首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two hybrid cell lines (DM88-5E12 and DM88-4C9) secreting monoclonal antibodies against DNA polymerase alpha-primase complex from Drosophila melanogaster Kc cells were established by immunizing mice with the complex partially purified by a conventional method. The IgG subclasses of both antibodies were IgG1. Both antibodies immunoprecipitated the DNA polymerase alpha-primase complex from D. melanogaster Kc cells. The DNA-polymerizing activity was neutralized by 4C9 antibody, but not by 5E12 antibody. The DNA priming activity was not neutralized by either antibody. These antibodies did not cross-react to HeLa DNA polymerase alpha-primase complex. A rapid, two-step purification of DNA polymerase alpha-primase complex from D. melanogaster Kc cell was carried out by 5E12 antibody column chromatography followed by single-stranded DNA cellulose column chromatography. The immunoaffinity-purified enzyme had both DNA-polymerizing and DNA-priming activities with the specific activities of 50,000 and 2,000 units/mg, respectively. The effects of aphidicolin, NEM, ddTTP, BuPdGTP, and DMSO on the enzyme activity showed that the purified enzyme was DNA polymerase alpha, but not DNA polymerase beta, gamma, or delta. The purified enzyme consisted of polypeptides with apparent molecular weights of 180 (and 145, 140, 130 kDa), 72, 63, 51, and 49 kDa. The 5E12 antibody was shown to bind to all the high-molecular-weight polypeptides, 180, 145, 140, and 130 kDa, by immuno-Western blotting analysis.  相似文献   

2.
Protein-arginine methylation is a posttranslational modification which yields monomethyl and dimethyl (asymmetric or symmetric) arginines in proteins. We investigated the expressions of PRMT1 and PRMT5 in relation to their catalytic activities in rat liver during growth and differentiation as well as in the pancreas. Western immunoblot analysis revealed that both PRMT1 and PRMT5 proteins were expressed in the cytosol of liver and pancreas with molecular mass of about 42 kDa and 72 kDa, respectively. However, on molecular sieve chromatography, the enzyme activities were eluted at about 500 kDa for PRMT5 and 440 kDa for PRMT1, indicating that the multimer complex of these expressed monomers were catalytically active. While the 500 kDa complex methylated predominantly myelin basic protein (MBP), the 440 kDa complex methylated hnRNP A1 protein. In fetal rat liver, the amount of expressed 42 kDa PRMT1 protein and the enzyme activity to methylate hnRNPA1 protein were 2- to 3-fold and 4- to 5-fold higher, respectively, than those of post-natal livers. While the 72 kDa PRMT5 protein was consistently expressed, its activity varied only about 2-fold. However, PRMT5 to methylate MBP showed one distinct peak at around the 20th day post-natal. Furthermore, while the PRMT1 enzyme activity increased more than 10-fold after 3 days of 70% partial hepatectomy, the amount of expressed PRMT1 protein was only about 3.2-fold higher than the control livers. In summary, we observed that PRMTs are catalytically active only in the form of multimers, but not as a dimer or tetramer of the expressed subunit. Furthermore, the amount of expressed PRMT protein, determined by Western immunoblot, did not correlate with the amount of their catalytic activity, and thus, some uncharacterized additional factor(s) may multimerize PRMTs to express catalytic activities in vivo.  相似文献   

3.
Abstract Cellulolytic and xylanolytic polysaccharidase enzyme activities from the multi-enzyme complex of Postia placenta MAD 698 were dissociated. Decayed wood extracts were fractionated by methyl-hydrophobic interaction chromatography and analyzed for reducing sugars and by viscosimetry and Western blot. Fractionated endoglucanases had molecular masses of 35 and 40 kDa on SDS-PAGE. Western blots probed with anti-endoglucanase and anti-xylanase antibodies revealed two endoglucanase bands at 35 and 40 kDa, but no commonality with the major xylanase band at 36 kDa. Anti-endoglucanase antibody inhibited endoglucanase enzyme activity.  相似文献   

4.
The proteasome (multicatalytic protease complex), a high molecular weight protein complex, has been purified from spinach leaves by successive chromatography on DEAE-cellulose, Bio-Gel A-1.5m, DEAE-TOYOPEARL 650C, and DEAE-5PW. The molecular mass was estimated to be 850 kDa by gel filtration. Polyacrylamide gel electrophoresis of the proteasome gave a single protein band under nondenaturing conditions and at least 10 bands in the range of 21-32 kDa in the presence of sodium dodecyl sulfate. By electron microscopy after negative staining with uranyl acetate, the proteasome from spinach appeared as symmetrical ring-shaped particles. The substrate specificity of proteasomes indicates that they contain at least three types of activity, namely, chymotrypsin-like, Staphylococcus aureus V8 protease-like, and trypsin-like activities. The former two activities were enhanced by poly-L-lysine or sodium dodecyl sulfate. Moreover, we examined the immunological reactivities of proteasomes from various eukaryotes. As a result, cross-immunoreactivities of some subunits were observed. These properties of the proteasome are similar to those of proteasomes isolated from various other eukaryotic sources.  相似文献   

