首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Aim To analyse the worldwide distribution patterns of hagfishes using panbiogeographical track analysis, and to attempt to correlate these patterns with the tectonic history of the ocean basins. Location Atlantic and Pacific oceans. Method The distributions of 47 out of 70 species of hagfish (in the genera Eptatretus, Myxine, Nemamyxine, Neomyxine, and Paramyxine) were studied by the panbiogeographical method of track analysis. The analysis was performed using distributional data obtained from the collections included in the Ocean Biogeographic Information System (OBIS, http://www.iobis.org ) and FishBase ( http://www.fishbase.org ), with additional records from the literature. Individual tracks were obtained for each species by plotting localities and connecting them by minimum‐spanning trees. Generalized tracks were determined from the spatial overlap between individual tracks. Results Six generalized tracks were found: in the Gulf of Mexico, Caribbean Sea, South‐eastern Atlantic, Western Pacific, North‐eastern Pacific and South‐eastern Pacific. Main conclusions The distribution patterns of myxinids are marked by a high degree of endemism and vicariance, and are correlated with the tectonic features involved in many of the events that led to the development of oceanic basins. The main massing of the group is around the Pacific Basin. In the Atlantic Ocean, the distribution of Myxine glutinosa seems to correspond to a classic trans‐oceanic track and vicariance resulting from the opening of the Atlantic Ocean during the Cretaceous. In the Pacific Ocean, the distribution of the Eptatretus and Paramyxine species is clearly associated with the margins of the Pacific tectonic plate. The generalized tracks of hagfishes are shared by several other groups of marine organisms, including many from shallow tropical waters, implying a common history for this marine biota. Overall, vicariance is a major feature of hagfish distribution, suggesting vicariant differentiation of widespread ancestors as a result of sea‐floor spreading between continents in connection with ocean formation.  相似文献   

2.
Aim  A panbiogeographical analysis of the genus Bomarea was undertaken in order to determine generalized tracks and biogeographical nodes, and to evaluate the current distribution of the genus based on the available tectonic information and the biogeographical regionalization of Latin America.
Location  The Neotropical region from northern Mexico to northern Argentina, and the Nearctic and Andean regions.
Method  A total of 2205 records of 101 species were analysed, representing 95% of the species assigned to Bomarea . Localities were represented on maps and their individual tracks were drawn. Based on their comparison, generalized tracks were detected and mapped. Nodes were identified in the areas where different generalized tracks were superimposed.
Results  Five generalized tracks were recovered. One is located in the Eastern Central America and Western Panamanian Isthmus provinces (Caribbean subregion, Neotropical region), which was supported by three species of Central American distribution. The four remaining generalized tracks were located in South America, in the North Andean Paramo, Cauca and Puna biogeographical provinces. These tracks were supported by species of Bomarea with an Andean distribution. Biogeographical nodes were established in the Central Andean region of Colombia, central Ecuador and central Peru.
Main conclusions  The nodes obtained for Bomarea support a hybrid origin for the Andean region, which presents diverse components from both northern and southern South America. Likewise, the track recovered between Colombia and Ecuador includes Andean and Neotropical areas, providing further support for this hypothesis. The nodes obtained are coherent with vicariant elements evident for Bomarea. Species of three clades proposed for Bomarea are distributed in specific generalized tracks.  相似文献   

3.
Aim  To test whether distributional patterns of Neotropical freshwater taxa fit the generalized tracks already postulated for terrestrial groups occurring in the Mexican Transition Zone.
Location  The study units comprised 17 hydrological basins located along the Pacific coast of the Americas from Mexico to Panama, and in the Gulf of Mexico from the Papaloapan to the Grijalva–Usumacinta basin.
Methods  Distributional data for 22 fish species, 34 crab species of the tribe Pseudothelphusini, and 22 strictly freshwater species of angiosperms were analysed. Parsimony analysis of endemicity is based on presence/absence data of these taxa and uses the computer programs Winclada and NONA.
Results  Three generalized tracks were obtained: (1) Mexican North Pacific, (2) Mexican Central Pacific, and (3) Southern Mexico–Guatemala. A node resulted at the intersection of the first two tracks, coinciding with the Neovolcanic Axis in central Mexico.
Main conclusions  Freshwater generalized tracks with an altitudinal distribution below 1000 m, mainly including fishes and angiosperms, are close to the Tropical Mesoamerican generalized track. Generalized tracks above 1000 m, including freshwater crabs, have a stronger affinity with the Mountain Mesoamerican track. The Isthmus of Tehuantepec represents a node for the Neotropical freshwater and terrestrial biota. These results seem to indicate that common geobiotic processes have induced these patterns.  相似文献   

