首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Construction of Bifidobacterium breve capable of production of secreted biologically active human interleukin-10 (hIL-10) is described. ORF coding for full-length mature human interleukin-10 was cloned into a series of expression vectors. This resulted in generation of translational fusions between hIL-10 and signal peptides sequences derived from Bifidobacterium breve genes sec2, apuB and B. adolescentis gene amyB under the control of constitutively active bifidobacterial promoter. We have shown that fusion to amyB signal peptide resulted in highest expression level of hIL-10 at the mRNA and protein level. Secreted hIL-10 was highly unstable in bifidobacterial culture supernatants in standard growth conditions. However, incubation of stationary cultures in buffered tissue culture medium resulted in production of stable biologically active hIL-10, albeit in low amounts (1.9 ng/ml).  相似文献   

2.
The aim of the present study was to evaluate the anti-obesity activity of a probiotic bifidobacterial strain in a mouse model with obesity induced by a high-fat diet. The mice were fed a high-fat diet supplemented with Bifidobacterium breve B-3 at 108 or 109 CFU/d for 8 weeks. B. breve B-3 supplementation dose-dependently suppressed the accumulation of body weight and epididymal fat, and improved the serum levels of total cholesterol, fasting glucose and insulin. The bifidobacterial counts in the caecal contents and feces were significantly increased with the B. breve B-3 administration. The expression of genes related to fat metabolism and insulin sensitivity in the gut and epididymal fat tissue was up-regulated by this administration. These results suggest that the use of B. breve B-3 would be effective in reducing the risk of obesity.  相似文献   

3.
A survey of infant fecal Bifidobacterium isolates for plasmid DNA revealed that a significant portion of the strains, 17.6%, carry small plasmids. The majority of plasmid-harboring strains belonged to the Bifidobacterium longum/infantis group. Most of the plasmids could be assigned into two groups based on their sizes and the restriction profiles. Three plasmids, pB44 (3.6 kb) from B. longum, pB80 (4.9 kb) from Bifidobacterium bifidum, and pB21a (5.2kb) from Bifidobacterium breve were sequenced. While the former two plasmids were found to be highly similar to previously characterized rolling-circle replicating pKJ36 and pKJ56, respectively, the third plasmid, pB21a, does not share significant nucleotide homology with known plasmids. However, it might be placed into the pCIBb1-like group of bifidobacterial rolling-plasmids based on the homology of its Rep protein and the overall molecular organization. Two sets of Escherichia coli-Bifidobacterium shuttle vectors constructed based on pB44 and pB80 replicons were capable of transforming B. bifidum and B. breve strains with efficiency up to 3x10(4)cfu/microg DNA. Additionally, an attempt was made to employ a broad host range conjugation element, RP4, in developing of E. coli-Bifidobacterium gene transfer system.  相似文献   

4.
Several prebiotics, such as inulin, fructo‐oligosaccharides and galacto‐oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto‐oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto‐oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic.  相似文献   

5.
An inducible expression vector, pSH19, which harbors regulatory expression system PnitA-NitR, for streptomycetes was constructed previously. Here, we have modified pSH19 to obtain shuttle vectors for Streptomyces-E. coli by introducing the replication origin of a plasmid for E. coli (ColE1) and an antibiotic-resistant gene. Six inducible shuttle vectors, pESH19cF, pESH19cR, pESH19kF, pESH19kR, pESH19aF, and pESH19aR, for Streptomyces-E. coli, were successfully developed. The stability of these vectors was examined in five different E. coli strains and Streptomyces lividans TK24. The stability test showed that the pSH19-derived shuttle vectors were stable in E. coli Stbl2 and S. lividans TK24. Heterologous expression experiments involving each of the catechol 2,3-dioxygenase, nitrilase, and N-substituted formamide deformylase genes as a reporter gene showed that pESH19cF, pESH19kF, and pESH19aF possess inducible expression ability in S. lividans TK24. Thus, these vectors were found to be useful expression tools for experiments on both Gram-negative and Gram-positive bacterial genes.  相似文献   

6.
Development of the human gut microbiota commences at birth, with certain bifidobacterial species representing dominant and early colonisers of the newborn gastrointestinal tract. The molecular basis of Bifidobacterium colonisation, persistence and presumed communication with the host has remained obscure. We previously identified tight adherence (Tad) pili from Bifidobacterium breve UCC2003 as an essential colonisation factor. Here, we demonstrate that bifidobacterial Tad pili also promote in vivo colonic epithelial proliferation. A significant increase in cell proliferation was detectable 5 days postadministration of B. breve UCC2003. Using advanced functional genomic approaches, bacterial strains either (a) producing the Tad2003 pili or (b) lacking the TadE or TadF pseudopilins were created. Analysis of the ability of these mutant strains to promote epithelial cell proliferation in vivo demonstrated that the pilin subunit, TadE, is the bifidobacterial molecule responsible for this proliferation response. These findings were confirmed in vitro using purified TadE protein. Our data imply that bifidobacterial Tad pili may contribute to the maturation of the naïve gut in early life through the production of a specific scaffold of extracellular protein structures, which stimulate growth of the neonatal mucosa.  相似文献   