5.
Mitochondrial respiratory chain complex I undergoes transitions from active to de-activated forms. We have investigated the phenomenon in sub-mitochondrial particles from Neurospora crassa wild-type and a null-mutant lacking the 29.9 kDa nuclear-coded subunit of complex I. Based on enzymatic activities, genetic crosses and analysis of mitochondrial proteins in sucrose gradients, we found that about one-fifth of complex I with catalytic properties similar to the wild-type enzyme is assembled in the mutant. Mutant complex I still displays active/de-active transitions, indicating that other proteins are involved in the phenomenon. However, the kinetic characteristics of complex I active/de-active transitions in nuo29.9 differ from wild-type. The spontaneous de-activation of the mutant enzyme is much slower, implicating the 29.9 kDa polypeptide in this event. We suggest that the fungal 29.9 kDa protein and its homologues in other organisms may modulate the active/de-active transitions of complex I.  相似文献   

6.
Evidence for the presence of a quinol oxidase super-complex composed of a cytochrome bc1 complex and cytochrome oxidase in the respiratory chain of a Gram-positive thermophilic bacterium PS3 is reported. On incubation with an octyl glucoside-solubilized fraction of the total membranes of PS3 anti-serum against PS3 cytochrome oxidase gave an immunoprecipitate that showed both quinol-cytochrome c reductase and cytochrome c oxidase activities. When the cholate-deoxycholate and LiCl-treated membranes of PS3 were solubilized and subjected to ion-exchange chromatography in the presence of octaethyleneglycol dodecyl ether, most of the A-, B-, and C-type cytochromes were copurified as a peak having both quinol-cytochrome c reductase and cytochrome oxidase activities. The immunoprecipitate and quinol oxidase preparation contained hemes a, b, and c in a ratio of about 2:2:3, indicating the presence of one-to-one complex of cytochrome oxidase containing 2 hemes a and one heme c, and a bc1 complex containing 2 hemes b and 2 hemes c. Gel electrophoresis in the presence of dodecyl sulfate showed that the immunoprecipitate and quinol oxidase preparation were composed of seven subunits; those of 51 (56-kDa), 38, and 22 kDa for cytochrome oxidase and those of 29, 23, 21, and 14 kDa for the bc1 complex. The 38-, 29-, and 21 kDa components possessed covalently bound heme c. The apparent molecular mass of the super complex was estimated to be as 380 kDa by gel filtration.  相似文献   

7.
Paenibacillus curdlanolyticus B-6 showed effective degradation activities for xylan and cellulose and produced an extracellular multienzyme complex (approximately 1,450 kDa) containing several xylanases and cellulases. To characterize the multienzyme complex, we purified the complex from culture supernatants by four kind of chromatography. The purified multienzyme complex was composed of a 280-kDa protein with xylanase activity, a 260-kDa protein that was a truncated form on the C-terminal side of the 280-kDa protein, two xylanases of 40 and 48 kDa, and 60 and 65 kDa proteins having both xylanase and carboxymethyl cellulase activities. The 280-kDa protein resembled the scaffolding proteins of cellulosomes based on its migratory behavior in polyacrylamide gels and as a glycoprotein. Cloning of the 40-kDa major xylanase subunit named Xyn11A revealed that Xyn11A contained two functional domains which belonged to glycosyl hydrolase family-11 and to carbohydrate-binding module family-36, respectively, and a glycine- and asparagine-rich linker. However, an amino acid sequence similar to a dockerin domain, which is crucial to cellulosome assembly, was not found in Xyn11A. These results suggest that the multienzyme complex produced by P. curdlanolyticus B-6 should assemble by a mechanism distinct from the cohesin-dockerin interactions known in cellulosomes.  相似文献   

