首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
D C Swinney  D E Ryan  P E Thomas  W Levin 《Biochemistry》1987,26(22):7073-7083
Quantitative high-pressure liquid chromatographic assays were developed that separate progesterone and 17 authentic monohydroxylated derivatives. The assays were utilized to investigate the hydroxylation of progesterone by 11 purified rat hepatic cytochrome P-450 isozymes and 8 different rat hepatic microsomal preparations. In a reconstituted system, progesterone was most efficiently metabolized by cytochrome P-450h followed by P-450g and P-450b. Seven different monohydroxylated progesterone metabolites were identified. 16 alpha-Hydroxyprogesterone, formed by 8 of the 11 isozymes, was the only detectable metabolite formed by cytochromes P-450b and P-450e. 2 alpha-Hydroxyprogesterone was formed almost exclusively by cytochrome P-450h, and 6 alpha-hydroxyprogesterone and 7 alpha-hydroxyprogesterone were only formed by P-450a. 6 beta-hydroxylation of progesterone was catalyzed by four isozymes with cytochrome P-450g being the most efficient, and 15 alpha-hydroxyprogesterone was formed as a minor metabolite by cytochromes P-450g, P-450h, and P-450i. None of the isozymes catalyzed 17 alpha-hydroxylation of progesterone, and only cytochrome P-450k had detectable 21-hydroxylase activity. 16 alpha-Hydroxylation catalyzed by cytochrome P-450b was inhibited in the presence of dilauroylphosphatidylcholine (1.6-80 microM), while this phospholipid either stimulated (up to 3-fold) or had no effect on the metabolism of progesterone by the other purified isozymes. Results of microsomal metabolism in conjunction with antibody inhibition experiments indicated that cytochromes P-450a and P-450h were the sole 7 alpha- and 2 alpha-hydroxylases, respectively, and that P-450k or an immunochemically related isozyme contributed greater than 80% of the 21-hydroxylase activity observed in microsomes from phenobarbital-induced rats.  相似文献   

2.
In a reconstituted system containing NADPH, dilauroyl-L-3-phosphatidylcholine, and NADPH-cytochrome P-450 reductase purified from rat liver microsomes, cytochrome P-450 (P-450 HFLa) purified from human fetal livers catalyzed the 16 alpha-hydroxylation of dehydroepiandrosterone 3-sulfate (DHEA-sulfate). Addition of cytochrome b5 purified from rat liver microsomes to the reconstituted system resulted in a remarkable increase in the hydroxylase activity. The level of P-450 HFLa in liver homogenates from human fetuses highly correlated with the activity of DHEA-sulfate 16 alpha-hydroxylase. Antibodies to P-450 HFLa inhibited the 16 alpha-hydroxylation of DHEA-sulfate in a dose-dependent manner. The NH2-terminal amino acid sequence of P-450 HFLa was similar to that of P-450NF (Beaune, P. H., Umbenhauer, D. R., Bork, R. W., Lloyd, R. S., and Guengerich, F. P. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 8064-8068). We conclude that P-450 HFLa is a form of cytochrome P-450 involved in the 16 alpha-hydroxylation of DHEA-sulfate.  相似文献   

3.
Experimental hepatomas induced with 5,9-dimethyldibenzo[c,g]carbazole in female XVIInc/Z mice display a strong microsomal steroid 15 alpha-hydroxylation activity. A cytochrome P-450 isoenzyme (cytochrome P-450tu), specific for this activity, has been isolated by an HPLC derived method using various Fractogel TSK and hydroxyapatite supports. On SDS polyacrylamide gel electrophoresis the purified protein appeared as one major band with an apparent Mr of 50,000. Its specific cytochrome P-450 content was 7.55 nmol/mg protein. As deduced from the visible spectrum, the heme iron of the isolated P-450tu was to 72% in the high-spin state. The CO-bound reduced form showed an absorption maximum at 450 nm. In addition to the stereospecific 15 alpha-hydroxylation of progesterone (2.3 min-1) and testosterone (2.5 min-1), the enzyme catalyzed also 7-ethoxycoumarin O-deethylation, benzphetamine N-demethylation and aniline 4-hydroxylation. Its N-terminal amino-acid sequence (21 residues) was identical to that of cytochrome P-450(15) alpha, isolated by Harada and Negishi from liver microsomes of 129/J mice. P-450tu differed from P-450(15) alpha by its higher molecular weight, its 40-times lower steroid 15 alpha-hydroxylation and its 4-times higher benzphetamine N-demethylation.  相似文献   

