首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
1. Physico-chemical conditions and benthic macroinvertebrates were studied in two adjacent alpine streams in the Tyrolean Alps, Austria, for 2 years, and aquatic insect emergence was recorded for 1 year.
2. In the spring-fed system, maximum discharge and increased concentrations of suspended solids, nitrate and particulate phosphorus occurred during snowmelt in June. In the glacier-fed stream, high discharge and strong diel fluctuations in flow and concentrations of suspended solids created a harsh and unstable environment during summer. Glacial ablation, variation in groundwater inflow, and water inputs from tributaries draining calcareous rocks caused water chemistry to vary both seasonally and longitudinally in glacier-fed Rotmoosache.
3. A total of 126 aquatic or semi-aquatic invertebrate taxa were collected, 94 of which were found in the glacier-fed stream and 120 in the spring-fed stream. Chironomid abundance was 2–8 times and taxa richness 2–3 times lower in the glacier-fed stream than in the spring-fed stream, as was the number of chironomid taxa (72 versus 93 total).
4. These results broadly support the conceptual model by Milner & Petts (1994) concerning glacier-fed stream systems. However, single samples and seasonal means showed relatively high invertebrate abundance and richness, especially during winter, indicating a considerable degree of spatial and temporal variability.
5. We suggest that the seasonal shifts from harsh environmental conditions in summer to less severe conditions in autumn and a rather constant environment in winter are an important factor affecting larval development, life-history patterns and the maintenance of relatively high levels of diversity and productivity in glacier-fed streams.  相似文献   

2.
SUMMARY. 1. Spatial and temporal changes in functional organization of the invertebrate community of streams of the northern jarrah forest, Western Australia, were examined in the light of predictions of the river continuum concept (Vannote et al. , 1980).
2. The composition of the fauna was largely as predicted for forested headwater streams with detritivores, principally collectors, dominating the fauna. Although shredders are generally considered to be codominant in such streams, they were not abundant in the riffle areas sampled in this study.
3. Some of the observed temporal changes in the composition of functional feeding groups were in agreement with those predicted by the generalized model. The abundance and richness of collectors were higher during the summer than winter, whereas the converse was true for filterers. This corresponded to the presumed availability of deposit and suspended fine-particulate organic matter during summer and winter respectively. Scrapers and predators showed no consistent temporal pattern among sites. However, the density of the latter was highly correlated with the density of other invertebrates, particularly collectors.
4. Temporal changes in the abundance and richness of shredders were not synchronized with the marked summer input of coarseparticulate organic matter. The possible reasons for this, and the role of shredders in Australian stream systems, are discussed.  相似文献   

3.
Summary Seasonal and spatial patterns of benthic invertebrate abundance were examined in relation to benthic detritus in Monument Creek, an Alaskan subarctic stream. The total macroinvertebrate fauna showed a mid-summer low in abundance, increasing to seasonal highs in winter/early spring (November/May). Shredders were a small portion of the benthic fauna or leaf pack fauna in summer but increased rapidly (in biovolume) following autumnal leaf fall to dominate the fauna by early winter (October/November). Abundance was strongly correlated with quantity of detritus in the sample. Comparison of benthic macroinvertebrate densities from Alaskan streams with comparable data from temperate zone streams shows that Alaskan streams are similar to temperate zone streams in range of abundance. Each unit of benthic detritus in Monument Creek is associated with a relatively large number of small (low individual biomass) shredders compared to streams in temperate regions. Detrital resources in this subarctic stream were meager, compared to temperate streams, and appeared to strongly influence the spatial and temporal patterns of detritivores.  相似文献   

4.
SUMMARY 1. In the upper Rhône catchment (Swiss Alps), modifications in the longitudinal pattern of environmental conditions and the benthic macroinvertebrate fauna were investigated in a glacier-fed stream (Rhône) at its confluence with a smaller glacier-fed tributary (Mutt) in June, August and September 1998. The distance to the source glacier was greater for the Mutt than for the Rhône.
2. Environmental conditions were harsher for the biota in the main stream upstream of the confluence than in the tributary. The tributary upstream of the confluence was characterised by higher taxonomic richness and abundance of the zoobenthos than the Rhône upstream.
3. Although environmental conditions in the main stream were little modified by the tributary, the fauna was richer and more diverse below the confluence. During the period of ice melt, colonisation from the Mutt led to the occurrence of faunal elements atypical of glacial streams in the main glacial stream upstream of the confluence, where water temperature remains below 4 °C.
4. Although contributing an average of only 10% to the Rhône discharge, the Mutt tributary is suggested to be the faunal driver of the system.  相似文献   