8.
A succinate dehydrogenase complex was isolated in a three-step purification from plasma membranes of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. It consists of four subunits: a, 66 kDa; b, 31 kDa; c, 28 kDa and d, 12.8 kDa. In the 141-kDa native protein, the four subunits are present in an equimolar stoichiometry. The complex contains acid-non-extractable flavin, iron and acid-labile sulphide. Maximal succinate dehydrogenase activities were recorded at pH 6.5, which coincides with the internal pH of Sulfolobus cells. The temperature optimum of 81 degrees C defines the Sulfolobus succinate dehydrogenase as a thermophilic enzyme complex. The Km for succinate was found to be 1.42 mM (55 degrees C). Similar to the mitochondrial soluble succinate dehydrogenase, this enzyme is capable of transferring electrons to artificial electron acceptors, for instance phenazine methosulfate, N,N,N',N'-tetramethyl-p-phenylenediamine and ferricyanide. In contrast to the mitochondrial succinate dehydrogenase, the archaebacterial enzyme reduces 1,4-dichloroindophenol also in the absence of phenazine methosulfate. Caldariella quinone, the physiological electron mediator in the Sulfolobus respiratory chain, was only slowly reduced under adjusted conditions. The succinate--phenazine methosulfate-(1,4-dichloroindophenol) oxidoreductase of the isolated complex was strongly inhibited by tetrachlorobenzoquinone. In plasma membranes the complex reduces molecular oxygen in a cyanide-sensitive reaction. Polyclonal Sulfolobus anti-a antibodies crossreacted with 66-67-kDa polypeptides from membranes of Thermoplasma acidophilium, Sulfolobus solfataricus and beef heart submitochondrial particles.  相似文献   

9.
In snake venoms, non-covalent protein-protein interaction leads to protein complexes with synergistic and, at times, distinct pharmacological activities. Here we describe a new protein complex containing phospholipaseA(2) (PLA(2)), protease, and a trypsin inhibitor. It is isolated from the venom of Daboia russelii by gel permeation chromatography, on a Sephadex G-75 column. This 44.6kDa complex exhibits only phospholipase A(2) activity. In the presence of 8M urea it is well resolved into protease (29.1kDa), PLA(2) (13kDa), and trypsin inhibitor (6.5kDa) peaks. The complex showed an LD(50) of 5.06mg/kg body weight in mice. It inhibited the frequency of spontaneous release of neurotransmitter in hippocampal neurons. It also caused peritoneal bleeding, and edema in the mouse foot pads. Interestingly, the complex caused degeneration of both the germ cells and the mouse Leydig cells of mouse testis. A significant reduction in both the diameter of the seminiferous tubules and height of the seminiferous epithelia were observed following intraperitoneal injection of the sub-lethal dose (3mg/kg body weight). This effect of the toxin is supported by the increase in the activities of acid and alkaline phosphatases and the nitric oxide content in the testes, and a decrease in the ATPase activity. Because of its potent organ atrophic effects on the reproductive organs, the toxin is named "Reprotoxin". This is the first report demonstrating toxicity to the reproductive system by a toxin isolated from snake venom.  相似文献   

10.
The extracellular form of cellulosome-type multienzyme complex of thermophilic Bacteroides sp. strain P-1 which was isolated from the anaerobic digester, is described. Multienzyme complex was isolated from the culture supernatant by an adsorption-desorption affinity chromatography on microcrystalline cellulose. The isolated multienzyme complex was found to form a complex that exhibited a high molecular weight (estimated at more than 1400 kDa) and was quite stable, requiring strong denaturing condition for dissociation. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate resolved multienzyme complex into at least 12 subunits with the molecular weight range of 49 to 209 kDa, respectively. The isolated multienzyme complex showed cellulose-binding ability, cellulase and xylanase activities and effected the hydrolysis of crystalline cellulose and lignocellulosic materials in the form of corncob, corn hull, rice straw, and sugarcane bagasse.  相似文献   

11.
An unusual phosphatase, which is resistant to treatment by 5% SDS and proteolytic enzymes, was isolated as two types, 1 and 2, from pronase-treated homogenates of Xenopus ovary. The molecular sizes of types 1 and 2 were estimated as about 140 kDa and more than 2 x 10(4) kDa, respectively, by gel filtration, but as 140 and 130 kDa as a catalytic unit, respectively, by electrophoresis, implying that whereas type 1 might be composed of catalytic unit alone, type 2 is a multicomponent complex consisting of a 130-kDa catalytic unit. Both activities were sensitive to nucleases but resistant to tested proteolytic enzymes. These findings suggest that the unusual phosphatase activity is attributable to a polynucleotide.  相似文献   