4.
The distributional patterns of the seven species of Rhizoprionodon were analysed using the panbiogeographical method of track analysis. The individual tracks of Rhizoprionodon suggest that the genus is mainly an Indian–Atlantic Ocean group. Five generalized tracks were found: (1) Caribbean, defined by R. porosus and R. terraenovae; (2) eastern coast of South America, defined by R. porosus and R. lalandei; (3) Indian Ocean, defined by R. acutus and R. oligolinx; (4) north‐western Australia, defined by R. acutus, R. oligolinx and R. taylori; (5) north‐north‐eastern Australia, defined by R. acutus and R. taylori. Only R. longurio was not included in any generalized track, and its distribution is restricted to the eastern Pacific Ocean. Two biogeographical nodes were found at the intersection of the generalized tracks 1 and 2 (Caribbean Sea) and generalized tracks 4 and 5 (north Australia). The generalized tracks overlap with those found in several unrelated marine taxa. Overall, the generalized tracks are associated with warm currents. The biogeographical nodes found (Caribbean and Australian) are coincident with the global distribution of mangroves.  相似文献   

5.
Aim  We analysed the geographical distributions of species of Buprestidae (Coleoptera) in Mexico by means of a panbiogeographical analysis, in order to identify their main distributional patterns and test the complex nature of the Mexican Transition Zone, located between the Nearctic and Neotropical regions.
Location  Mexico.
Methods  The geographical distributions of 228 species belonging to 33 genera of Buprestidae were analysed. Localities of the buprestid species were represented on maps and their individual tracks were drawn. Based on a comparison of the individual tracks, generalized tracks were detected and mapped. Nodes were identified as the areas where generalized tracks converged.
Results  Thirteen generalized tracks were obtained: one was restricted to the Mexican Transition Zone and five to the Neotropical region (Antillean and Mesoamerican dominions), a further two occurred in both the Nearctic region (Continental Nearctic dominion) and the Mexican Transition Zone, and a further five in both the Neotropical region (Mesoamerican dominion) and the Mexican Transition Zone. Seven nodes were identified at the intersections of the generalized tracks – in the Mesoamerican dominion (Mexican Pacific Coast, Mexican Gulf and Chiapas biogeographical provinces) and the Mexican Transition Zone (Trans-Mexican Volcanic Belt, Balsas Basin and Sierra Madre Oriental biogeographical provinces).
Main conclusions  We conclude that the geographical distribution of Buprestidae is mainly Neotropical, corresponding to the Mesoamerican dominion and the Antillean dominion of the Neotropical region, and the Mexican Transition Zone. Most of the generalized tracks and nodes correspond to the Mexican Transition Zone, thus confirming its complex nature. We suggest that the nodes we have identified could be particularly important areas to choose for conservation prioritization.  相似文献   

6.
The spatial evolution of South American Syncarida (Anaspidacea and Bathynellacea) and related taxa is evaluated applying a panbiogeographic approach, where Ocean basins are used to identify major patterns of intercontinental distribution. The Pacific basin, corresponding to a southern temperate track, is identified as the major evolutionary centre for Stygocaris (Stygocarididae), Bathynella (Bathynellidae), Atopobathynellu , and Chilibathynella (Parabathynellidae), whereas distribution of Nannobathynella (Bathynellidae) and Cteniobathynella (Parabathynellidae) is centred on the Atlantic Ocean, belonging to a northern tropical track. It is concluded that the biotic origin of the South American Syncarida is complex, implying the existence of at least two ancestral biotas.  相似文献   

7.
An overview of the biogeography of the benthic marine algae of the North Atlantic Ocean is presented. General and specific distribution patterns are discussed in the light of current knowledge of extant species, and of known events in the evolution of the North Atlantic Ocean. The close relationships between the Arctic, NW and NE Atlantic floras suggest their possible origin as a single flora in the early Oligocene Arctic Ocean, when it was isolated by the Bering Land Bridge and the Greenland-Scotland Ridge. Migration of the flora into the North Atlantic Ocean could have occurred with the subsidence of the Greenland-Scotland Ridge. The present day distribution patterns are the main clue to unravelling the past, and study of vicariant amphi-Atlantic taxa using a variety of experimental techniques will yield the most valuable information in attempts to interpret major biogeographical events in the North Atlantic Ocean.  相似文献   