5.
1. Willows, Salix spp., have been widely introduced as a riparian species in temperate Australia and New Zealand. The present study was a broad-scale observational survey to document the differences between reaches of river lined with willows and native vegetation in the community structure of benthic invertebrates and the resources which these plants use.
2. Nine rivers in south-eastern Tasmania were examined on three occasions in autumn, spring and summer. Taxa were identified to family level, with the exception of Oligochaeta and Acarina, and benthic organic matter (CPOM and FPOM) and epilithic biomass were measured for each reach.
3. Taxon diversity and evenness were lower in willowed reaches in autumn, and total macroinvertebrate density and number of taxa were lowest in willowed reaches in summer. No differences in the fauna between willowed and native reaches were observed in spring. Measures of community similarity of the fauna in willowed and native reaches were significantly different in autumn and summer, but not in spring.
4. The taxa responsible for the significant differences seemed to be responding to differences in food availability and habitat quality in reaches of each vegetation type. Organic matter standing stock was higher in willowed reaches in autumn although the influence of these litter inputs on the fauna were not marked. Epilithon biomass was highest in autumn and spring in willowed reaches when shading in these reaches was least.
5.  The most marked differences between willowed and native reaches were during summer low flows, when the instream fauna appeared to be responding to changes to shading, water quality and the quality of the habitat.  相似文献   

6.
1.  We collected adult stoneflies periodically over a 1-year period at 38 sites in two headwater catchments in the Ouachita Mountains, Arkansas, U.S.A. The 43 species collected were a subset of the Ozark-Ouachita fauna and the much larger fauna of the eastern U.S.A. We estimated 78–91% species coverage in the two catchments using jackknife extrapolation of species richness from our survey.
2.  Many streams, especially small ones, lacked surface water for months, but others, both small and large, flowed permanently.
3.  Using published regional presence–absence and coarse ecological data in a discriminant function analysis (DFA), we identified stream size (negative) and regional frequency of occurrence (positive) as predictors of presence in these headwater catchments. For the combined catchments, the extrapolated richness (51 spp.) was similar to an estimate (48 spp.) based on predicted absences from DFA and the Ouachita provincial total of known stonefly species (57 spp.).
4.  Local species richness (1–27 spp. per site) was correlated strongly with stream size (catchment area) but was independent of stream drying. Generic richness was correlated negatively with stream drying and positively, but less strongly, with stream size.
5.  Regionally endemic stoneflies dominated in drying streams, and widely distributed species dominated in more permanent streams. The composition of stonefly assemblages was associated with regional factors (species pools, regional abundance, evolution of tolerant endemic species, regional climate) and local factors (drying, stream size).  相似文献   

7.
SUMMARY 1. We examined the relationship between catchment land cover, sediment regime and fish assemblage structure in four small streams in the upper Little Tennessee River basin of North Carolina. Study streams drained similar sized catchments (17–31 km2) with different fractions of non-forested land cover. Non-forested land cover was <3% in two 'reference' streams, whereas it was 13 and 22% in two 'disturbed' streams. Land cover data were compared with sediment transport data (suspended and bedload), benthic habitat data (embeddedness, substratum composition and coverage of fines) and fishes collected in autumn 1997.
2. Suspended sediment concentration was significantly higher in disturbed streams during both baseflow and stormflow. During baseflow disturbed streams nearly always exceeded 10 nephelometric turbidity units (NTU), whereas reference streams never exceeded this threshold. The difference in suspended sediment concentration between reference and disturbed streams was more consistent at baseflow than at stormflow. Therefore, baseflow turbidity may be a useful indicator of potential stream degradation.
3. Disturbed sites had five- to nine-fold more bedload transport than reference sites. Both embeddedness and streambed instability increased with increasing non-forested land cover.
4. Relative abundance of fishes requiring clean cobble/gravel substratum for spawning was lower in disturbed streams, whereas relative abundance of mound-building cyprinids, their nest associates and fishes that excavate nests in soft sediments (centrarchids) was higher. Relative abundance of fishes spawning in benthic crevices and gravel (BC + G) declined as the proportion of non-forested land cover increased. This study supports growing evidence that human-induced sedimentation alters stream fish assemblages.  相似文献   