12.
A monospecific antibody recognizing two membrane proteins in Acholeplasma laidlawii identified a plasmid clone from a genomic library. The nucleotide sequence of the 4.6-kbp insert contained four sequential genes coding for proteins of 39 kDa (E1 alpha, N terminus not cloned), 36 kDa (E1 beta), 57 kDa (E2), and 36 kDa (E3; C terminus not cloned). The N termini of the cloned E2, E1 beta, and native A. laidlawii E2 proteins were verified by amino acid sequencing. Computer-aided searches showed that the translated DNA sequences were homologous to the four subenzymes of the pyruvate dehydrogenase complexes from gram-positive bacteria and humans. The plasmid-encoded 57-kDa (E2) protein was recognized by antibodies against the E2 subenzymes of the pyruvate and oxoglutarate dehydrogenase complexes from Bacillus subtilis. A substantial fraction of the E2 protein as well as part of the pyruvate dehydrogenase enzymatic activity was associated with the cytoplasmic membrane in A. laidlawii. In vivo complementation with three different Escherichia coli pyruvate dehydrogenase-defective mutants showed that the four plasmid-encoded proteins were able to restore pyruvate dehydrogenase enzyme activity in E. coli. Since A. laidlawii lacks oxoglutarate dehydrogenase and most likely branched-chain dehydrogenase enzyme complex activities, these results strongly suggest that the sequenced genes code for the pyruvate dehydrogenase complex.  相似文献   

13.
gamma-Glutamyltranspeptidase (GGT), aminopeptidase N (AP-N), and sucrase in purified rabbit intestinal brush border membrane vesicles were irradiated in situ at -135 degrees C using high energy electrons. Surviving activities of the enzymes were measured as a function of radiation dose, and the functional unit target sizes (corresponding to carbohydrate-free polypeptides) were determined using target analysis. The in situ functional unit sizes were GGT 59 kDa, AP-N 59 kDa, and sucrase 63 kDa. Together with biochemical data determined previously, it is concluded that the noncovalently attached large (approximately 40 kDa) and small (approximately 25 kDa) subunits of GGT are both required for catalytic activity. Furthermore, these data suggest that (i) the membrane-bound form of AP-N consists of one or more noncovalently attached subunits of 59 kDa, each of which is enzymatically active; and (ii) in situ sucrase activity is associated with a subunit of 63 kDa which is noncovalently attached within the sucrase-isomaltase complex.  相似文献   

14.
Cellulolytic myxobacterium Sorangium can efficiently degrade cellulose materials. The cellulolytic activities are linked to cellular surfaces and organized into a large complex, which is presumed to be the protuberant structures that were found on the growing cell surfaces. The separated cellulolytic complex was determined to be 1000–2000 kDa from gel chromatogram, and contained at least cellulase and xylanase activities. The separated complex was unstable and could release smaller fractions when they stored in solution at refrigerator. There were more than ten bands on SDS-PAGE after the complex was heat-treated with SDS. The HPLC chromatogram of the complex on DIOL-300 column also supports the result.  相似文献   

15.
The pyruvate dehydrogenase complex of Lactococcus lactis subsp. lactis bv. diacetylactis has a specific activity of 6.6 U/mg and a Km of 1 mM for pyruvate. The specific activities of E2 and E3 in the complex are 30 and 0.36 U/mg, respectively. The complex is very sensitive to NADH inhibition and consists of four subunits: E1 alpha (44 kDa), E1 beta (35 kDa), E2 (73 kDa), and E3 (60 kDa). The L. lactis alpha-acetolactate synthase has a specific activity of 103 U/mg and a Km of 50 mM for pyruvate. Thiamine pyrophosphate (Km = 3.2 microM) and divalent cations are essential for activity. The native enzyme measures 172 kDa and consists of 62-kDa monomers. The role of both enzymes in product formation is discussed in view of NADH inhibition and competition for pyruvate.  相似文献   

16.
Twenty-two algal species were evaluated for their potential anticoagulant activities. Hot water extracts from selected species, Codium fragile and Sargassum horneri showed high activated partial thromboplastin time (APTT). Ultraflo extract of C. fragile and S. horneri exhibited the most potent anticoagulant activity. Furthermore, in both algal species, active compounds were mainly concentrated in >30kDa faction. The crude polysaccharide fraction (>30kDa; CpoF) of C. fragile composed of approximately 80% carbohydrate and approximately 19% of protein; the crude polysaccharide fraction (>30kDa; CpoF) of S. horneri was composed of 97% of carbohydrate and approximately 2% of protein. Therefore, most probably the active compound, or compounds of the algal species were related to high molecular weight polysaccharide, or a complex form with carbohydrate and protein (proteoglycan).  相似文献   