8.
The Nearctic region is located on the North American plate. However, its tectonic history is related to convergence with other plates, which has promoted a complex topography. This complexity should be reflected by the distributional patterns of the biota. We used track analysis with 574 species of mammals to identify generalized tracks and panbiogeographic nodes in the Nearctic region and to propose an updated point of view of complex areas and their boundaries in North America. Seven generalized tracks with nested patterns (California, Columbia Plateau, Mesoamerican, Mexican Plateau, Neotropic, Southern Rocky Mountains, and Western Coast of USA) were identified using a parsimony analysis of endemicity with progressive character elimination. Nine panbiogeographic nodes were identified at the intersections of the generalized tracks, all of which were located in the Sierra of Chiapas and Central America physical features. A total of 192 nodes were identified for the nested patterns, located in only eight physical features. Our analysis revealed evolutionary patterns in generalized tracks, and the panbiogeographic nodes predicted areas with high evolutionary–geologic complexity, shared by other taxonomic groups.  相似文献   

9.
Aim The main drainages of the Plata Basin – the Paraná, Paraguay and Uruguay rivers – begin in tropical latitudes and run in a north–south direction into subtropical–temperate latitudes. Consequently, the biota of these rivers has tropical elements that contrast with temperate biomes through which the rivers run. We apply a panbiogeographical approach, to test whether the large rivers of the Plata Basin have a differential influence on distributional patterns of tropical snakes in subtropical and temperate latitudes of South America. Location Subtropical and temperate sections of the major Plata Basin rivers, South America. Methods We compared the individual tracks of 94 snake taxa. The track analysis consisted of: (1) plotting the localities of each taxon on maps, (2) connecting the localities of each taxon using a minimal geographical proximity determinant of the ‘individual tracks’, and (3) superimposing the individual tracks to determine generalized tracks. To detect tropical snakes that reach higher latitudes through the rivers we used the preferential direction of distribution concept. For each taxon we measured the angular deviations between the line of its individual track and the course of the rivers in a 100 × 100 km scaled grid. Average angular values < 45° indicated a positive association with the rivers. Results Thirty‐five of 94 taxa showed distributions associated with the major rivers of the Plata Basin, including fauna from distinct biogeographical lineages, supported by the occurrence of five generalized tracks as follows: (1) the Paraguay–Middle Paraná, (2) the Paraguay–Paraná fluvial axis, Upper Paraná and Middle Paraná to Upper Delta, (3) the Lower Paraguay, Paraná and Uruguay rivers, excluding the sectors High Paraná and High Uruguay, (4) the Uruguay River and Upper Paraná, and (5) the High Paraná. The Atlantic species occurred with significantly higher frequency in the Uruguay River and High Paraná river sections, the Amazon species were found with significantly higher frequency in the Paraguay and Middle Paraná sections, and the species with a Pantanal distribution were found in all sections. Main conclusions The observed distributional patterns may be explained by the interaction of ecological, geographical and historical factors. Previous authors have developed ecological (hydrological or environmental similarity) or dispersalist (effect of rivers as migration routes) explanations. The coincidence between generalized tracks and past geomorphological events that caused displacements and changed relationships between the Paraguay, Paraná and Uruguay river sections supports hypotheses involving the strong influence of historical factors in the present configuration of tropical snake distribution in temperate latitudes.  相似文献   

10.
Abstract . A track analysis based on the distributional patterns of 967 species of vascular plant taxa (gymnosperms, angiosperms and pteridophytes) was performed to assess conservation priorities for cloud forests in the state of Hidalgo, Mexico, ranged in the municipalities of Chapulhuacán, Eloxochitlán, Molocotlán, Pisaflores, Tenango de Doria, Tlahuelompa and Tlanchinol, as well as five floristically equivalent areas in the states of Veracruz (Teocelo and Helechales), Tamaulipas (Gómez Farías), Morelos‐México (Ocuilan) and Oaxaca (Huautla de Jiménez). In order to detect generalized tracks we employed a new parsimony method, where clades (considered equivalent to generalized tracks) are defined forbidding homoplasy and acting like a compatibility algorithm. Several generalized tracks were found connecting these areas. Cloud forests of Chapulhuacán were connected according to three different generalized tracks and thus have a higher value, qualifying as a priority area for the conservation of cloud forests in the state of Hidalgo.  相似文献   

