay, and the release of inorganic phosphate as a function of time is compared with the concomitant production of ADP. Both assays are found to overestimate the true Mg2+-ATPase activity. The adenylate kinase inhibitor P1,P5-di(adenosine-5'-)pentaphosphate (Ap5A) reduces the specific activity of the Mg2+-ATPase measured in the NADH-coupled enzyme assay to about half of its original value; however, it does not affect the specific activity of the Mg2+-ATPase in the Pi-release assay. The considerable overestimation of the Mg2+-ATPase activity in the NADH-coupled enzyme assay results from a combined action of an ATP pyrophosphatase (ATP in equilibrium AMP + PPi) and adenylate kinase activity contaminating the microsomes. The adenylate kinase activity in the microsomes catalyses the conversion of AMP formed by the ATP pyrophosphatase together with ATP into two ADP's. Also the phosphate-release assay is prone to an overestimation artefact because an inorganic pyrophosphatase will degrade the pyrophosphate and thus lead to additional Pi-production. Measurements of AMP and NAD+ production by HPLC confirmed our proposed reaction scheme. The same (Ca2+ + Mg2+)-ATPase activity is found in both assays, because the (Ca2+ + Mg2+)-ATPase activity is calculated from the difference in ATPase activity in the presence and absence of Ca2+, so that as a consequence the interfering activities are automatically subtracted.  相似文献   

15.
J Greger  K Fabianowska 《Enzyme》1979,24(1):54-60
The activities of dTMP kinase (ATP-deoxythymidine monophosphate phosphotransferase, EC 2.7.4.9), 5'-nucleotidase (5'-ribonucleoside phosphohydrolase, EC 3.1.3.5), adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4), AMP deaminase (AMP aminohydrolase, EC 3.5.3.6) and ATP-(Mg2+)-ase (ATP phosphohydrolase, EC 3.6.1.3) were assayed in mitochondria of normal and regenerating rat liver. In regenerating mitochondria, the dTMP kinase activity increased 20 times, 5'-nucleotidase (5'Nase) activity for dTMP diminished by 65% and its activity for other nucleoside monophosphates did not change; adenosine deaminase activity for adenosine (AR) increased by 40%, but for deoxyadenosine (AdR) decreased by 70%. AMP deaminase and ATP-(Mg2+)-ase activities behaved similarly in mitochondria from regenerating liver, decreasing by 70 and 64% respectively. The changes of the amount of dTMP in mitochondria depend on enzyme activities which regulate the AdR concentration.  相似文献   

16.
Kinetic studies on the regulation of rabbit liver pyruvate kinase   总被引:5,自引:5,他引:0  
Two kinetically distinct forms of pyruvate kinase (EC 2.7.1.40) were isolated from rabbit liver by using differential ammonium sulphate fractionation. The L or liver form, which is allosterically activated by fructose 1,6-diphosphate, was partially purified by DEAE-cellulose chromatography to give a maximum specific activity of 20 units/mg. The L form was allosterically activated by K(+) and optimum activity was recorded with 30mm-K(+), 4mm-MgADP(-), with a MgADP(-)/ADP(2-) ratio of 50:1, but inhibition occurred with K(+) concentrations in excess of 60mm. No inhibition occurred with either ATP or GTP when excess of Mg(2+) was added to counteract chelation by these ligands. Alanine (2.5mm) caused 50% inhibition at low concentrations of phosphoenolpyruvate (0.15mm). The homotropic effector, phosphoenolpyruvate, exhibited a complex allosteric pattern (n(H)=2.5), and negative co-operative interactions were observed in the presence of low concentrations of this substrate. The degree of this co-operative interaction was pH-dependent, with the Hill coefficient increasing from 1.1 to 3.2 as the pH was raised from 6.5 to 8.0. Fructose 1,6-diphosphate interfered with the activation by univalent ions, markedly decreased the apparent K(m) for phosphoenolpyruvate from 1.2mm to 0.2mm, and transformed the phosphoenolpyruvate saturation curve into a hyperbola. Concentrations of fructose 1,6-diphosphate in excess of 0.5mm inhibited this stimulated reaction. The M or muscle-type form of the enzyme was not activated by fructose 1,6-diphosphate and gave a maximum specific activity of 0.3 unit/mg. A Michaelis-Menten response was obtained when phosphoenolpyruvate was the variable substrate (K(m)=0.125mm), and this form was inhibited by ATP, as well as alanine, even in the presence of excess of Mg(2+).  相似文献   