4.
Conversion of progesterone to 17 alpha-hydroxyprogesterone plus androstenedione (17 alpha-hydroxylation) and to androstadienone (delta 16 synthetase activity) by microsomes from neonatal pig testis, were both inhibited by antibodies raised against homogeneous cytochrome P-450 C21 side-chain cleavage. Inhibition of the two activities showed the same relationship to the concentration of antibody added. Analogous results were obtained with pregnenolone as substrate. In a reconstituted enzyme system consisting of the homogeneous cytochrome P-450 C21 side-chain cleavage enzyme, P-450 reductase and NADPH, addition of cytochrome b5 resulted in the synthesis of the corresponding delta 16-C19-steroid from progesterone (androstadienone) and pregnenolone (androstadienol). The effect of cytochrome b5 was concentration-dependent and prevented by anti-cytochrome b5. It is concluded that the cytochrome P-450 C21 side-chain cleavage enzyme from pig testicular microsomes is also capable of synthesizing delta 16-C19-steroids and is, therefore, likely to be responsible for the large amounts of the pherormone androstadienone produced by male pigs.  相似文献   

5.
Six highly purified forms of rabbit microsomal cytochrome P-450, isolated from hepatic microsomes, exhibit differences in the regiospecific metabolism of progesterone. Only one of the isozymes studied, form 1, catalyzes the formation of deoxycorticosterone from progesterone at an appreciable rate. This cytochrome P-450 isozyme may participate in the conversion of progesterone to deoxycorticosterone during pregnancy. All six forms of cytochrome P-450 catalyze 6β- and 16α-hydroxylation at the two concentrations of progesterone tested. Form 3b exhibits a lower apparent Km for 6β-hydroxylation than the other five.  相似文献   

6.
Deuterium isotope effects [D(V/K)] and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled or [1,1-2H2]ethanol at various concentrations, and a competitive method, where 1:1 mixtures of [1-13C]- and [2H6]ethanol or [2,2,2-2H3]- and [1,1-2H2]ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The D(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM2 oxidized the alcohol with D(V/K) of about 2.8 and 1.8, respectively. Addition of FeIIIEDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect, which approached that of the xanthine-xanthine oxidase system (1.4), whereas desferrioxamine had no significant effect. Incubations of all cytochrome P-450 containing systems or the xanthine-xanthine oxidase systems with (1R)- and (1S)-[1-2H]ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The hypothesis of a preferential biosynthesis of a major phenobarbital inducible form of hepatic cytochrome P-450 (P-450b) in mitochondria-associated rough endoplasmic reticulum (RERmito) was tested by measuring incorporation rates of [35S]methionine and delta-amino[3H]levulinate into the hemoprotein in adult rats. RERmito, rough microsomes (RM representing RER not associated with mitochondria) and smooth microsomes (SM) were quantitatively isolated from the same homogenate by rate zonal centrifugation and their content of P-450b determined by rocket immunoelectrophoresis. P-450b was isolated by immunoprecipitation from detergent-solubilized membrane fractions. The time course and rate of incorporation of [35S] methionine into immunoprecipitable P-450b of RERmito and of RM were similar at all time points studied (2-15 min) both under conditions of maximal induction (4 injections of phenobarbital in 4 days) and after a single injection of phenobarbital. The incorporation of [35S]methionine into P-450b of SM was slower at early time points (2-8 min) but similar to RERmito and RM after 15 min. In contrast, at short labeling periods (less than 8 min) more delta-amino[3H]levulinate was incorporated into P-450b of RERmito than into P-450b of RM and SM. No significant accumulation of free apocytochrome P-450b was found in either membrane fraction. These data indicate a close coordination of the biosynthesis and assembly of apocytochrome P-450b and its prosthetic heme but do not support the hypothesis of a major functional role of MITO X RER complexes in the synthesis of microsomal cytochrome P-450b.  相似文献   

