首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of high temperature on antioxidant enzymes were investigatedin three mulberry (Morus alba L.) cultivars (cv. K-2, MR-2and BC2-59). High temperature was imposed by maintaining the plants at 40°Cfor 120, 240 and 360 min in an environmentalplant growth chamber.The activities of superoxide disumutase (SOD), catalase (CAT), guaiacolperoxidase (POD), ascorbate peroxidase (APX) and glutathione reductase (GR)wereassayed in the leaf extracts of control and high temperature-treated plants.Antioxidant enzyme activities were high in all the mulberry cultivars inresponse to high temperature treatment. However, cv. BC2-59 showedsignificantlyhigher activities of all the five antioxidant enzymes in response to hightemperature compared to those from the leaves of K-2, and MR-2 mulberrycultivars. The present study suggested that the cv. BC2-59 has an efficientantioxidant system among the three cultivars, which could prevent the oxidativedamage in the leaves caused by high temperature stress.  相似文献   

2.
The brain has been suggested to be especially sensitive to damage by reactive oxygen species. In this study, we examined the effects of hyperoxic conditions on the activities and mRNA levels of antioxidant enzymes in reaggregation cultures of rat forebrain cells. Cultures were exposed to 80% oxygen for 12–60 h starting on Days 17 and 33 in culture. Superoxide dismutase activities and mRNA levels were not affected by hyperoxia, whereas catalase activity was slightly decreased after 24 h in 80% oxygen at Day 17. Glutathione peroxidase activity was markedly decreased already after 12 h of hyperoxia, and decreased activities of glutathione reductase and glucose-6-phosphate dehydrogenase were also noted. The glutathione peroxidase mRNA levels were increased in hyperoxic cultures at Day 17 but not at Day 33. These results suggest that the enzymatic defense mechanisms against reactive oxygen species in the brain are rather weak and deteriorate during oxidative stress but that a potential for compensatory upregulation exists at least during the first postnatal weeks.  相似文献   

3.
The aim of the present study was to determine the influence of chicken semen cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activities. Pooled semen from 10 Black Minorca roosters was used in the study. Semen samples were subjected to cryopreservation using the “pellet” method and dimethylacetamide (DMA) as a cryoprotectant. In the fresh and the frozen-thawed semen sperm membrane integrity (SYBR-14/propidium iodide (PI)), acrosomal damage (PNA-Alexa Fluor®488) and mitochondrial activity (Rhodamine 123) were assessed using flow cytometry. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma by spectrophotometry. All sperm characteristics evaluated using flow cytometry were affected by cryopreservation. After freezing-thawing, there was significant (P < 0.01) reduction in sperm membrane integrity, sperm acrosome integrity and mitochondrial activity. Following cryopreservation, MDA concentration significantly increased in chicken seminal plasma and spermatozoa (P < 0.01, P < 0.05). The CAT activity in seminal plasma significantly decreased (P < 0.05), while intracellular activity of this enzyme did not significantly change in frozen-thawed semen. In seminal plasma of frozen-thawed semen the significant increase (P < 0.01) in GPx activity was detected. Whereas GPx activity in spermatozoa remained statistically unchanged after thawing. The SOD activity significantly increased (P < 0.01) in cryopreserved seminal plasma with simultaneous decrease (P < 0.01) of its activity in cells. In conclusion, this is probably the first report describing the level of antioxidant enzymes in frozen-thawed avian semen. The present study showed that the activity of CAT, GPx and SOD in chicken semen was affected by cryopreservation, what increased the intensity of lipid peroxidation (LPO). Catalase appeared to play an important role in the sperm antioxidant defense strategy at cryopreservation since, opposite to SOD and GPx, its content was clearly reduced by the cryopreservation process. Change in the antioxidant defense status of the chicken spermatozoa and surrounding seminal plasma might affect the semen quality and sperm fertilizing ability.  相似文献   

