首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In the yeast Saccharomyces cerevisiae, glucoamylase activity appears specifically in sporulating cells heterozygous for the mating-type locus (MAT). We identified a sporulation-specific glucoamylase gene (SGA) and show that expression of SGA is positively regulated by the mating-type genes, both MATa1 and MAT alpha 2. Northern blot analysis revealed that control of SGA is exerted at the level of RNA production. Expression of SGA or the consequent degradation of glycogen to glucose in cells is not required for meiosis or sporulation, since MATa/MAT alpha diploid cells homozygous for an insertion mutation at SGA still formed four viable ascospores.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The yeast MATa1 gene contains two introns   总被引:37,自引:7,他引:30       下载免费PDF全文
A M Miller 《The EMBO journal》1984,3(5):1061-1065
  相似文献   

11.
12.
G. Kao  J. C. Shah    M. J. Clancy 《Genetics》1990,126(4):823-835
The RES1-1 mutation was isolated on the basis of its ability to allow MATa/MAT alpha diploid Saccharomyces cerevisiae cells to express a late sporulation-regulated gene, SPR3, in the presence of excess copies of RME1. RME1 is a repressor of meiosis that is normally expressed in cells that lack the a1/alpha 2 repressor encoded by MAT. The RES1-1 mutation also supports sporulation in mat-insufficient diploids. This phenotype does not result from a failure to express RME1 and is not due to activation of the silent copies of mating type information. RES1-1 activates sporulation by allowing IME1 accumulation in all cell types, irrespective of the presence of the MAT products. IME1 is still responsive to RME1 in RES1-1 cells, since double mutants (rme1 RES1-1) that are deficient at MAT can sporulate better than either single mutant. RES1-1 is not an allele of IME1.  相似文献   

13.
The SPS4 gene of Saccharomyces cerevisiae, a sporulation-specific gene identified previously in a differential hybridization screen of a genomic yeast DNA library, has been characterized further. The protein encoded by this gene was inferred from its nucleotide sequence to be 38,600 daltons with an isoelectric pH of 8.2. Consistent with this, two-dimensional polyacrylamide gel electrophoresis of the in vitro translation products of RNA purified by hybridization with the cloned SPS4 DNA indicated that the SPS4 gene product is a 39-kilodalton, basic protein. This protein was found to be identical in size and charge to a major, sporulation-specific protein identified in a two-dimensional polyacrylamide gel electrophoretic comparison of the in vitro translation products of total RNA from sporulating MATa/MAT alpha cells and asporogenous MAT alpha/MAT alpha cells. A MATa/MAT alpha strain homozygous for a partial deletion of the SPS4 gene appeared, however, to be unaffected in its ability to form viable ascospores.  相似文献   

14.
A mutant of Saccharomyces cerevisiae representing a novel life cycle, named "alternative self-diploidization" or "ASD" homothallism, was obtained fortuitously. In this life cycle, MAT alpha (or MATa) haplophase and MAT alpha/MAT alpha (or MATa/MATa) diplophase alternate. Germinated cells are haploid and mating. They soon become nonmating and sporogenous as they vegetatively grow. They sooner or later diploidize presumably via endomitosis. The diploid cells haploidize via normal meiosis. A single recessive nuclear mutation, named asd 1-1, is responsible for "ASD" homothallism. In the rho 0 cytoplasm, asd 1-1 cells mate even if at a low efficiency and fail to diploidize. Since pet mutations do not have such effects, we conclude that a certain mitochondrial function other than respiration is required for manifestation of "ASD" homothallism. That is, "ASD" homothallism is the result of some sort of nuclear-cytoplasmic interaction.  相似文献   