17.
We characterized major digestive enzymes in Panulirus argus using a combination of biochemical assays and substrate-(SDS or native)-PAGE. Protease and amylase activities were found in the gastric juice while esterase and lipase activities were higher in the digestive gland. Trypsin-like activity was higher than chymotrypsin-like activity in the gastric juice and digestive gland. Stability and optimal conditions for digestive enzyme activities were examined under different pHs, temperature and ionic strength. The use of protease inhibitors showed the prevalence of serine proteases and metalloproteases. Results for serine proteases were corroborated by zymograms where several isotrypsins-like (17-21 kDa) and isochymotrypsin-like enzymes (23-38 kDa) were identified. Amylases (38-47 kDa) were detected in zymograms and a complex array of non-specific esterases isoenzymes was found in the digestive gland. Isoenzyme polymorphism was found for trypsin, amylase, and esterase. This study is the first to evidence the biochemical bases of the plasticity in feeding habits of P. argus. Distribution and properties of enzymes provided some indication on how the digestion takes place and constitute baseline data for further studies on the digestion physiology of spiny lobsters.  相似文献   

18.
A complex containing trypsin inhibitor (TI) activity was extracted with 0.1 M TRIS buffer (pH 7.9) from trypsin-treated mitochondria of etiolated mung bean seedlings, and further purified with a Superdex 200 FPLC column. This partially purified complex with an M(r) about 820 kDa exhibited additional dehydroascorbate (DHA) reductase activity with specific activities of 0.21, 1.53 and 1.54 mumol ascorbate formed min-1 mg-1 protein at pH 6.0, 6.5 and 7.0, respectively, when glutathione was added. Much lower DHA reductase activity (0.013 and 0.026 mumol ascorbate formed min-1 mg-1 protein at pH 6.5 and 7.0, respectively) was found when glutathione was omitted. The isolated complex gave positive results when it was tested by TI activity staining after SDS-PAGE, and could be recognized by a polyclonal antibody which was raised against 38 kDa sweet potato Kunitz-type TI, one of the root storage proteins of sweet potato. The possible physiological functions of this complex with both TI and DHA reductase activities were discussed.  相似文献   

19.
The gamma-aminobutyric-acid-receptor protein complex from rat brain was solubilized in high yield, purified in milligram amounts by benzodiazepine affinity chromatography and used to generate a high-titer rabbit antiserum. High concentrations of Triton X-100 detergent plus KCl solubilized about 90% of the membrane-bound gamma-aminobutyric acid receptor (assayed by [3H]muscimol binding) and benzodiazepine receptor (assayed by [3H]flunitrazepam binding) activities. Both activities were retained on an affinity column using an immobilized benzodiazepine ligand, and most of the column-absorbed receptor could be eluted by a solution of free benzodiazepine plus 4 M urea. The purified protein bound [3H]muscimol and [3H]flunitrazepam with receptor-like pharmacological specificity and specific activities of about 1700 pmol and 700 pmol bound/mg protein, respectively, for the two ligands. This corresponds to a purification of over 600-fold and a near theoretical purity, with a yield of milligram quantities from 100 g brain. Four peptide bands were observed on gel electrophoresis in sodium dodecyl sulfate, with molecular mass values of 31, 47, 52 and 57 kDa. The latter two were most significantly stained, and identified as receptor subunits by photolabeling with [3H]flunitrazepam (52 kDa) and [3H]muscimol (57 kDa), and by reaction on Western blots with monoclonal antibodies to this protein produced by Schoch et al. [(1985) Nature (Lond.) 314, 168-171]. Rabbit antiserum was raised to the purified protein and could, at high dilutions, both coprecipitate soluble gamma-aminobutyric-acid/benzodiazepine-receptor-binding activities and stain the receptor subunits (principally 52-kDa band) on Western blots.  相似文献   

20.
The extracellular xylanase and cellulase components of Butyrivibrio fibrisolvens H17c were investigated. Two major peaks of enzyme activity were eluted by hydroxylapatite chromatography and designated complex A (CA), having cellulase activity, and complex B (CB) having predominantly xylanase activity but with some activity on carboxymethyl cellulose (CMC). CB was further purified on a DE-52 column and subjected to gel filtration. The xylanase and CMCase activities eluted in a single peak with an apparent molecular mass greater than thyroglobulin (Mr 669,000). CMC xymograms of polyacrylamide gels electrophoresed under non-denaturing conditions indicated the presence of five bands with CMCase activity from CA and eight from CB. Xylan xymograms under the same conditions indicated the presence of four bands of activity in CB. Under mild denaturing conditions the xylanase activity in CB was found in 11 bands with molecular mass ranging from 45 to 180 and the CMCase activity in three bands with molecular mass ranging from 45 kDa to 60 kDa. This indicates that CB exists as a multi-subunit protein aggregate of xylanases, some of which also have cellulase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号