4.
We investigated whether oxidant status and antioxidant enzyme activities during ageing of mouse brain are regulated in sex-dependent manner. In the homogenate from the brain of 1, 4, 10 and 18 months old male and female CBA mice, lipid peroxidation (LPO), total superoxide dismutase (tSOD), catalase (CAT) and glutathione peroxidase (Gpx) were determined. LPO was age- and sex-related, favoring males over females throughout the lifespan with the peak in both sexes at 10 months of age. Throughout ageing, no difference in tSOD activity between male and female brains was observed, except in immature 1 month old mice. Gender-related difference in Gpx activity was observed, with higher level in females comparing to males, reaching statistical significance in senescent (18 months old) animals. CAT activity was drastically changed with ageing in both the male and female brain. We found different age associated trends in CAT activity in males and females: decreased with age in males and increased with age in females. Taken together, the present findings indicate that brains of female mice have lower oxidant and higher antioxidant capacity mostly related to CAT and to a lesser extent to Gpx activity.  相似文献   

5.
Two chickpea cultivars PBG-1 and PDG-3 along with a wild species Cicer judaicum were investigated to compare the activities of their antioxidant enzymes in mature seeds and roots, as well as shoots and cotyledons of seedlings germinated under dark and continuous illumination of 40 μmol m−2 s−1 photosynthetically active radiation (PAR). Seedling biomass of C. judaicum was lower as compared to cultivars of PBG-1 and PDG-3 both under dark and light conditions. Light reduced the biomass of seedlings. Activities of glutathione reductase (GR) and ascorbate peroxidase (APX) were higher in shoots and roots of C. judaicum compared to the cultivars PBG-1 and PDG-3. In mature seeds, the activities of GR and APX were higher in the cultivated genotypes whereas catalase (CAT) and peroxidase were higher in C. judaicum. Under illumination, a general upregulation of CAT in both shoots and cotyledons and of GR in shoots was observed in all the three genotypes. However, superoxide dismutase (SOD) increased in C. judaicum and APX in PBG-1 and PDG-3. The differences in antioxidant enzyme system between wild and cultivated genotypes possibly contribute to better tolerance of wild Cicer species against abiotic and biotic stresses.  相似文献   

6.
The effect of simultaneous expression of genes encoding three antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1), in the chloroplasts of tobacco plants was investigated under oxidative stress conditions. In previous studies, transgenic tobacco plants expressing both CuZnSOD and APX in chloroplast (CA plants), or DHAR in chloroplast showed enhanced tolerance to oxidative stresses, such as paraquat and salt. In this study, in order to develop transgenic plants that were more resistant to oxidative stress, we introduced the gene encoding DHAR into CA transgenic plants. Mature leaves of transgenic plants expressing all three antioxidant genes (CAD plants) had approximately 1.6–2.1 times higher DHAR activity, and higher ratios of reduced ascorbate (AsA) to DHA, and oxidized glutathione (GSSG) to reduced glutathione (GSH) compared to CA plants. CAD plants were more resistant to paraquat-induced stress, exhibiting only 18.1% reduction in membrane damage relative to CA plants. In addition, seedlings of CAD plants had enhanced tolerance to NaCI (100 mM) compared to CA plants. These results indicate that the simultaneous expression of multiple antioxidant enzymes, such as CuZnSOD, APX, and DHAR, in chloroplasts is more effective than single or double expression for developing transgenic plants with enhanced tolerance to multiple environmental stresses.  相似文献   

7.
The effects of drought on growth, protein content, lipid peroxidation, superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and polyphenol oxidase (PPO) were studied in leaves and roots of Sesamum indicum L. cvs. Darab 14 and Yekta. Four weeks after sowing, plants were grown under soil moisture corresponding to 100, 75, 50 and 25 % field capacity for next four weeks. Fresh and dry masses, and total protein content in leaves and roots decreased obviously under drought. However, several new proteins appeared and content of some proteins was affected. Measurement of malondialdehyde content in leaves and roots showed that lipid peroxidation was lower in Yekta than in Darab 14. Severe stress increased SOD, POX, CAT and PPO activities in leaves and roots, especially in Yekta. According to the present study Yekta is more resistant to drought than Darab 14.  相似文献   