7.
Specific growth rate of bifidobacteria cultured on different sugars   总被引:1,自引:0,他引:1  
The ability of six bifidobacterial strains (3 of human origin and 3 isolates from fermented milk products) to utilize glucose, lactose, melezitose, sucrose, raffinose, and stachyose was determined. Dairy-related bifidobacterial strains were identified asBifidobacterium animalis (2 strains) or asB. pseudolongum (1 strain). Human strains includedB. longum (2 strains) andB. breve (1 strain). All strains fermented lactose, sucrose, raffinose, and stachyose. Melezitose was utilized only byB. longum. B. pseudolongum did not ferment either glucose or melezitose. All isolates had a higher specific growth rate on raffinose and stachyose than on glucose. Dairy strains grew slowly on glucose compared to human strains.  相似文献   

8.
In this paper, we reveal and characterize cross-feeding behaviour between the common gut commensal Bacteroides cellulosilyticus (Baccell) and certain bifidobacterial strains, including Bifidobacterium breve UCC2003, when grown on a medium containing Larch Wood Arabinogalactan (LW-AG). We furthermore show that cross-feeding is dependent on the release of β-1,3-galacto-di/trisaccharides (β-1,3-GOS), and identified that the bga gene cluster of B. breve UCC2003 allows β-1,3-GOS metabolism. The product of bgaB is presumed to be responsible for the import of β-1,3-GOS, while the bgaA gene product, a glycoside hydrolase family 2 member, was shown to hydrolyse both β-1,3-galactobiose and β-1,3-galactotriose into galactose monomers. This study advances our understanding of strain-specific syntrophic interactions between two glycan degraders in the human gut in the presence of AG-type dietary polysaccharides.  相似文献   

9.
10.
11.
pMP7017 is a conjugative megaplasmid isolated from the gut commensal Bifidobacterium breve JCM7017 and was shown to encode two putative replicases, designated here as RepA and RepB. In the current work, RepB was identified as the pMP7017 replicative initiator, as the repB gene, and its surrounding region was shown to be sufficient to allow autonomous replication in two bifidobacterial species, B. breve and Bifidobacterium longum subsp. longum. RepB was shown to bind to repeat sequence downstream of its coding sequence and this region was determined to be essential for efficient replication. Based on our results, we hypothesize that pMP7017 is an iteron-regulated plasmid (IRP) under strict auto-regulatory control. Recombinantly produced and purified RepB was determined to exist as a dimer in solution, differing from replicases of other IRPs, which exist as a mix of dimers and monomers. Furthermore, a stable low-copy Bifidobacterium-E. coli shuttle vector, pRD1.3, was created which can be employed for cloning and expression of large genes, as was demonstrated by the cloning and heterologous expression of the 5.1 kb apuB gene encoding the extracellular amylopullulanase from B. breve UCC2003 into B. longum subsp. longum NCIMB8809.  相似文献   

12.
Thirty-four strains of bifidobacteria belonging to Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, and Bifidobacterium pseu-docatenulatum were assayed in vitro for the ability to assimilate cholesterol and for bile salt hydrolase (BSH) against glycocholic and taurodeoxycholic acids (GCA and TDCA). Cholesterol assimilation was peculiar characteristic of two strains belonging to the species B. bifidum (B. bifidum MB 107 and B. bifidum MB 109), which removed 81 and 50 mg of cholesterol per gram of biomass, being the median of specific cholesterol absorption by bifidobacteria 19 mg/g. Significant differences in BSH activities were not established among bifidobacterial species. However, the screening resulted in the selection of promising strains able to efficiently deconjugate GCA and TDCA. No relationship was recognized between BSH phenotype and the extent of cholesterol assimilation. On the basis of cholesterol assimilation or BSHGCA and BSHTDCA activities, B. bifidum MB 109 (DSMZ 23731), B. breve MB 113 (DSMZ 23732), and B. animalis subsp. lactis MB 2409 (DSMZ 23733) were combined in a probiotic mixture to be fed to hypercholesterolemic rats. The administration of this probiotic formulation resulted in a significant reduction of total cholesterol and low-density cholesterol (LDL-C), whereas it did not affect high-density cholesterol (HDL-C) and HDL-C/LDL-C ratio.  相似文献   