15.
Aimed at investigating the recovery of a specific mutant allele of the mating type locus (MAT) by switching a defective MAT allele, these experiments provide information bearing on several models proposed for MAT interconversion in bakers yeast, Saccharomyces cerevisiae. Hybrids between heterothallic (ho) cells carrying a mutant MAT a allele, designated mata-2, and MAT alpha ho strains show a high capacity for mating with MATa strains. The MAT alpha/mata-2 diploids do not sporulate. However, zygotic clones obtained by mating MAT alpha homothallic (HO) cells with mata-2 ho cells are unable to mate and can sporulate. Tetrad analysis of such clones revealed two diploid (MAT alpha/MATa):two haploid segregants. Therefore, MAT switches occur in MAT alpha/mata-2 HO/ho cells to produce MAT alpha/Mata cells capable of sporulation. In heterothallic strains, the mata-2 allele can be switched to a functional MAT alpha and subsequently to a functional MATa. Among 32 MAT alpha to MATa switches tested, where the MAT alpha was previously derived from the mata-2 mutant, only one mata-2 like isolate was observed. However, the recovered allele, unlike the parental allele, complements the matalpha ste1-5 mutant, suggesting that these alleles are not identical and that the recovered allele presumably arose as a mutation of the Mat alpha locus. No mata-2 was recovered by HO-mediated switching of MAT alpha (previously obtained from mata-2 by HO) in 217 switches analyzed. We conclude that in homothallic and heterothallic strains, the mata-2 allele can be readily switched to a functional MAT alpha and subsequently to a functional MATa locus. Overall, the results are in accord with the cassette model (HICKS, STRATHERN and HERSKOWITZ )977b) proposed to explain MAT interconversions.  相似文献   

16.
IME1, a positive regulator gene of meiosis in S. cerevisiae   总被引:31,自引:0,他引:31  
Y Kassir  D Granot  G Simchen 《Cell》1988,52(6):853-862
  相似文献   

17.
G Simchen  Y Kassir 《Génome》1989,31(1):95-99
Normally, meiosis and sporulation in Saccharomyces cerevisiae occur only in diploid strains and only when the cells are exposed to starvation conditions. Diploidy is determined by the mating-type system (the genes MAT, RME1, IME1), whereas the starvation signal is transmitted through the adenylate cyclase - protein kinase pathway (the genes CDC25, RAS2, CDC35 (CYR1), BCY1, TPK1, TPK2, TPK3). The two regulatory pathways converge at the gene IME1, which is a positive regulator of meiosis and whose early expression in sporulating cells correlates with the initiation of meiosis. Sites upstream (5') of IME1 appear to mediate in the repression of the gene by repressors originating from both the mating-type and the cyclase--kinase pathways.  相似文献   

18.
Sporulation in Saccharomyces cerevisiae normally occurs only in MATa/MAT alpha diploids. We show that mutations in RME1 bypassed the requirements for both a and alpha mating type information in sporulation and therefore allowed MATa/MATa and MAT alpha/MAT alpha diploids to sporulate. RME1 was located on chromosome VII, between LEU1 and ADE6.  相似文献   

19.
Analysis of Y-Linked Mutations to Male Sterility in DROSOPHILA MELANOGASTER   总被引:3,自引:2,他引:1  
Kennison JA 《Genetics》1983,103(2):219-234
Mating type in haploid cells of the yeast Saccharomyces cerevisiae is determined by a pair of alleles MATa and MAT alpha. Under various conditions haploid mating types can be interconverted. It has been proposed that transpositions of silent cassettes of mating-type information from HML OR HMR to MAT are the source of mating type conversions. A mutation described in this work, designated AON1, has the following properties. (1) MAT alpha cells carring AON1 are defective in mating. (2) AON1 allows MAT alpha/MAT alpha but not MATa/MATa diploids to sporulate; thus, AON1 mimics the MATa requirement for sporulation. (3) mata-1 cells that carry AON1 are MATa phenocopies, i.e., MAT alpha/mata-1 AON1 diploids behave as standard MAT alpha/MATa cells; therefore, AON1 suppresses the defect of mata-1. (4) AON1 maps at or near HMRa. (5) Same-site revertants from AON1 lose the ability to convert mating type to MATa, indicating that reversion is associated with the loss of a functional HMRa locus. In addition, AON1 is a dominant mutation. We conclude that AON1 is a regulatory mutation, probably cis-acting, that leads to the constitutive expression of silent a mating-type information located at HMRa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号