8.
Metals are known to influence the oxidative status of marine organisms, and antioxidant enzymes have been often proposed as biomarkers of effect. The clam Ruditapes decussatus is a well-known metal bioindicator. In this species cadmium (Cd) induces metallothionein (MT) synthesis only after 7 days of exposure. Before MT synthesis is induced, the other mechanisms capable of handling the excess of Cd are unknown. In order to identify some of these mechanisms, variations in antioxidant systems (superoxide dismutase, catalase, selenium-dependent glutathione peroxidase and non-selenium-dependent glutathione peroxidase), malondialdehyde (MDA) and MT were studied in the gills of R. decussatus exposed to different Cd concentrations (4, 40 and 100 gl-1) for 28 days. These parameters, together with total proteins and Cd concentrations, were measured in the gills of the clams over different periods of exposure. Results indicate that Cd accumulation increased linearly in the gills of R. decussatus with the increase in Cd concentration. This increase induces an imbalance in the oxygen metabolism during the first days of Cd exposure. An increase in cytosolic superoxide dismutase (SOD) activity and a decrease in mitochondrial SOD activity was observed at the same time as or after a decrease in cytosolic and mitochondrial catalase activity and of selenium-dependent and non-selenium-dependent glutathione peroxidase activity. After 14 days of exposure, Cd no longer affect these enzymes but there was elevation of other cellular activities, such as MDA and MT production. MT bound excess Cd present in the cell. These variations in these parameters suggest their potential use as biomarkers of effects such as oxidative stress resulting from Cd contamination in molluscs.  相似文献   

9.
Metals are known to influence the oxidative status of marine organisms, and antioxidant enzymes have been often proposed as biomarkers of effect. The clam Ruditapes decussatus is a well-known metal bioindicator. In this species cadmium (Cd) induces metallothionein (MT) synthesis only after 7 days of exposure. Before MT synthesis is induced, the other mechanisms capable of handling the excess of Cd are unknown. In order to identify some of these mechanisms, variations in antioxidant systems (superoxide dismutase, catalase, selenium-dependent glutathione peroxidase and non-selenium-dependent glutathione peroxidase), malondialdehyde (MDA) and MT were studied in the gills of R. decussatus exposed to different Cd concentrations (4, 40 and 100 gl-1) for 28 days. These parameters, together with total proteins and Cd concentrations, were measured in the gills of the clams over different periods of exposure. Results indicate that Cd accumulation increased linearly in the gills of R. decussatus with the increase in Cd concentration. This increase induces an imbalance in the oxygen metabolism during the first days of Cd exposure. An increase in cytosolic superoxide dismutase (SOD) activity and a decrease in mitochondrial SOD activity was observed at the same time as or after a decrease in cytosolic and mitochondrial catalase activity and of selenium-dependent and non-selenium-dependent glutathione peroxidase activity. After 14 days of exposure, Cd no longer affect these enzymes but there was elevation of other cellular activities, such as MDA and MT production. MT bound excess Cd present in the cell. These variations in these parameters suggest their potential use as biomarkers of effects such as oxidative stress resulting from Cd contamination in molluscs.  相似文献   

10.
Recently, eutrophication has induced severe cyanobacterial blooms in the Naktong River, the second largest river of Korea. In the present study, lipid peroxidation and the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, were evaluated in the liver of loach (Misgurnus mizolepis) that were orally exposed to a low dose of Microcystis through dietary supplementation with bloom scum. Loach received 75 mg of dry cells/kg body weight mass (equal to 10 microg microcystin-RR/kg body mass), for 28 days under controlled conditions. Antioxidant enzymatic activity and lipid peroxidation were measured after termination of exposure. The activities of antioxidant enzyme were significantly increased in the livers of toxin-exposed loach after 28 days of exposure, as compared to control fish. However, lipid peroxidation remained stable in both groups. These results suggest that antioxidant enzymes were able to eliminate oxidative stress induced by low concentrations of microcystins and to prevent increased lipid peroxidation in the liver of loach.  相似文献   

11.
Oztürk O  Gümüşlü S 《Life sciences》2004,75(13):1551-1565
The aim of this study was to determine whether exposure to heat stress would lead to oxidative stress and whether this effect varied with different exposure periods. We kept 1-, 6- and 12-month-old male Wistar rats at an ambient temperature of either 22 degrees C or 40 degrees C for 3 and 7 days and measured glucose-6-phosphate dehydrogenase (G-6-PD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GSH-Px) and glutathione-S-transferase (GST) activities and levels of thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH) and oxidized glutathione (GSSG) in erythrocytes and determined GSH/GSSG ratio, total glutathione and the redox index. G-6-PD and CAT activities were found to be significantly increased in 1- and 6-month-old rats after 3 and 7 days of heat stress, but G-6-PD activities decreased in 12-month-old rats. Cu, Zn-SOD activity decreased in 1-month-old rats after heat stress, whereas it increased in 6- and 12-month-old rats. GST activity increased in all groups. GSH and total GSH levels and GSH/GSSG ratios decreased in 1- and 6-month-old rats but they increased in 12-month-old rats after heat stress. GSSG levels increased in 1- and 6-month-old rats but decreased in 12-month-old rats after heat stress. TBARS levels increased in all groups. Seven days of stress is more effective in altering enzyme activities and levels of GSH, GSSG and TBARS. When the effects of both heat stress and aging were examined together, it was interesting to note that they mostly influenced G-6-PD activity.  相似文献   

