首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In February 2003, European Union (EU) policy makers implemented a Directive that will make producers responsible for waste electrical and electronic equipment at end-of-life (known as the "WEEE" Directive). Under this new legislation, producers are required to organize and finance the take-back, treatment, and recycling of WEEE and achieve mass-based recycling and recovery targets. This legislation is part of a growing trend of extended producer responsibility for waste, which has the potential to shift the world's economies toward more circular patterns of resource use and recycling. This study uses life-cycle assessment and costing to investigate the possible environmental effects of the WEEE Directive, based on an example of printer recycling in the United Kingdom.
For a total of four waste management scenarios and nine environmental impact categories investigated in this study, results varied, with no scenario emerging as best or worst overall compared to landfilling. The level of environmental impact depended on the type of material and waste management processes involved. Additionally, under the broad mass-based targets of the WEEE Directive, the pattern of relationships between recycling rates, environmental impacts, and treatment and recycling costs may lead to unplanned and unwanted results. Contrary to original EU assumptions, the use of mass-based targets may not ensure that producers adapt the design of their products as intended under producer responsibility.
It is concluded that the EU should revise the scope of consideration of the WEEE Directive to ensure its life-cycle impacts are addressed. In particular, specific environmental objectives and operating standards for treatment and recycling processes should be investigated as an alternative to mass-based recycling and recovery targets.  相似文献   

3.
4.
5.
The European Marine Strategy Framework Directive requires EU Member States to prepare national strategies and manage their seas to achieve good environmental status (GES) by 2020. There are many multimetric indices proposed as indicators of the ecological quality of the benthic environment. Their functionality and utility are extensively discussed in the literature. Different frameworks are suggested for comparative assessments of indicators with no agreement on a standardized way of selecting the most appropriate one. In the current study, we apply signal detection theory (SDT) to evaluate the specificity and sensitivity of the Benthic Quality Index (BQI), its response to the eutrophication pressure, and its performance under the effects of estuarine water outflow. The BQI showed acceptable response to total nitrogen, total phosphorus and chlorophyll-a concentrations in the study area. Based on the results, we suggest using SDT for setting GES thresholds in a standardized way. This aids a robust assessment of the environmental status and supports differentiation between the quality classes.  相似文献   

6.
Although the EU Marine Strategy Framework Directive (MSFD) is largely based on the establishment of environmental targets and associated proxies to achieve Good Environmental Status (GES), a full suite of ecological indicators for all the ecosystem components is not currently available for ongoing assessment and regular update of GES targets. This is because effective indicators and management actions aimed at preserving/rebuilding marine biodiversity should be found from the knowledge of the spatial distribution of target species and extension of critical habitats as well as their overlapping with human activities, pressure and impacts. In this regard, the spatial distributions of the striped dolphin Stenella coeruleoalba and the common bottlenose dolphin Tursiops truncatus in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea) were investigated by means of a generalized additive model (GAM) and a Random Forest (RF) based on sighting data collected during standardized vessel-based surveys carried out from 2009 to 2015. Eight predictive variables were considered, taking into account both the local physiographic features and human activities existing in the investigated area, suggesting an innovative approach to habitat modeling. In particular, the explanatory variables depth, distance from industrial areas and distance from the coast proved to significantly influence the distribution of both dolphin species. In addition, the distribution of S. coeruleoalba and T. truncatus were also significantly shaped by the distance from the navy exercise areas and the fishing areas, respectively. On the contrary, the slope and the distance from the main commercial routes never provided any significant influence. The reliability of GAM and RF models in predicting the spatial distribution of both dolphins was tested by applying the Youden Index method to the ROC curves. The RF model allowed the projection of the expected presence/absence pattern of S. coeruleoalba and T. truncatus to produce the preference habitat versus non habitat map. In particular, the RF model predicted that the striped dolphin is widely present in the central and deeper part of the Gulf of Taranto. In contrast, the common bottlenose dolphin seems to be mainly distributed along the coasts in both the eastern and western sector of the basin. A clear overlapping of the preference habitats estimated for S. coeruleoalba and T. truncatus is shown north of Punta Alice and in front of Policoro as well as offshore from Ugento in the eastern and western parts of the investigated area, respectively. Finally, the critical habitats of S. coeruleoalba and T. truncatus are the outcome of both the influence of environmental conditions and anthropogenic pressures presently occurring in the Gulf of Taranto, basically indicating the need for conservation measures, especially considering that the area is expected to be considered for hydrocarbon prospecting. These results contribute to setting up a baseline reference for future assessment of environmental marine disturbances using cetaceans, which are considered a key group in the MSFD, as an ecological indicator.  相似文献   