8.
Rat hepatic cytochrome P-450 form 3 (testosterone 7 alpha-hydroxylase; P-450 gene IIA1) and P-450 form RLM2 (testosterone 15 alpha-hydroxylase; P-450 gene IIA2) are 88% identical in primary structure, yet they hydroxylate testosterone with distinct and apparently unrelated regioselectivities. In this study, androstenedione and progesterone were used to assess the regioselectivity and stereospecificity of these two P-450 enzymes towards other steroid substrates. Although P-450 RLM2 exhibited low 7 alpha-hydroxylase activity with testosterone or progesterone as substrate (turnover number less than or equal to 1-2 nmol of metabolite/min per nmol of P-450), it did catalyse androstenedione 7 alpha-hydroxylation at a high rate (21 min-1) which exceeded that of P-450 3 (7 min-1). However, whereas P-450 3 exhibited a high specificity for hydroxylation of these steroids at the 7 alpha position (95-97% of total activity), P-450 RLM2 actively metabolized these compounds at four or more major sites including the nearby C-15 position, which dominated in the case of testosterone and progesterone. The observation that androstenedione is actively 7 alpha-hydroxylated by purified P-450 RLM2 suggested that this P-450 enzyme might make significant contributions to microsomal androstenedione 7 alpha-hydroxylation, an activity that was previously reported to be associated with immunoreactive P-450 3. Antibody inhibition experiments were therefore carried out in liver microsomes using polyclonal anti-(P-450 3) antibodies which cross-react with P-450 RLM2, and using a monoclonal antibody that is reactive with and inhibitory towards P-450 3 but not P-450 RLM2. P-450 3 was thus shown to catalyse only around 35% of the total androstenedione 7 alpha-hydroxylase activity in uninduced adult male rat liver microsomes, with the balance attributed to P-450 RLM2. The P-450-3-dependent 7 alpha-hydroxylase activity was increased to approximately 65% of the total in phenobarbital-induced adult male microsomes, and to greater than 90% of the total in untreated adult female rat liver microsomes. These observations are consistent with the inducibility of P-450 3 by phenobarbital and with the absence of P-450 RLM2 from adult female rat liver respectively. These findings establish that P-450 RLM2 and P-450 3 can both contribute significantly to microsomal androstenedione 7 alpha-hydroxylation, thus demonstrating that the 7 alpha-hydroxylation of this androgen does not serve as a specific catalytic monitor for microsomal P-450 3.  相似文献   

9.
2,3,7,8-Tetrachlorodibenzo-p-dioxin exhibits antiestrogenic activity and induces cytochromes P-450 in estrogen-dependent MCF-7 human breast-cancer cells. To determine whether induction of 2- or 16 alpha-hydroxylation of 17 beta-estradiol has a role in this antiestrogenic activity, MCF-7 cells which were exposed to this xenobiotic for 72 hrs were incubated with either [2-3H] or [16 alpha-3H] 17 beta-estradiol and the extent of tritiated H2O formation, indicative of site-specific hydroxylation, was determined. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-treated MCF-7 cultures showed an 8-fold increase in 2-hydroxylation and a 2-fold increase in 16 alpha-hydroxylation. These results support the suggestion that increased hydroxylation of 17 beta-estradiol may have a role in the antiestrogenic activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in MCF-7 cells.  相似文献   

10.
A variety of compounds that can arise from the metabolism of progesterone in vivo stimulate the 16 alpha-hydroxylation of progesterone as catalyzed by highly purified, reconstituted preparations of cytochrome P-450 3b obtained from rabbit strain IIIVO/J. In general, reduction of the 20-keto moiety of progesterone or related compounds increases the extent of stimulation. Reduction of the 3-keto group also results in increased stimulatory activity in most cases. The resulting 3 beta-hydroxy derivatives are more active than the corresponding 3 alpha-isomers. In a similar fashion, 5 beta-pregnanes exhibit greater activity than the corresponding 5 alpha-pregnanes. The effect of these allosteric effectors is saturable at relatively low concentrations when compared to other positive effectors of P-450-mediated metabolism. These compounds increase the apparent ratio of Vmax/Km without altering the amount of reductase required for half-maximal activity when reconstituted with the cytochrome. In contrast, many of these compounds do not affect or inhibit the 6 beta-hydroxylation of progesterone catalyzed by a subform of P-450 3b that is expressed in New Zealand White rabbits but not in strain IIIVO/J. Many of the compounds investigated here are metabolites of progesterone and, therefore, may modulate P-450 3b-mediated metabolism during pregnancy.  相似文献   