12.
The effect of NaCl on antioxidant enzyme activities in potato seedlings   总被引:7,自引:0,他引:7  
The effect of NaCl on the growth and activity of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were investigated in the seedlings of four potato cultivars (Agria, Kennebec; relatively salt tolerant, Diamant and Ajax; relatively salt sensitive). The shoot fresh mass of Agria and Kennebec did not changed at 50 mM NaCl, whereas in Diamant and Ajax it decreased to 50 % of that in the controls. In Agria and Kennebec, SOD activity increased at 50 mM NaCl, but no significant changes observed in Diamant and Ajax. At higher NaCl concentration, SOD activity reduced in all cultivars. CAT and POD activities increased in all cultivars under salt stress. Unlike the other cultivars, in Ajax seedlings, APX activity increased in response to NaCl stress. We also observed new POD and SOD isoenzyme activities and changes in isoenzyme compositions under salt stress. These results suggest that salt-tolerant potato cultivars may have a better protection against reactive oxygen species (ROS) by increasing the activity of antioxidant enzymes (especially SOD) under salt stress.  相似文献   

13.
Summary A study of the physiological role of oxygen free radicals in relation to the ageing process was performed using the liver ofRana perezi, an animal with a moderate rate of oxygen consumption and a life span substantially longer than that of laboratory rodents.Among the five different antioxidant enzymes only superoxide dismutase (SOD) showed an age-dependent decrease. Cytochrome oxidase (COX), glutathione status, in vivo and in vitro liver peroxidation, and metabolic rate did not vary as a function of age.Long-term (2.5 months) treatment with aminotriazole and diethyldithiocarbamate depleted catalase (CAT) activity and did not change both glutathione peroxidases (GPx), COX, reduced (GSH) and oxidized (GSSG) glutathione, or metabolic rate. This treatment resulted in great compensatory increases in SOD (to 250–460% of controls) and glutathione reductase (GR) (to 200%) which are possibly responsible for the lack of increase of in vivo and in vitro liver peroxidation and for the absence of changes in survival rate.The comparison of these results with previous data from other species suggests the possibility that decreases in antioxidant capacity in old age are restricted to animal species with high metabolic rates. Nevertheless, ageing can still be due to the continuous presence of small concentrations of O2 radicals in the tissues throughout life in animals with either high or low metabolic rates, because radical scavenging can not be 100% effective. Compensatory homeostasis among antioxidants seems to be a general phenomenon in different species.Abbreviations AT 3-amino-1,2,4 triazole - CAT catalase - COX cytochrome c oxidase - DDC diethyldithiocarbamate - GPx glutathione peroxidase - GR glutathione reductase - GSH reduced glutathione - GSSG oxidized glutathione - MDA malondialdehyde - SOD superoxide dismutase - TBA-RS thiobarbituric acid-reacting substances - VO 2 oxygen consumption  相似文献   

14.
H2O2 can freely crosses membranes and in the presence of Fe2+ (or Cu+) it is prone to participate in Fenton reaction. This study evaluated the concentration and time-dependent effects of H2O2-induced oxidative stress on MnSOD, Se:GPx and catalase and on aconitase. Acute and chronic H2O2 treatments were able to induce oxidative stress in HeLa cells as they significantly decreased aconitase activity and also caused a very significant decrease on antioxidant enzyme activities. The inhibition of enzyme activities was time- and concentration-dependent. Chronic treatment with 5 µM H2O2/h after 24 h was able to decrease all enzyme activities almost at the same level as the acute treatment. Acute and chronic treatments on antioxidant enzyme activities were prevented by cell treatment with ascorbic acid or N-acetylcysteine. These results indicate that antioxidant enzymes can also be affected by the same ROS they produce or neutralize if the time of exposure is long enough.  相似文献   