17.
Ca2+, Mg2+-ionophores X537A and A23,187 (10(-7)-10(-6) M) induced the release of adenine nucleotides adenosine diphosphate (ADP, adenosine triphosphate (ATP), serotonin, beta-glucuronidase, Ca2+, and Mg2+ from washed human platelets. Enzymes present in the cytoplasm or mitochondria, and Zn2+ were not released. The rate of ATP and Ca2+ release measured by firefly lantern extract and murexide dye, respectively, was equivalent to that produced by the physiological stimulant thrombin. Ionophore-induced release of ADP, and serotonin was substantially (approximately 60%) but not completely inhibited by EGTA, EDTA, and high extracellular Mg2+, without significant reduction of Ca2+ release. The ionophore-induced release reaction is therefore partly dependent upon uptake of extracellular Ca2+ (demonstrated using 45Ca), but also occurs to a significant extent due to release into the cytoplasm of intracellular Ca2+. The ionophore-induced release reaction and aggregation of platelets could be blocked by prostaglandin E1 (PGE1) or dibutyryl cyclic AMP. The effects of PGE1, and N6, O2-dibutyryl adenosine 3':5'-cyclic monophosphoric acid (dibutyryl cAMP) were synergistically potentiated by the phosphodiesterase inhibitor theophylline. It is proposed that Ca2+ is the physiological trigger for platelet secretion and aggregation and that its intracellular effects are strongly modulated by adenosine 3':5'-cyclic monophosphoric acid (cyclic AMP).  相似文献   

18.
Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.  相似文献   

19.
1. When rat spleen mitochondria are incubated with oxidizable substrates, added MgCl2 (greater than 150 muM free concentration) markedly stimulates state-4 respiration and lowers both the respiratory control and ADP/O ratios; this effect is reversible on addition of excess of EDTA. 2. With [gamma-32P]ATP as substrate, an Mg2+-stimulated ATPase (adenosine triphosphate) was identified in the atractyloside-insensitive and EDTA-accessible space of intact rat spleen mitochondria. 3. Oligomycin has no effect on the activity of the Mg2+-stimulated ATPase at a concentration (2.0mug/mg of protein) that completely inhibits the atractyloside-sensitive reaction. Of the two ATPase activities, only the atracytoloside sensitive reaction is stimulated (approx. 40%) by dinitrophenol. 4. On digitonin fractionation the atractyloside-insensitive Mg2+-stimulated ATPase co-purifies with the outer membrane-fraction of rat spleen mitochondria, whereas (as expected) the atractylosidesensitive activity co-purifies with the inner-membrane plus matrix fraction. 5. Stoicheiometric amounts of ADP and Pi are produced as the end products of ATP hydrolysis by purified outer-membrane fragments; no significant AMP production is detected during the time-course of the reaction. 6. The outer-membrane ATPase is present in rat kidney cortex and heart mitochondria as well as in spleen, but is absent from rat liver, thymus, brain, lung, diaphragm and skeletal muscle.  相似文献   

20.
ADP and ATP, in the 1-100 microM range of concentrations, increased the formation of inositol phosphates in bovine aortic endothelial cells. The accumulation of inositol trisphosphate in response to adenine nucleotides was rapid (maximum at 15 s) and transient. This material was identified as the biologically active isomer inositol 1,4,5-trisphosphate on the basis of its retention time by high-performance liquid chromatography on an anion-exchange resin. AMP and adenosine have no effect on inositol phosphates. The action of ATP and ADP was mimicked with an equal potency and activity by their phosphorothioate analogs, ATP gamma S and ADP beta S, and with a lower potency by adenosine 5'-(beta,gamma-imido)triphosphate, whereas adenosine 5'-(alpha,beta-methylene)triphosphate, was inactive. In the same range of concentrations, ADP and ATP induced an efflux of 45Ca2+ from prelabeled bovine aortic endothelial cells and increased the fluorescence emission by cells loaded with quin-2. Here, too, AMP and adenosine were completely inactive. The outflow of 45Ca2+ induced by ADP was partially maintained in a calcium-free medium. These data suggest that in aortic endothelial cells, P2-purinergic receptors, of the P2Y subtype, are coupled to the hydrolysis of phosphatidylinositol bisphosphate by a phospholipase C. It is likely that the release of prostacyclin and endothelium-derived relaxing factor in response to ADP and ATP is a consequence of this initial event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号