7.
Understanding how a circular economy (CE) can reduce environmental pressures from economic activities is crucial for policy and practice. Science provides a range of indicators to monitor and assess CE activities. However, common CE activities, such as recycling and eco‐design, are contested in terms of their contribution to environmental sustainability. This article assesses whether and to what extent current approaches to assess CE activities sufficiently capture environmental pressures to monitor progress toward environmental sustainability. Based on a material flow perspective, we show that most indicators do not capture environmental pressures related to the CE activities they address. Many focus on a single CE activity or process, which does not necessarily contribute to increased environmental sustainability overall. Based on these results, we suggest complementing CE management indicators with indicators capturing basic environmental pressures related to the respective CE activity. Given the conceptual linkage between CE activities, resource extraction, and waste flows, we suggest that a resource‐based footprint approach accounting for major environmental inputs and outputs is necessary—while not sufficient—to assess the environmental sustainability of CE activities. As footprint approaches can be used across scales, they could aid the challenging process of developing indicators for monitoring progress toward an environmentally sustainable CE at the European, national, and company levels.  相似文献   

8.
The call for ecosystem considerations in marine management has instigated the use of ecosystem indicators. Many ecosystem indicators have been suggested under new policy frameworks such as the EU Marine Strategy Framework Directive or the Common Fisheries Policy. But many of these indicators are still under development and cannot be considered as yet operational for environmental assessments. A common reason for this lack of operationability is the absence of valid assessment benchmarks. This study introduces a two-stage approach for the benchmarking and assessment of time series (TSBA) against a priori chosen rationale of improvement or maintenance of current conditions. TSBA uses breakpoint- and trend-analysis to obtain long-term benchmarks and assess short term progress. Depending on the outcome of both analyses the action requirements for management can be determined. The method is exemplified on a case study on the size-structure of large North Sea gadoid stocks, which are considered as being sensitive to the impacts of fishing. Three out of six stocks reached their assessment benchmarks, while the three other stocks failed. TSBA is generic and can be applied to any indicator used within any marine policy assessment framework. A strength–weaknesses–opportunity–threat analysis (SWOT) investigated the advantages and disadvantages of TSBA in the context of the currently high political demand of operational ecosystem indicators. Contrary to benchmarks derived from ecological concepts or pressure-state relationship TSBA benchmarks are not specifically linked to limits of resilience or sustainability. However, TSBA may be especially useful in situations where assessment benchmarks from other sources will not be readily available or are associated with high uncertainty.  相似文献   

9.
In the present study, we tested five trophic indicators and we demonstrated their usefulness to assess the environmental status of marine ecosystems and to implement an ecosystem approach to fisheries management (EAFM). The tested indicators include the slope of the biomass spectrum, the mean trophic level (MTL), the marine trophic index (MTI) and two newly developed indicators, the high trophic level indicator (HTI) and the apex predator indicator (API). Indicators are compared between current state and potential reference situations, using as case studies: the Celtic Sea/Bay of Biscay, North Sea and English Channel ecosystems. Trophic spectra are obtained from Ecopath models while reference situations are estimated, simulating with EcoTroph and Ecosim different fishing pressures including three candidate scenarios for an EAFM. Inter-ecosystems assessments are done using Ecopath models, simulations outputs and scientific surveys data to assess the current states of the studied ecosystems, contrast the reference situations and analyze the responses of all indicators. Sensitivity analyses are also conducted on the main simulation parameters to test the robustness of the chosen indicators. Ecosystems specific targets for EAFM are proposed for the five trophic indicators estimated from whole-ecosystem models, while in the Celtic Sea/Bay of Biscay ecosystem targets are proposed for the MTL (=3.85) and HTI (48%) estimated from standard bottom-trawl surveys. The HTI is proposed to be relevant for survey data and the API is recommended using whole-ecosystem models. We conclude that HTI and API show trends in ecosystems health better than MTI.  相似文献   

10.
生态社区评价指标体系研究进展   总被引:7,自引:2,他引:5  
周传斌  戴欣  王如松  黄锦楼 《生态学报》2011,31(16):4749-4759
生态社区建设融合了建筑学、生态学、社会学等多学科原理,充分体现了人与自然和谐的理念,是符合可持续发展理念的社区发展模式。生态社区评价指标体系在一定的一级指标框架下,采用定性或定量的评价指标,评判社区的可持续发展水平。对生态社区的概念和内涵、形成与发展历程、国内外生态社区相关评价指标体系进行总结和归纳,在此基础上综述了生态社区评价指标体系的研究进展,包括评价主体、一级指标框架的构建、二三级指标使用的频度分析及指标权重的确定方法。最后总结分析了生态社区指标体系研究中对外环境关联、动态发展、参与性与适应性等方面的不足,提出将复杂性理论、生命周期分析方法和生态足迹分析引入生态社区评价指标体系的研究,以提高指标体系的系统性、科学性和参与性。  相似文献   