15.
Cladophora glomerata (L.) Kütz. and Enteromorpha ahlneriana Bliding are morphologically similar filamentous green algae that are dominants in the upper littoral zone of the brackish Baltic Sea. As these two species co-exist in a continuously fluctuating environment, we hypothesised that they may have different strategies to cope with oxidative stress. This was tested in laboratory experiments through stressing the algae by high irradiance (600 μmol photons PAR m−2 s−1) at two different temperatures (15 and 26 °C) in a closed system. Thus, oxidative stress was created by high irradiance (photo-oxidative stress) and/or carbon depletion. The extent of lipid oxidative damage, antioxidant enzyme activities and the amount of hydrogen peroxide excreted by the algae to the surrounding seawater medium were measured. The results suggest that the two species have different strategies: the annual C. glomerata could be classified as a more stress-tolerant species and the ephemeral E. ahlneriana as a more stress-susceptible species. Low temperature in combination with high irradiance created less lipid oxidative damage in C. glomerata than in E. ahlneriana, which was probably related to the higher regular activities of the hydrogen peroxide scavenging enzymes catalase and ascorbate peroxidase in C. glomerata, whereas in E. ahlneriana high activities of these enzymes were only obtained after the induction of oxidative stress. Superoxide dismutase activities were similar in both species, but the mechanisms to remove the hydrogen peroxide produced by the action of this enzyme were different: more through scavenging enzymes in C. glomerata and more through excretion to the seawater medium in E. ahlneriana. The high excretion of hydrogen peroxide, possibly in combination with brominated volatile halocarbons, by E. ahlneriana may have a negative effect on epiphytes and may partly explain why this alga is usually remarkably devoid of epiphytes and grazers compared to C. glomerata.  相似文献   

16.
Context/objective: The mechanisms of immunomodulatory effects of Morinda citrifolia (Noni) were examined through intracellular signaling pathways in the splenocytes and their modulation by phytochemicals using bioinformatics tools. Materials and methods: Noni fruit juices without seeds (NSL) and with seeds (NWS) were co-incubated in vitro with splenocytes from young, middle-aged and old F344 male rats and proliferation of lymphocytes, cytokine production, antioxidant enzyme activities and intracellular signaling markers were measured. Results: NSL decreased lymphoproliferation in early middle-aged rats, and IL-2 and IFN-γ production in old rats. In contrast, NWS enhanced lymphoproliferation in young and old rats, IL-2 and IFN-γ production in middle-aged and old rats. The activities of antioxidant enzymes were augmented by NWS and NSL in old rats. NWS reversed age-related increase in lipid peroxidation in all age-groups, while NSL increased lipid peroxidation in old rats. NSL increased p-ERK in old rats and decreased p-CREB in young and middle-aged rats. In contrast, NWS decreased p-ERK in all age groups and increased p-CREB in old rats. Both NSL and NWS increased p-Akt expression in middle-aged and old rats. Both NSL and NWS suppressed p-NF-κB expression in middle-aged and old rats. Docking studies demonstrated that Noni phytochemicals, damnacanthal, myricetin and ursolic acid, are potent inhibitors of ERK with binding sites in the catalytic and phosphorylation sites of the molecule. Conclusions: These results suggest that Noni fruit juices with or without seeds modulate cell-mediated immunity and antioxidant enzyme activities based on the phytochemicals that may differentially influence cell signaling and therefore, age-associated immunity.  相似文献   