11.
K Devore  N Harada  M Negishi 《Biochemistry》1985,24(20):5632-5637
Cytochrome P-450 (I-P-450(16) alpha), which is associated with phenobarbital-induced testosterone 16 alpha-hydroxylation activity, was purified from livers of phenobarbital-treated female 129/J mice on the basis of the specific hydroxylation activity in fractions eluted from columns of octylamino-Sepharose 4B, hydroxylapatite, DEAE-Bio-Gel A, and isobutyl-Sepharose 4B. The specific cytochrome P-450 content of the purified I-P-450(16) alpha fraction was 12.4 nmol/mg of protein, and it had an apparent molecular weight of 54K. The specific activity of reconstituted testosterone 16 alpha-hydroxylation activity with the purified I-P-450(16) alpha fraction was 6-8 nmol min-1 (nmol of cytochrome P-450)-1. Rabbit antibody raised against the purified I-P-450(16) alpha fraction inhibited nearly 100% of the 16 alpha-hydroxylation activity in liver microsomes of phenobarbital-treated female 129/J mice but did not affect hepatic microsomal 16 alpha-hydroxylation activity of untreated male and female 129/J mice at all. In hepatic microsomes of phenobarbital-treated male 129/J mice, 70% of the 16 alpha-hydroxylation activity, at most, was catalyzed by I-P-450(16) alpha, and the residual 30% of the activity was catalyzed by C-P-450(16) alpha. The increase of I-P-450(16) alpha by phenobarbital was due to de novo synthesis of I-P-450(16) alpha, and this induction was not sexually regulated in 129/J mice. Anti-C-P-450(16) alpha [Harada, N., & Negishi, M. (1984) J. Biol. Chem. 259, 12285-12290] did not inhibit the 16 alpha-hydroxylation catalyzed by I-P-450(16) alpha; thus, I-P-450(16) alpha and C-P-450(16) alpha are immunochemically distinct isozymes of testosterone 16 alpha-hydroxylase.  相似文献   

12.
A purified rat hepatic monooxygenase system containing cytochrome P-450b oxidizes testosterone to androstenedione and 16 alpha- and 16 beta-hydroxytestosterone at approximately equal rates. The metabolism of epitestosterone by the same system is characterized by a marked stereoselectivity in favor of 16 beta-hydroxylation (4- to 5-fold relative to 16 alpha-hydroxylation), formation of 15 alpha-hydroxyepitestosterone, and a rate of androstenedione formation which is three to five times higher than that observed with testosterone. Apparent Km values for 16 alpha- and 16 beta-hydroxylation and androstenedione formation are 20-30 microM with either substrate. Mass spectral analysis of the androstenedione formed from [16,16-2H2]testosterone and [16,16-2H2] epitestosterone indicates essentially complete retention of deuterium, thereby ruling out a mechanism of androstenedione formation via C-16 hydroxylation followed by loss of water and rearrangement. Mass spectral analysis of the C-16 hydroxylation products from incubations of testosterone or epitestosterone in 18O2 shows essentially complete incorporation of 18O (greater than 95%). Androstenedione formed from testosterone is enriched in 18O only 2-fold (5-8%) over background, while the androstenedione formed from epitestosterone shows 84% enrichment. Kinetic experiments utilizing [17-2H]testosterone and [17-2H]epitestosterone as substrates indicate that cleavage of the C-17 carbon-hydrogen bond is involved in a rate-limiting step in the formation of androstenedione from both substrates. Taken together, our results indicate that androstenedione formation from epitestosterone proceeds exclusively through the gem-diol pathway, while androstenedione formation from testosterone may proceed through a combination of gem-diol and dual hydrogen abstraction pathways.  相似文献   