11.
Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well‐being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities. We review socioeconomic indicators that have been modeled at the commercial scale or measured at the pilot or laboratory scale, as well as factors that affect them, and discuss additional indicators that should be measured during commercialization to form a more complete picture of socioeconomic sustainability of algal biofuels. Indicators estimated in the scientific literature include the profitability indicators, return on investment (ROI) and net present value (NPV), and the resource conservation indicator, fossil energy return on investment (EROI). These modeled indicators have clear sustainability targets and have been used to design sustainable algal biofuel systems. Factors affecting ROI, NPV, and EROI include infrastructure, process choices, and financial assumptions. The food security indicator, percent change in food price volatility, is probably zero where agricultural lands are not used for production of algae‐based biofuels; however, food‐related coproducts from algae could enhance food security. The energy security indicators energy security premium and fuel price volatility and external trade indicators terms of trade and trade volume cannot be projected into the future with accuracy prior to commercialization. Together with environmental sustainability indicators, the use of a suite of socioeconomic sustainability indicators should contribute to progress toward sustainability of algal biofuels.  相似文献   

12.
Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect major environmental effects of diverse feedstocks, management practices, and post-production processes. The importance of each indicator is identified. Future research relating to this indicator suite is discussed, including field testing, target establishment, and application to particular bioenergy systems. Coupled with such efforts, we envision that this indicator suite can serve as a basis for the practical evaluation of environmental sustainability in a variety of bioenergy systems.  相似文献   

13.
城市环境保护规划与生态建设指标体系实证   总被引:46,自引:4,他引:42  
在回顾分析各类环境指标体系的基础上,将环境指标体系分为3类:(1)综合性的可持续发展指标体系;(2)区域一半规划与管理指标体系;(3)面向某一领域或专题研究的指标体系。结合案例研究提出了一种面向规划与管理的城市环境保护与生态建设指标体系。该体系综合考虑环境保护与污染控制、生态保护与建设、生态环境管理以及经济发展、城市与社会发展5个专题要素,前3个专题要素组成主体指标系统,后2个组成扩展指标系统。根据规划管理不同层次的需要,设置了核心指标和辅助指标两个复杂程度不同的指标集,分别对应宏观与中观层次的规划要求,并使用灰色关联法对指标体系进行评价。在实例研究中,通过专家咨询法,选择了39项核心指标,31项辅助指标组成上海浦东新区环境保护规划与生态建设指标体系,在计算各项指标现状的基础上,确立了各指标2005年、2010年和2020年的规划值,结合多级灰色关联法,提出了CIEE指数(Comprehensive Index for Environmental Protection and Ecological Construction)对各项指标的现状和变化趋势进行了评价。  相似文献   

14.
There are global calls for new ecosystem-based fisheries management (EBFM) approaches. Scientific support for EBFM includes assessing ecosystem indicators of biological communities, environmental conditions, and human activities. As part of a broader research project we have synthesized a suite of traditional and new indicators for the Grand Bank in Atlantic Canada, which we share here. This is an ideal ecosystem for indicator analysis because it experienced dramatic changes over the past three decades, including a collapse in fish biomass that had profound socio-economic consequences. We exploit the wealth of data for this ecosystem to investigate how individual indicators reflect observed changes in the ecosystem, and then illustrate two applications of this indicator suite. Correlations were used to show that relationships among the fish functional groups changed after the collapse, and that a subset of indicators is sufficient to characterize each ecosystem category. Lagged correlations highlighted how changes in the drivers and pressures are often not immediately manifest in the fish community structure. We also organized indicators into the DPSIR (driver-pressure-state-impact-response) management framework. This exercise illustrated that indicator categorization is contextual and not straightforward, and we advocate for use of simpler categories that clearly show what is actionable. Additional future analyses that can be performed with our newly published suite of indicators are recommended.  相似文献   

15.
Sandy beaches constitute high natural value ecosystems which have been worldwide a target for growing human activities and ensuing pressures in the last decades, which caused ecological damages on these environments and led to its environmental quality decline. However, little is known about the responses of these ecosystems to distinct stressors and pressures, and holistic and integrated coastal management actions that protect beach environments and their ecological processes are yet to be developed. The aim of this viewpoint article is to present and discuss the utility of using a population approach to macrofaunal key species as a helpful tool for the assessment, management, and sustainable use of sandy beaches. The role of macrofaunal key species as indicators of environmental changes and of ecological quality condition is discussed and illustrated by some practical examples from the literature. The population is presented as a highly relevant ecological unit in management and one of the easiest ones to use, responding more rapidly to disturbances in the ecosystem than the most complex units. In this context, bio-ecology and population dynamics models are presented as tools and their potential, to improve the way we assess and manage ecological quality conditions of beach ecosystems aiming at its sustainable use, are discussed. Also, the advantages and drawbacks of the use of these tools in the population approach are evaluated. Monitoring, assessment and management practices focusing on beach key species bio-ecology as ecological indicator hold large potential in nowadays fast changing scenario, and should be encouraged as a function of their identifiable responses to manmade and natural disturbances.  相似文献   