8.
SUMMARY 1. Floods are an important mechanism of disturbance operating in streams that can markedly influence the abundance and diversity of benthic fauna. In upland streams many studies cite the scouring effects of fine transported sediments as a potential source of disturbance to the biota during spates, but few studies have sought to test this hypothesis critically.
2. Here we used a series of eight artificial streams to test whether high suspended-sediment concentrations influenced the short-term response of benthic invertebrate fauna to increases in flow. In an experiment designed to simulate a small spate, flow and sediment loads were each manipulated to examine their independent and interactive effects. Benthic invertebrates were sampled before and after the manipulation, and drift samples were taken at regular intervals during the experiment. The experiment was repeated twice, once at the end of winter (June, 1998), and once in summer (February, 1999).
3. Flow increases caused large increases in the number and diversity of drifting animals, and significant declines in the numbers and diversity of organisms found in benthic samples, but these declines were apparently not affected by the addition of fine sediment. The addition of sediment alone had little effect on the fauna. These results were consistent across both experiments.
4. The results suggest that flow increases alone can disturb benthic fauna, and that neither substrate movement nor suspended sediment increases are necessary for floods and spates to disturb the benthic assemblage. However, as argued elsewhere, the effects of flow increases are likely to be contingent upon the presence or absence of local flow refugia, which can allow animals to escape the shear forces that would otherwise remove them from the surface or interstitial areas of the streambed.  相似文献   

9.
1. The influence of 11 environmental variables on benthic macroinvertebrate communities was examined in seven glacier-fed European streams ranging from Svalbard in the north to the Pyrenees in the south. Between 4 and 11 near-pristine reaches were studied on each stream in 1996–97.
2. Taxonomic richness, measured at the family or subfamily (for Chironomidae) levels for insects and higher levels for non-insects, increased with latitude from Svalbard (3 taxa) to the Pyrenees (29 taxa).
3. A Generalized Additive Model (GAM) incorporating channel stability [Pfankuch Index (PFAN)], tractive force, Froude number (FROU), water conductivity (COND), suspended solids (SUSP) concentration, and maximum temperature explained 79% of the total deviance of the taxonomic richness per reach. Water temperature and the PFAN of stability made the highest contribution to this deviance. In the model, richness response to temperature was positive linear, whereas the response to the PFAN was bell-shaped with an optimum at an intermediate level of stability.
4. Generalized Additive Models calculated for the 16 most frequent taxa explained between 25 (Tipulidae) and 79% (Heptageniidae) of the deviance. In 10 models, more than 50% of the deviance was explained and 11 models had cross-validation correlation ratios above 0.5. Maximum temperature, the PFAN, SUSP and tractive force (TRAC) were the most frequently incorporated explanatory variables. Season and substrate characteristics were very rarely incorporated.
5. Our results highlight the strong deterministic nature of zoobenthic communities in glacier-fed streams and the prominent role of water temperature and substrate stability in determining longitudinal patterns of macroinvertebrate community structure. The GAMs are proposed as a tool for predicting changes of zoobenthic communities in glacier-fed streams under climate or hydrological change scenarios.  相似文献   

10.
Woody debris (CWD) is an important habitat component in northern Gulf of Mexico coastal plain streams, where low gradients and low flows allow accumulation of CWD and promote low dissolved oxygen (DO) concentrations. We tested the influences of CWD and DO on stream macroinvertebrates experimentally by placing two surface area CWD treatments each in three concentrations of ambient DO in two streams in Louisiana, USA, with macroinvertebrates collected from ambient woody debris used as a control. We also sampled macroinvertebrates in benthic and woody debris habitats in three streams twice yearly over 2 years to examine the applicability of the experimental results. Total abundance, richness (generic), and Shannon–Wiener diversity were all higher in lower DO conditions during the experiment, and total abundance was higher in the larger CWD treatment. Stream sampling corroborated the relationship between higher diversity and low DO in both benthic and woody debris habitats, but the relationship between richness and low DO only was supported in benthic habitats. Few taxa correlated with DO or CWD in the experiment (5 of 21 taxa) or stream survey (2 of 54 taxa). Whereas most taxa were uncorrelated with experimentally manipulated and in-stream measured variables, we suggest these taxa respond as generalists to stream habitat and physicochemistry. Based on this experiment and stream sampling, we believe the majority of macroinvertebrates in these streams are tolerant of seasonally low DO conditions.  相似文献   