11.
Aim We present a biogeographical analysis of the areas of endemism and areas of diversification in the Muscidae. This analysis searched for geographical patterns in the Muscidae to reconstruct elements of the evolutionary biogeographical history of this insect family. Location Andean and Neotropical regions. Method We constructed a geographic database of 728 species from the literature and museum specimens. Areas of endemism were established by parsimony analysis of endemicity (PAE) based on grids of two different sizes: 5° (550 × 550 km) and 2° (220 × 220 km). Areas of diversification were delimited by track analysis that also included phylogenetic information. This process was independently applied to 11 genera. For each genus, we plotted generalized tracks generated by sister species on a map. When these generalized tracks supported inter‐generic nodes they were manually contoured and inferred to be areas of diversification for the Muscidae. Results Thirteen endemic areas were found using the 5° grid, and eight endemic areas resulted from the 2° grid. Ten areas were in agreement with previous studies, and 11 were new. Amazonian and Atlantic areas of diversification agreed with previous areas for the genus Polietina, and new areas of diversification were found in Panama and in central Chile. Main conclusions Six spatial patterns in the Muscidae were identified: (1) areas of endemism in both Pampa and Puna provinces were established with species whose distributions had not previously been analysed; (2) a new area of endemism was established in extreme southern South America, in Tierra del Fuego; (3) two new areas of diversification, which include Panama and central Chile, were identified; (4) a spatial association was identified between the separation of Chiloe Island from the continent and the diversification in Andean species; (5) a north–south track axis and latitudinal node intervals were identified, interpreted as spatial responses to glaciation or glacial retreat in the Andes; and (6) a spatial coincidence of areas of endemism, of diversification and high species richness in the Muscidae was discovered. The analysis of a complete database and the recognition of areas of diversification are extremely important in elucidating novel biogeographical patterns, which will in turn contribute to a better understanding of the geographical patterns of evolution in the Muscidae.  相似文献   

12.
Track analysis and Parsimony analysis of endemicity (PAE) were performed to analyze the distribution pattern of Costa Rican freshwater fishes. A basic matrix (presence/absence) was prepared using the distribution of 77 freshwater fish. The data were analyzed with CLIQUE software in order to find generalized tracks (cliques). Data also were analyzed with the software NONA and Winclada version 1.00.08 in order to perform the Parsimony Analysis of Endemicity (PAE). Fourteen equally probable cliques were found with 31 species in each and the intersection of the amount was selected as a generalized track dividing the country in two main zones: Atlantic slope from Matina to Lake Nicaragua and Pacific slope from the Coto River to the basin of the Tempisque River connected with some branches oriented to the central part of the country. PAE analysis found ten cladogram areas (72 steps, CI=0.45, RI=0.64), using the "strict consensus option" two grouping zones were identified: Atlantic slope and Pacific slope. Both PAE and Track Analysis show the division of the two slopes and the orientation of the generalized track suggests new biogeographical evidence on the influence of both old and new southern elements to explain the migrations of freshwater fish into Central America during two different geological events.  相似文献   

13.
1. The causes of distribution patterns of stygobionts (obligate subterranean-dwelling aquatic species) were examined with special emphasis on vicariance and dispersal.
2. Dispersal was investigated on the premise that if migration is important, then migration at small scales should predict patterns at larger scales. Data on the copepod fauna of epikarst in Slovenia were especially useful for the study of migration, because data on habitat occupancy could be collected at scales of individual drips located metres apart to the scale of individual caves to entire karst regions. Occupancy of drips in one cave was a remarkably good predictor of occupancy of caves in a region, although not of the overall range of a given species. These results were also supported by occupancy patterns of the general stygobiotic fauna of West Virginia caves, compared at different scales.
3. Vicariance was investigated by noting that proximity to marine embayments increases the likelihood of vicariant speciation. In the U.S.A., only the fauna of the Edwards Aquifer of Texas has a significant component of marine-derived species. Differences in shape of the relationship between species number and number of caves in a county indicated that the marine-derived component represented an addition to rather than a replacement of the other stygobiotic species.
4. Thus, we found evidence for the importance of both vicariance and dispersal. The techniques employed could be used to study these patterns more generally, as more data become available.  相似文献   