17.
The present investigation focused, firstly, on the effects of oral administration of thymoquinone (TQ) on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase activity in hepatic, cardiac and kidney tissues of normal mice. Superoxide dismutase (SOD; E.C:1.15.1.1), catalase (CAT; E.C:1.11.1.6), glutathione peroxidase (GSH-Px; E.C:1.11.1.9), glutathione-S-transferase (GST; E.C:2.5.1.18), and DT-diaphorase (E.C:1.6.99.2) enzyme activities in each tissue type were determined. Treatment of mice with the different doses of TQ (25, 50 and 100 mg kg(-1) day(-1) orally) for 5 successive days, produced significant reductions in hepatic SOD, CAT and GSH-Px activities. In addition cardiac SOD activity was markedly inhibited with the higher doses of TQ, (namely 50 and 100 mg kg(-1)). Moreover, TQ (100 mg kg(-1)) significantly reduced hepatic and cardiac lipid peroxidation as compared with the respective control group. Conversely, TQ (50,100 mg kg(-1)) and TQ (100 mg kg(-1)) enhanced cardiac and renal DT-diaphorase activity respectively. However, the selected doses of TQ neither produced any change in GST activity nor influenced reduced glutathione content in all tissues studied. TQ was tested, secondly, as a substrate for hepatic, cardiac and renal DT-diaphorase of normal mice in the presence of NADPH. Kinetic parameters for the reduction of TQ to dihydrothymoquinone (DHTQ) indicated that DT-diaphorase of different tissues can efficiently reduce TQ to DHTQ. K(m) and V(max) values revealed that hepatic DT-diaphorase exhibited the higher values, while the lower values were associated with renal DT-diaphorase. TQ and DHTQ were tested, thirdly, as specific scavengers for superoxide anion (generated biochemically) or as general scavengers for free radicals (generated photochemically). The results revealed that TQ and DHTQ acted not only as superoxide anion scavengers but also as general free radical scavengers. The IC(50) for TQ and DHTQ in biochemical and photochemical assays were in the nanomolar and micromolar range respectively. Our data may explain at least partly the reported beneficial in vivo protective effects of TQ through the combined antioxidant properties of TQ and its metabolite DHTQ.  相似文献   

18.
Relationships between the rate of body oxygen consumption (VO2) and the liver key antioxidant enzyme activities were assessed in female CBA mice. The pair-wise linear regression and correlation demonstrated significant correlative links between VO2 and activity of catalase (CAT). Nonlinear 3D plotting revealed a complementary pattern of CAT and glutathione peroxidase (GP) relation. CAT activity was elevated in mice with proportionally high VO2 and superoxide dismutase (SOD), whereas GP activity was high in animals with low or disproportional VO2 and SOD.  相似文献   

19.
铅胁迫对黄瓜幼苗抗氧化酶活性及同工酶的影响   总被引:33,自引:2,他引:33  
采用水培法和聚丙烯酰胺凝胶电泳法,研究铅胁迫对黄瓜幼苗过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性及同工酶的影响.结果表明,铅胁迫下黄瓜幼苗地上部POD活性除第5天外均随铅浓度的增加而逐渐降低,POD同工酶谱带和表达量减少.在0~500 mg·L-1铅浓度范围内,SOD活性随铅浓度的增加而增加,第7天达到最大值后急剧下降,低于同期对照值,900 mg·L-1铅处理SOD活性随时间的延长逐步降低,SOD酶谱带和表达量与铅浓度呈负相关.CAT酶谱带无明显变化,而表达量存在差异.  相似文献   

20.
Abstract

Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) are water saving irrigation systems that have been developed to increase water use efficiency (WUE) without significant yield reduction. To examine whether tomato responded differently to RDI and PRD, we compared the changes in antioxidative defenses in tomato plants using a split-root system. Tomato plants were grown for 21 days under controlled conditions with their roots separated equally between two soil compartments. Three irrigation treatments were imposed: Control, receiving an amount of water equivalent to 100% of plant transpiration; PRD in which one compartment was watered with 50% of the amount of water supplied to the controls, allowing one-half of the root system to be exposed to dry soil, and switching irrigation between sides weekly; RDI in which 50% of the amount of water given to the controls was supplied, half to each side of the root system. Relative water content (RWC), midday leaf Ψ and chlorophyll content decreased largely in RDI-treated plants, whereas the PRD plants exhibited relatively higher Ψ and RWC values. An enhanced level of lipid peroxidation in both roots and leaves indicated that PRD and RDI caused oxidative stress in tomato plants. In leaves, superoxide dismutase (SOD), soluble peroxidase (POX) and polyphenol oxidase (PPO) activities showed an increase in the early phase of water deficit, and then decreased in the remaining phase of the drying cycle. However, the increase was more pronounced under RDI. Catalase (CAT) activity declined continuously from the onset of PRD and RDI treatments to below the control level, and the reduction was less under PRD than RDI. POX cell-wall associated activities exceeded the control level by 450% and 230%, respectively, under RDI and PRD. At the root level, while CAT activity also decreased under both PRD and RDI, the activities of SOD, POX and PPO significantly increased and their activities showed an alternating increase/decrease paralleling the alternating irrigation in PRD-treated roots. As a result of the difference in POX and PPO activities between the two water treatments applied, PRD-treated plants accumulated more soluble and cell-wall bound phenolic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号