11.
1. Changes in water chemistry, benthic organic matter (BOM), and macroinvertebrates were examined in four different glacial streams over an annual cycle. The streams experienced strong seasonal changes in water chemistry that reflected temporal changes in the influence from the source glacier, especially in water turbidity, particulate phosphorus and conductivity.
2. Nitrogen concentrations were high (nitrate-N values were 130–274 μg L–1), especially during spring snowmelt runoff. Benthic organic matter attained >600 g m–2 dry mass at certain times, peaks being associated with seasonal blooms of the alga Hydrurus foetidus .
3. Macroinvertebrate taxon richness was two to three times higher (also numbers and biomass) in winter than summer suggesting winter may be a more favourable period for these animals. Benthic densities averaged 1140–3820 ind. m–2, although peaking as high as 9000 ind. m–2. Average annual biomass ranged from 102 to 721 mg m–2, and reached >2000 mg m–2 at one site in autumn.
4. Taxa common to all sites included the dipterans Diamesa spp. and Rhypholophus sp., the plecopterans Leuctra spp. and Rhabdiopteryx alpina , and the ephemeropterans Baetis alpinus and Rhithrogena spp. Principal components analysis clearly separated winter assemblages from those found in summer.  相似文献   

12.
Groundwater influence on alpine stream ecosystems   总被引:1,自引:0,他引:1  
1. Spatial and temporal variability of relative snow‐melt, glacier‐melt and groundwater contributions to streams play important roles in shaping alpine freshwater ecosystems. Although meltwater (particularly glacier‐fed) streams have received much attention in recent years, the influence of groundwater on alpine freshwater ecosystems remains poorly understood. 2. This study tested the hypotheses that increased groundwater contributions to meltwater‐dominated alpine streams would yield increases in water temperature, channel stability, electrical conductivity and particulate organic matter (POM) and decreases in suspended sediment concentration (SSC). These more favourable habitat conditions were hypothesised to result in increased macroinvertebrate abundance and diversity. 3. Groundwater contributions, physicochemical habitat variables and benthic macroinvertebrates were sampled throughout the 2002 and 2003 summer‐melt seasons in three streams in the French Pyrénées. 4. Increased groundwater contributions were significantly correlated with higher discharge, water temperature, electrical conductivity, POM and channel stability, but lower SSC. 5. Macroinvertebrate total abundance, taxonomic richness, number of Ephemeroptera, Plecoptera and Trichoptera genera, and per cent Plecoptera all increased significantly with greater groundwater contributions to streamflow. However, beta diversity and Trichoptera relative abundance decreased. 6. Abundance of most macroinvertebrate taxa was highest under groundwater‐dominated conditions but a gradient of optimum groundwater preferences was evident across all taxa. Some taxa were found only where groundwater contributions were low (i.e. in predominantly meltwater‐fed streams). 7. This study provides evidence that water source, physicochemical habitat and stream biota are strongly linked. Therefore, an interdisciplinary approach is necessary for future studies aiming to develop conservation strategies or predict the response of alpine river ecosystems to global climate change.  相似文献   

13.
1. The effects of substratum stability on the diversity of stream invertebrates were assessed at two spatial scales in a Japanese stream during baseflow, from May to June 1998. Deposition and erosion were examined separately as distinct elements of substratum stability by a newly developed method using small steel pins. Stream invertebrates were sampled after 28 days of measurement of substratum stability. We also measured physical environmental variables, current velocity and depth, and food resource parameters including periphyton and particulate organic matter (POM) standing crops.
2. At the scale of the habitat patch, the effects of substratum stability on invertebrates were overwhelmed by those of POM standing crop. Moreover, higher taxon richness at high abundance may simply result from a higher likelihood of more taxa being included in samples. Therefore, this small scale revealed no role for substratum stability in explaining spatial pattern of community diversity.
3. At the reach scale ( n =10), taxon richness and evenness peaked at an intermediate level of deposition, whereas invertebrate abundance did not show any significant relationship. This result, and the pattern of relative abundance of common taxa, implies that the diversity of stream invertebrates was determined by subtle substratum movements and by the habitat preference of each taxon.
4. The difference in the determinant of community parameters between the habitat patch and the reach affirm the importance of a cross-scale analysis to choose an appropriate spatial scale for investigating the community structure of stream invertebrates. Prominent effects of substratum stability, particularly the deposition of substratum particles, during baseflow suggest that subtle and constant movement of small substratum particles can contribute to determine the diversity of stream invertebrates.  相似文献   