14.
Comparative phylogeography offers a unique opportunity to understand the interplay between past environmental events and life‐history traits on diversification of unrelated but co‐distributed species. Here, we examined the effects of the quaternary climate fluctuations and palaeomarine currents and present‐day marine currents on the extant patterns of genetic diversity in the two most conspicuous mangrove species of the Neotropics. The black (Avicennia germinans, Avicenniaceae) and the red (Rhizophora mangle, Rhizophoraceae) mangroves have similar geographic ranges but are very distantly related and show striking differences on their life‐history traits. We sampled 18 Atlantic and 26 Pacific locations for A. germinans (N = 292) and R. mangle (N = 422). We performed coalescence simulations using microsatellite diversity to test for evidence of population change associated with quaternary climate fluctuations. In addition, we examined whether patterns of genetic variation were consistent with the directions of major marine (historical and present day) currents in the region. Our demographic analysis was grounded within a phylogeographic framework provided by the sequence analysis of two chloroplasts and one flanking microsatellite region in a subsample of individuals. The two mangrove species shared similar biogeographic histories including: (1) strong genetic breaks between Atlantic and Pacific ocean basins associated with the final closure of the Central American Isthmus (CAI), (2) evidence for simultaneous population declines between the mid‐Pleistocene and early Holocene, (3) asymmetric historical migration with higher gene flow from the Atlantic to the Pacific oceans following the direction of the palaeomarine current, and (4) contemporary gene flow between West Africa and South America following the major Atlantic Ocean currents. Despite the remarkable differences in life‐history traits of mangrove species, which should have had a strong influence on seed dispersal capability and, thus, population connectivity, we found that vicariant events, climate fluctuations and marine currents have shaped the distribution of genetic diversity in strikingly similar ways.  相似文献   

15.
Aim The study aimed to establish areas of endemism and distribution patterns for Neotropical species of the genus Piper in the Neotropical and Andean regions by means of parsimony analysis of endemicity (PAE) and track‐compatibility analysis. Location The study area includes the Neotropical region and the Northern Andean region (Páramo‐Punan subregion). Methods We used distribution information from herbarium specimens and recent monographic revisions for 1152 species of Piper from the Neotropics. First, a PAE was attempted in order to delimit the areas of endemism. Second, we performed a track‐compatibility analysis to establish distribution patterns for Neotropical species of Piper. Terminology for grouping Piper is based on recent phylogenetic analyses. Results The PAE yielded 104 small endemic areas for the genus Piper, 80 of which are in the Caribbean, Amazonian and Paranensis subregions of the Neotropical region, and 24 in the Páramo‐Punan subregion of the Andean region. Track‐compatibility analysis revealed 26 generalized tracks, one in the Páramo‐Punan subregion (Andean region), 19 in the Neotropical region, and six connecting the Andean and Neotropical regions. Both the generalized tracks and endemic areas indicate that distribution of Piper species is restricted to forest areas in the Andes, Amazonia, Chocó, Central America, the Guayana Shield and the Brazilian Atlantic coast. Main conclusions Piper should not be considered an Andean‐centred group as it represents two large species components with distributions centred in the Amazonian and Andean regions. Furthermore, areas of greater species richness and/or endemism are restricted to lowland habitats belonging to the Neotropical region. The distribution patterns of Neotropical species of Piper could be explained by recent events in the Neotropical region, as is the case for the track connecting Chocó and Central America, where most of the species rich groups of the genus are found. Two kinds of event could explain the biogeography of a large part of the Piper taxa with Andean–Amazonian distribution: pre‐Andean and post‐Andean events.  相似文献   

16.
Abstract. 1. On Douglas fir progredientes of A.cooleyi migrate onto current-year needles whereas the later-hatching sistentes settle on older needles. The behaviour of these two morphs was compared in the laboratory.
2. The track length of progredientes was slightly greater than that of sistentes, but the tracks of the two morphs did not differ in terms of degree of irregularity or linear displacement.
3. Progredientes preferred current-year needles whereas sistentes preferred previous-year needles, especially on young branches.
4. Probing by sistentes was strongly inhibited on young current-year needles.
5. This appears to be the first report in which two morphs of a single insect species on one host species prefer foliage of different ages.  相似文献   