13.
3,4,5,3',4'-Pentachlorobiphenyl (PenCB), one of the most potent 3-methylcholanthrene (MC)-type inducers of hepatic enzymes in animals, caused a remarkable induction of liver microsomal monooxygenases, particularly 7-ethoxyresorufin (7-ER) O-deethylase, benzo(a)pyrene (BP) 3-hydroxylase, and testosterone 16 alpha-hydroxylase in chickens, but not NADPH-cytochrome c(P-450) reductase and cytochrome b5. Two forms of cytochrome P-450 (P-450) in liver microsomes of PenCB-treated chickens were purified and characterized. The absorption maxima of the CO-reduced difference spectra of both enzymes (chicken P-448 L and chicken P-448 H) were at 448 nm. From the oxidized form of their absolute spectra, chicken P-448 L was a low-spin form and chicken P-448 H was a high-spin form. They had molecular masses of 56 and 54 kDa, respectively. In a reconstituted system, 7-ER O-deethylation, BP 3-hydroxylation, and testosterone 16 alpha-hydroxylation were catalyzed at high rates by chicken P-448 L but not by chicken P-448 H. Chicken P-448 L also catalyzed N-demethylation of aminopyrine, benzphetamine, and ethylmorphine with relatively low activity. On the other hand, chicken P-448 H functioned only in catalyzing estradiol 2-hydroxylation. These results were supported by an inhibition study of microsomal monooxygenases using an antibody against each enzyme. Immunochemical studies revealed that the enzymes differ from each other but are both inducible by PenCB-treatment. Chicken P-448 L and chicken P-448 H respectively comprise about 82 and 7% of the total P-450 content in chicken liver microsomes.  相似文献   

14.
Polyclonal antibody elicited in a rabbit against purified cytochrome P-450cc25, which catalyzes 25-hydroxylation of vitamin D3, inhibited not only 25-hydroxylation of cholecalciferol and 1 alpha-hydroxycholecalciferol, but also 16 alpha- and 2 alpha-hydroxylation of testosterone catalyzed by the purified P-450cc25 preparation. Antibody inhibition experiments with microsomes revealed that most 16 alpha- and 2 alpha-hydroxylation of testosterone and most 25-hydroxylation of cholecalciferol by male rat liver microsomes were catalyzed by P-450cc25. In order to examine the identity of cholecalciferol 25-hydroxylase and testosterone 16 alpha-hydroxylase, monoclonal antibodies recognizing three different epitopes of P-450cc25 were prepared from hybridoma clones produced by fusion of mouse myeloma cells (P3X63Ag8U1) with the spleen cells of immunized BALB/c mouse. All of these monoclonal antibodies inhibited both 25-hydroxylation of 1 alpha-hydroxycholecalciferol and 16 alpha-hydroxylation of testosterone by purified P-450cc25. These observations suggested that immunochemically indistinguishable form(s) of cytochrome P-450 catalyzed both reactions.  相似文献   

15.
Preparations of hepatic cytochrome P-450 h [D. E. Ryan, et al. (1984) J. Biol. Chem. 259, 1239] and cytochrome P-450 2c [D. J. Waxman (1984) J. Biol. Chem. 259, 15481] from outbred Sprague-Dawley rats were analyzed using two-dimensional electrophoresis and in situ peptide mapping. Both preparations consisted of the same isozyme which was previously characterized as a developmentally regulated, male-specific cytochrome P-450 active in the 16 alpha-hydroxylation of steroids. Each preparation evidenced microheterogeneity which was shown, in part, to result from the existence of two genetically determined variant forms of cytochrome P-450 h/2c. Analyses of hepatic microsomes from several inbred strains of rat revealed that each was characterized by a single variant form of this isozyme, with some strains expressing a variant that was not present in Sprague-Dawley rats. Genetic crosses indicated that these electrophoretic variants represent allozymic forms of cytochrome P-450 h/2c which are codominantly expressed at a single autosomal locus. Additional microheterogeneity of each allozymic form of cytochrome P-450 h/2c was shown to result from a specific in vitro modification that may involve limited proteolysis near its C terminus by a microsome-bound protease.  相似文献   

16.
In order to elucidate the isozyme specificity of complex formation between cytochrome P-450 and the isosafrole metabolite the effect of complex dissociation on different steroid hydroxylation pathways was studied in hepatic microsomal fractions. Isosafrole induction was found to increase the 16 beta- and 7 alpha-hydroxylation of androst-4-ene-3,17-dione approximately 2.8- and 1.7-fold, respectively, whereas the 16 alpha-hydroxylation pathway was decreased to about one-quarter of control activity; 6 beta-hydroxylation was unchanged from control activity. More striking changes were apparent following dissociation of the isosafrole metabolite from its complex with ferricytochrome P-450 by the steroid substrate. Thus an approximate fourfold elevation of 16 beta-hydroxylase activity was observed after displacement and 6 beta-hydroxylation increased about twofold; 7 alpha-hydroxylase activity was decreased to 0.75-fold of undisplaced activity and 16 alpha-hydroxylase activity was unchanged. These data provide convincing evidence that at least two forms of phenobarbital-inducible cytochrome P-450 (cytochromes P-450PB-B and P-450PB/PCN-E) are present to some extent in a catalytically inactive complexed state in isosafrole-induced rat hepatic microsomes. Furthermore, there is now evidence to suggest that the constitutive isozymes cytochrome P-450UT-A and cytochrome P-450UT-F are not complexed to any degree in hepatic microsomes from isosafrole-induced rats.  相似文献   