14.
  1. Mountain streams in southwestern European Alps are currently shifting from perennial to intermittent flow due to the combined effects of climate change and local anthropogenic pressures. Given that flow intermittency is a recently documented phenomenon in the Alps, only scattered studies have investigated functional and taxonomical diversity of benthic invertebrate communities in recently intermittent Alpine streams.
  2. We used a hierarchical sampling design to investigate patterns in taxonomic and functional diversity of benthic invertebrate communities in 13 recently intermittent Alpine streams in north-west Italy. in April 2017, we sampled benthic communities in two reaches of each stream with different hydrological conditions: a control reach, with permanent flow; and an intermittent reach, which recently experienced non-flow periods in summer.
  3. We tested for the response of taxonomic richness at multiple spatial scales by partitioning total diversity into the average richness of local communities and the richness due to variation among local communities both within and among reaches. By partitioning total diversity (γ) into its local (α) and turnover (β) components we showed a decrease in local and regional species richness both within and among reaches, whereas variation among communities was significantly lower in intermittent reaches at the reach scale only.
  4. The analysis of multidimensional trait space of macroinvertebrate communities in reaches with different hydrological conditions revealed a significant reduction of functional diversity, dispersion, and evenness in intermittent reaches. There was trait overdispersion in intermittent reaches, as these hosted both typical Alpine taxa and organisms adapted to flow intermittency. In particular, we observed the replacement of taxa with aquatic respiration and those preferring medium- to fast-flowing oligotrophic waters by taxa adapted to lentic habitats, air breathing and with larval dormancy phases.
  5. These results indicate that recent flow intermittency has caused drastic changes in benthic invertebrate communities in Alpine streams. Our work highlights the importance of integrating taxonomic and functional diversity to thoroughly assess the impacts of flow intermittency.
  相似文献   

15.
1. Changes in benthic invertebrate community structure following 16 years of forest succession after logging were examined by estimating benthic invertebrate abundance, biomass and secondary production in streams draining a forested reference and a recovering clear-cut catchment. Benthic invertebrate abundance was three times higher, and invertebrate biomass and production were two times higher in the disturbed stream.
2. Comparison of invertebrate community abundance 1, 5 and 16 years after clear-cutting indicated that the proportion of scrapers had decreased, whereas shredders had increased. Functional group percentage similarity indicated that the invertebrate community in the disturbed stream 16 years after clear-cutting was more similar to the reference than to that found earlier in the disturbed stream.
3. The five indices calculated from data collected over the past 16 years, as well as the abundance, biomass and production data collected during this study, proved to be of differing value in assessing recovery of the disturbed stream from logging. Percent dominant taxon and EPT (Ephemeroptera, Plecoptera and Trichoptera) taxon richness failed to show any initial differences between reference and disturbed streams, indicating that these indices may not be useful for measuring recovery from logging. The percentage Baetis and shredder–scraper indices showed significant differences only during the 1977 study and suggest recovery (no difference between reference and disturbed) by 1982. The North Carolina Biotic Index showed continued differences during 1982 in the riffle and depositional habitats and recovery by 1993. Total macroinvertebrate abundance, biomass and production, as well as EPT abundance, indicated continued differences between the reference and disturbed streams in the 1993 study.  相似文献   