17.
The task of historical biogeography is to reveal and explain the history of biotas and their historical connections. Historical «relationship>> between biotas is defined as the sharing of descendants of the same ancestor. Several generalized patterns of relationship, rather than a single universal one, should be expected for any set of biotas or areas. Such generalized patterns must be sought by comparison of individual patterns, based on individual monophyletic groups. Generalized patterns of biota relationships are formally statements about numerical universals, while a pattern derived from an individual group is a statement about a particular. Such statements are not subject to testing in the Popperian sense; they may be falsified as well as verified. As in other historical sciences, explanation in historical biogeography is genetic in form and probabilistic in nature. An explanation is falsified when an explanatory premise is, and corroborated when an explanatory premise is verified. Two major methodologies exist to derive «area cladograms>> from substituted (taxon) cladograms, Component Analysis and Parsimony Analysis. It is argued that Parsimony Analysis is the theoretically more satisfactory of these because it treats all sources of «error>> in the same way, making no process-related assumptions about the sources of conflicts. The rooting of area dendrograms is problematic. The rooting by an «allzero>> outarea is theoretically unsound and the dendrogram should be rooted a posteriori adjacent to the ancestral area(s), or not at all.  相似文献   

18.
To demonstrate that parsimony analysis of endemicity (PAE) can be a method implementing the panbiogeographic approach, we analyzed two data matrices of 40/38 biogeographic provinces × 148 plant species from the Caribbean subregion of the Neotropical region, one where taxa are represented by individual tracks and the other where taxa are represented by single sample localities. We obtained six generalized tracks resulted from the PAE of the areas × individual tracks matrix, and one generalized track from the PAE of the areas × single sample localities matrix, with the latter nested within the former tracks. The results obtained show that PAE works as a panbiogeographical tool if it is based on an areas × individual tracks matrix. When performed in this way, PAE retrieves spatial information that is lost when it is based on an areas × single sample localities matrix, raising doubts regarding the conclusions derived from this latter type of analysis. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 961–976.  相似文献   

19.
Patterns of distribution and processes of differentiation haveoften been contrasted between terrestrial and marine biotas.The islands of Oceania offer an excellent setting to explorethis contrast, because the geographic setting for terrestrialand shallow-water, benthic, marine organisms are the same: themyriad islands strewn across the vast Pacific. The size of speciesranges and the geographic distribution of endemism are two biogeographicattributes that are thought to differ markedly between terrestrialand marine biotas in the Pacific. While terrestrial speciesare frequently confined to single islands or archipelagoes throughoutOceania, marine species tend to have wide to very wide distributions,and are rarely restricted to single island groups except forthe most isolated archipelagoes. We explore the conditions underwhich species can reach an island by dispersal and differentiate.Genetic differentiation can occur either through founder speciationor vicariance; these processes are requisite ends of a continuum.We show that founder speciation is most likely when few propagulesenter the dispersal medium and survive well while they travelfar. We argue that conditions favorable to founder speciationare common in marine as well as terrestrial systems, and thatterrestrial-type, archipelagic-level endemism is likely commonin marine taxa. We give examples of marine groups that showarchipelagic level endemism on most Pacific island groups aswell as of terrestrial species that are widespread. Thus boththe patterns and processes of insular diversification are variable,and overlap more between land and sea than previously considered.  相似文献   

20.
The mechanism by which organelles are transported bidirectionally in axoplasm is still unknown; however, evidence of a key role for microtubules in many nonmammalian models has been established. We have observed common or shared tracks within the axoplasm of human nerves along which multiple organelles of varying size and shape are bidirectionally transported. Organelles traveling anterogradely and retrogradely were visualized by video-enhanced differential interference contrast optics and analyzed with the aid of computer-image-processing techniques. Speeds of translocating organelles were determined at eight to 16 translocation points along a path or "track." Each translocation speed was plotted against its corresponding position on the track to develop a "speed/position diagram." Regardless of mean organelle speed or direction of motion, organelles sharing a common track exhibited similar patterns of "speeding up" and "slowing down" relative to position along the track. Speed position data for organelles translocating the local axonal region of a common track showed no unique patterns (not different from a uniform distribution, p less than 0.05). The unique speed/position patterns exhibited by common tracks were not necessarily related to the patterns of other tracks in the immediate vicinity (distance between tracks of less than 0.50 micron). These findings suggest that there are "common tracks" shared by organelles moving retrogradely and anterogradely; both the organelles and the "track" associated with its translocation play a role in the resultant motion of that organelle; the influence exerted by a common track on the motion of an organelle results in a pattern of speed changes related to position along the track.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号