13.
In recent years, bifidobacterial populations in the gut of various monkey species have been assessed in several ecological surveys, unveiling a diverse, yet unexplored ecosystem harbouring novel species. In the current study, we investigated the species distribution of bifidobacteria present in 23 different species of primates, including human samples, by means of 16S rRNA microbial profiling and internal transcribed spacer bifidobacterial profiling. Based on the observed bifidobacterial-host co-phylogeny, we found a statistically significant correlation between the Hominidae family and particular bifidobacterial species isolated from humans, indicating phylosymbiosis between these lineages. Furthermore, phylogenetic and glycobiome analyses, based on 40 bifidobacterial species isolated from primates, revealed that members of the Bifidobacterium tissieri phylogenetic group, which are typical gut inhabitants of members of the Cebidae family, descend from an ancient ancestor with respect to other bifidobacterial taxa isolated from primates.  相似文献   

14.
The population dynamics of bifidobacteria in human feces during raffinose administration were investigated at the species level by using fluorescence in situ hybridization (FISH) coupled with flow cytometry (FCM) analysis. Although double-staining FISH-FCM using both fluorescein isothiocyanate (FITC) and indodicarbocyanine (Cy5) as labeling dyes for fecal samples has been reported, the analysis was interfered with by strong autofluorescence at the FITC fluorescence region because of the presence of autofluorescence particles/debris in the fecal samples. We circumvented this problem by using only Cy5 fluorescent dye in the FISH-FCM analysis. Thirteen subjects received 2 g of raffinose twice a day for 4 weeks. Fecal samples were collected, and the bifidobacterial populations were monitored using the established FISH-FCM method. The results showed an increase in bifidobacteria from about 12.5% of total bacteria in the prefeeding period to about 28.7 and 37.2% after the 2-week and 4-week feeding periods, respectively. Bifidobacterium adolescentis, the Bifidobacterium catenulatum group, and Bifidobacterium longum were the major species, in that order, at the prefeeding period, and these bacteria were found to increase nearly in parallel during the raffinose administration. During the feeding periods, indigenous bifidobacterial populations became more diverse, such that minor species in human adults, such as Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium dentium, and Bifidobacterium angulatum, proliferated. Four weeks after raffinose administration was stopped, the proportion of each major bifidobacterial species, as well as that of total bifidobacteria, returned to approximately the original values for the prefeeding period, whereas that of each minor species appeared to differ considerably from its original value. To the best of our knowledge, these results provide the first clear demonstration of the population dynamics of indigenous bifidobacteria at the species level in response to raffinose administration.  相似文献   

15.
In the current work, we describe genome diversity and core genome sequences among representatives of three bifidobacterial species, i.e., Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Bifidobacterium pseudocatenulatum, by employing a polyphasic approach involving analysis of 16S rRNA gene and 16S-23S internal transcribed spacer (ITS) sequences, pulsed-field gel electrophoresis (PFGE), and comparative genomic hybridization (CGH) assays.  相似文献   

16.
Forty-two bifidobacterial strains were screened for α-amylase and/or pullulanase activity by investigating their capacities to utilize starch, amylopectin, or pullulan. Of the 42 bifidobacterial strains tested, 19 were capable of degrading potato starch. Of these 19 strains, 11 were able to degrade starch and amylopectin, as well as pullulan. These 11 strains, which were shown to produce extracellular starch-degrading activities, included 5 strains of Bifidobacterium breve, 1 B. dentium strain, 1 B. infantis strain, 3 strains of B. pseudolongum, and 1 strain of B. thermophilum. Quantitative and qualitative enzyme activities were determined by measuring the concentrations of released reducing sugars and by high-performance thin-layer chromatography, respectively. These analyses confirmed both the inducible nature and the extracellular nature of the starch- and pullulan-degrading enzyme activities and showed that the five B. breve strains produced an activity that is consistent with type II pullulanase (amylopullulanase) activity, while the remaining six strains produced an activity with properties that resemble those of type III pullulan hydrolase.  相似文献   

17.
The objective of this work was to elucidate if breast milk contains bifidobacteria and whether they can be transmitted to the infant gut through breastfeeding. Twenty-three women and their respective infants provided samples of breast milk and feces, respectively, at days 4 to 7 after birth. Gram-positive and catalase-negative isolates from specific media with typical bifidobacterial shapes were identified to the genus level by F6PPK (fructose-6-phosphate phosphoketolase) assays and to the species level by 16S rRNA gene sequencing. Bifidobacterial communities in breast milk were assessed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE), and their levels were estimated by quantitative real-time PCR (qRTi-PCR). Bifidobacteria were present in 8 milk samples and 21 fecal samples. Bifidobacterium breve, B. adolescentis, and B. bifidum were isolated from milk samples, while infant feces also contained B. longum and B. pseudocatenulatum. PCR-DGGE revealed the presence of one to four dominant bifidobacterial bands in 22 milk samples. Sequences with similarities above 98% were identified as Bifidobacterium breve, B. adolescentis, B. longum, B. bifidum, and B. dentium. Bifidobacterial DNA was detected by qRTi-PCR in the same 22 milk samples at a range between 40 and 10,000 16S rRNA gene copies per ml. In conclusion, human milk seems to be a source of living bifidobacteria for the infant gut.  相似文献   