16.
1. When using benthic macroinvertebrate communities for bioassessment, temporal variation may influence judgement as to whether or not a site is degraded.
2. In a survey of sixteen reference and sixteen test sites in the upper Thames River catchment area (UTRCA) in south-western Ontario, Canada, consistent differences between summer and winter samples were found for taxon richness (increase; P = 0.06) and the Family Biotic Index (decrease; P = 0.11). A bioassessment based on these results would indicate better water quality in the same streams in winter relative to summer. No consistent pattern of seasonal difference was detected for Simpson's Diversity and Equitability, or percentage Dominant Taxon.
3. The Reference Condition Approach to bioassessment uses predictive modelling to explain variation in reference communities with the environmental conditions at these sites as predictors. The community at a test site is compared with that predicted by the model. Several predictive models were constructed using simple geographic and habitat characteristics (i.e. catchment area, distance to source, stream width, substrate and habitat diversity) as predictors. By including season of sampling in the models, we increased their predictive power and the ability of the bioassessment to detect degradation. The best results were achieved when separate predictive models were built for each sampling season.  相似文献   

17.
Macroinvertebrate diversity in headwater streams: a review   总被引:1,自引:0,他引:1  
1. Headwater streams are ubiquitous in the landscape and are important sources of water, sediments and biota for downstream reaches. They are critical sites for organic matter processing and nutrient cycling, and may be vital for maintaining the 'health' of whole river networks.
2. Macroinvertebrates are an important component of biodiversity in stream ecosystems and studies of macroinvertebrate diversity in headwater streams have mostly viewed stream systems as linear reaches rather than as networks, although the latter may be more appropriate to the study of diversity patterns in headwater systems.
3. Studies of macroinvertebrate diversity in headwater streams from around the world illustrated that taxonomic richness is highly variable among continents and regions, and studies addressing longitudinal changes in taxonomic richness of macroinvertebrates generally found highest richness in mid-order streams.
4. When stream systems are viewed as networks at the landscape-scale, α-diversity may be low in individual headwater streams but high β-diversity among headwater streams within catchments and among catchments may generate high γ-diversity.
5. Differing ability and opportunity for dispersal of macroinvertebrates, great physical habitat heterogeneity in headwater streams, and a wide range in local environmental conditions may all contribute to high β-diversity among headwater streams both within and among catchments.
6. Moving beyond linear conceptual models of stream ecosystems to consider the role that spatial structure of river networks might play in determining diversity patterns at the landscape scale is a promising avenue for future research.  相似文献   

18.
19.
SUMMARY. 1. Based on in situ gutter trials we related the drift of caddis flies to their benthic densities and to various abiotic factors in streams in the Ivory Coast (West Africa). Members of the families Hydropsychidae, Philopotamidae. Hydroptilidae and Leptoceridae were considered in detail.
2. The drift of larvae peaked at night in both early and late larval instars.
3. Drift of a larval group (a certain instar, species or higher taxon) was more often related to the benthic density of other larval groups than to its own benthic density.
4. Self-regulation of an upper benthic density of a larval group by emigration through drift was not statistically evident.
5. There was no straightforward relationship between drift and abiotic factors.
6. Drift rates differed between taxa as well as between larval instars (size groups) within a taxon. Newly hatched larvae had very high drift rates, whereas the last larval instar usually had the lowest drift rate.
7. We related these results to the violently fluctuating discharge of the streams in the study area and the consequent variability of space for lotic insects.
8. Drift estimates, made at the same time as a monitoring programme on possible side-effects of insecticides (Onchocerciasis Control Programme), failed to reflect benthic densities except in the night drift of Hydropsychidae.  相似文献   

20.
Abstract.  1. Patterns of simuliid species richness were examined over a variety of scales at 532 stream sites in the Nearctic (394) and Neotropical (138) regions. In Nearctic streams, species richness of immature blackflies both within and across ecoregions and over two seasons was examined. Stream variables at each site included seston, width, depth, velocity, discharge, conductivity, pH, dissolved oxygen, water temperature, dominant streambed-particle size, canopy cover, and riparian vegetation. These variables were subjected to a principal component analysis and derived principal components were related back to richness, using regression analysis. At the level of the stream reach, richness was not highly correlated with single-point measurements of stream conditions.
2. Using data from both Nearctic and Neotropical sites, the effect of regional richness on local richness was examined. As regional richness increased, local diversity reached an asymptote in which further increases in regional richness were not matched by increases in local richness. Hence, simuliid communities are best described as saturated (type II) communities, consistent with the current view of lotic communities as non-equilibrium systems.
3. The well-established pattern of greater species richness in tropical regions was not observed in this study. To the contrary, blackfly richness is higher in temperate streams than in tropical streams at both local and regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号