17.
A new cytochrome P-450 isozyme, P-450C-M/F, has been purified from untreated rat liver microsomes. The purified preparation was electrophoretically homogeneous and contained 12-15 nmol of P450/mg of protein and had a minimum molecular weight of 48,500. The NH2-terminal amino acid sequence of P-450C-M/F was different from that of other P-450's. Immunoblot analysis of microsomes demonstrated that P-450C-M/F was present in the liver of untreated male as well as female rats. Treatment of rats with phenobarbital, 3-methylcholanthrene, or beta-naphthoflavone did not induce P-450C-M/F. Cytochrome P-450C-M/F exhibited little activities of 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation or hydroxylation of arylhydrocarbon, testosterone, androstenedione, and progesterone. In contrast, it was highly active in N-demethylation of ethylmorphine and benzphetamine and in 2- and 16 alpha-hydroxylation of estrogens, particularly that of estradiol. These studies establish that cytochrome P-450C-M/F is constitutively present in both male and female rats and suggest that it may be involved in the oxidative metabolism of estradiol, particularly in the formation of estriol, the uterotropic metabolite of estradiol.  相似文献   

18.
Cytochrome P-450 which catalyzes the 7 alpha-hydroxylation of cholesterol was purified from liver microsomes of untreated rabbits. The minimum molecular weight of the cytochrome P-450 was estimated to be 48,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The preparation contained 7 nmol of cytochrome per mg of protein. The oxidized form of the P-450 showed absorption maxima at 568, 535, and 417 nm, which are characteristic of a low spin hemoprotein, while the reduced form showed maxima at 545 and 413 nm. The carbon monoxide complex of the reduced form showed maxima at 550 and 447 nm. The cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes was reconstituted with the purified P-450, NADPH-cytochrome P-450 reductase, and cytochrome b5. The P-450 catalyzed the 7 alpha-hydroxylation of cholesterol 500 times more efficiently than the starting microsomes. The reconstituted hydroxylase system showed a substantial salt dependency. In the presence of cytochrome b5 the activity was maximum at 0.4 M KCl (4.55 nmol product formed/mg of protein per min), whereas in the absence of cytochrome b5 the activity was marginal (0.65 nmol product formed/mg of protein per min) and inhibited by KCl. Thus, cytochrome b5 stimulated the hydroxylase activity by one order of magnitude. These results indicate that cytochrome b5 is an essential component of the cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes.  相似文献   

19.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

20.
The multistep synthesis and purification of 2,3,3',4,4',5-hexabromobiphenyl (HBBp) is described. Capillary gas chromatography revealed that HBBp comprises 0.05% of the industrial polybrominated biphenyl (PBB) mixture, fireMaster BP-6 (lot 7062). When administered to immature male Wistar rats, HBBp caused a dose-dependent increase in (a) the activity of benzo[a]pyrene (B[a]P) hydroxylase (AHH) and 4-chlorobiphenyl (4-CBP) hydroxylase and (b) the concentration of cytochrome P-450. Sodium dodecyl sulfate (SDS)-gel electrophoresis indicated that these increases in cytochrome P-450 and cytochrome P-450-dependent monooxygenase activities were accompanied by a dose-dependent intensification of a protein of relative molecular weight (Mr) 55 000 which comigrated with the major 3-methylcholanthrene(MC)-inducible form of cytochrome P-450 (i.e., cytochrome P-448). Like MC, but in contrast to phenobarbitone (PB), HBBp competitively displaced 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin ([3H]-TCDD) from the cytosolic protein thought to be the receptor for cytochrome P-448 induction. The results indicate that HBBp is a potent inducer of cytochrome P-448 and as such is the third MC-type inducer identified in fireMaster BP-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号