18.
Lactoferrin is an iron-binding glycoprotein found in the milk of most mammals for which various biological functions have been reported, such as antimicrobial activity and bifidogenic activity. In this study, we compared the bifidogenic activity of bovine lactoferrin (bLF) and pepsin hydrolysate of bLF (bLFH), isolated bifidogenic peptide from bLFH, and investigated the bifidogenic spectra of bLF, bLFH, and its active peptide against 42 bifidobacterial strains comprising nine species. Against Bifidobacterium breve ATCC 15700T, minimal effective concentrations of bLF and bLFH were 300 and 10 μg/ml. Against Bifidobacterium longum subsp. infantis ATCC 15697T, the minimal effective concentration of bLFH was 30 μg/ml, and bLF did not show bifidogenic activity within 300 μg/ml. As an active peptide, a heterodimer of A1-W16 and L43-A48 linked by a disulfide bond was isolated. Previously, this peptide was identified as having antibacterial activity. An amino acid mixture with the same composition as this peptide showed no bifidogenic activity. The strains of each species whose growth was highly promoted (>150%) by this peptide at 3.75 μM were as follows: B. breve (7 out of 7 strains [7/7]), B. longum subsp. infantis (5/5), Bifidobacterium bifidum (2/5), B. longum subsp. longum (1/3), Bifidobacterium adolescentis (3/6), Bifidobacterium catenulatum (1/4), Bifidobacterium pseudocatenulatum (0/4), Bifidobacterium dentium (0/5), and Bifidobacterium angulatum (0/3). Growth of none of the strains was highly promoted by bLF at 3.75 μM. We demonstrated that bLFH showed stronger bifidogenic activity than natural bLF, especially against infant-representative species, B. breve and B. longum subsp. infantis; furthermore, we isolated its active peptide. This is the first report about a bifidogenic peptide derived from bLF.  相似文献   

19.
Passage through the birth canal and consequent exposure to the mother''s microbiota is considered to represent the initiating event for microbial colonization of the gastrointestinal tract of the newborn. However, a precise evaluation of such suspected vertical microbiota transmission has yet to be performed. Here, we evaluated the microbiomes of four sample sets, each consisting of a mother''s fecal and milk samples and the corresponding infant''s fecal sample, by means of amplicon-based profiling supported by shotgun metagenomics data for two key samples. Notably, targeted genome reconstruction from microbiome data revealed vertical transmission of a Bifidobacterium breve strain and a Bifidobacterium longum subsp. longum strain from mother to infant, a notion confirmed by strain isolation and genome sequencing. Furthermore, PCR analyses targeting unique genes from these two strains highlighted their persistence in the infant gut at 6 months. Thus, this study demonstrates the existence of specific bifidobacterial strains that are common to mother and child and thus indicative of vertical transmission and that are maintained in the infant for at least relatively short time spans.  相似文献   

20.
The protective effect of a multi‐strain probiotic and synbiotic formulation was evaluated in C57BL/6 mice infected with Clostridium difficile (CD) NAP1/027. Antibiotic‐treated mice were divided into the following four groups: Group 1, fed with a synbiotic formulation consisting of Lactobacillus plantarum F44, L. paracasei F8, Bifidobacterium breve 46, B. lactis 8:8, galacto‐oligosaccharides, isomalto‐oligosaccharides, and resistant starch; Group 2, fed with the same four probiotic strains as Group 1; Group 3, fed with the same prebiotic supplements as Group 1 for 7 days before CD infection; and Group 4 (control group) antibiotic treated and infected with NAP1/027 strain. Feces and cecal contents were collected for microbial cell viability, quantitative PCR (qPCR), toxin analyses and histopathology. Synbiotics‐ and probiotics‐fed mice showed a significant increase in total bifidobacteria (P < 0.05). The total lactobacilli count was increased in Group 1. Tests for cecal toxins were negative in Group 2 mice, whereas one sample each from Group 1 and 3 was positive. qPCR of cecal contents showed significant reduction in NAP1/027 DNA copies in Groups 1 and 2 and significantly higher numbers of B. breve 46, L. plantarum F44, and L. paracasei F8 in Groups 1 and 2 (P < 0.05); these changes were much less pronounced in Groups 3 and 4. Our findings indicate that the newly developed synbiotic or multi‐strain probiotic formulation confers protection against NAP1/027 infection in C57BL/6 mice. This holds promise for performing human studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号