16.
Identification of valid indicators of biodiversity is a critical need for sustainable forest management. We developed compositional, structural and functional indicators of biodiversity for five taxonomic groups—bryophytes, vascular plants, spiders, hoverflies and birds—using data from 44 Sitka spruce (Picea sitchensis) and ash (Fraxinus excelsior) plantation forests in Ireland. The best structural biodiversity indicator was stand stage, defined using a multivariate classification of forest structure variables. However, biodiversity trends over the forest cycle and between tree species differ among the taxonomic groups studied. Canopy cover was the main structural indicator and affected other structural variables such as cover of lower vegetation layers. Other structural indicators included deadwood and distances to forest edge and to broadleaved woodland. Functional indicators included stand age, site environmental characteristics and management practices. Compositional indicators were limited to more easily identifiable plant and bird species. Our results suggest that the biodiversity of any one of the species groups we surveyed cannot act as a surrogate for all of the other species groups. However, certain subgroups, such as forest bryophytes and saproxylic hoverflies, may be able to act as surrogates for each other. The indicators we have identified should be used together to identify stands of potentially high biodiversity or to evaluate the biodiversity effects of silvicultural management practices. They are readily assessed by non-specialists, ecologically meaningful and applicable over a broad area with similar climate conditions and silvicultural systems. The approach we have used to develop biodiversity indicators, including stand structural types, is widely relevant and can enhance sustainable forest management of plantations.  相似文献   

17.
Most of the world's biodiversity will continue to exist outside protected areas and there are also managed lands within many protected areas. In the assessment of millennium targets, there is therefore a need for indicators to measure biodiversity and suitability of habitats for biodiversity both across the whole landscape/seascape and in specific managed habitats. The two predominant land uses in many inhabited areas are forestry and agriculture and these are examined. Many national-level criteria and indicator systems already exist that attempt to assess biodiversity in forests and the impacts of forest management, but there is generally less experience in measuring these values in agricultural landscapes. Existing systems are reviewed, both for their usefulness in providing indicators and to assess the extent to which they have been applied. This preliminary gap analysis is used in the development of a set of indicators suitable for measuring progress towards the conservation of biodiversity in managed forests and agriculture. The paper concludes with a draft set of indicators for discussion, with suggestions including proportion of land under sustainable management, amount of produce from such land, area of natural or high quality semi-natural land within landscapes under sustainable management and key indicator species.  相似文献   

18.
Food-web indicators for marine management are required to describe the functioning and structure of marine food-webs. In Europe, the Marine Strategy Framework Directive (MSFD), intended to lead to a ‘good environmental status’ of the marine waters, requires indicators of the status of the marine environment that also respond to manageable anthropogenic pressures. Identifying such relationships to pressures is particularly challenging for food-web indicators, as they need to be disentangled from linkages between indicators of different functional groups caused by species interactions. Still, such linkages have not been handled in the indicator development. Here we used multivariate autoregressive time series models to identify how fish indicators in an exploited food-web relate to fishing, climate and eutrophication, while accounting for the linkages between indicators caused by species interactions. We assembled 31-year long time series of indicators of key functional groups of fish in the Central Baltic Sea pelagic food-web, which is characterized by strong trophic links between cod (Gadus morhua) and its main fish prey sprat (Sprattus sprattus) and herring (Clupea harengus). These food-web indicators were either abundance-based indicators of key piscivores (cod) and zooplanktivores (sprat and herring) or size-based indicators of the corresponding trophic groups (biomass of large predatory fish (cod  38 cm) and biomass of small prey fish (sprat and herring <10 cm)). Comparative analyses of models with and without linkages among indicators showed that for both types of indicators, linkages corresponding to predator-prey feedbacks and intra-specific density-dependence were essential to explain temporal variation in the indicators. Thus, no indicator-pressure relationships could be found that explained the indicators’ variation unless such linkages were accounted for. When accounting for these, we found that the indicators overall respond to multiple pressures acting simultaneously rather than to single pressures, as no pressure alone could explain how the indicators developed over time. The manageable pressures fishing and eutrophication, as well as the prevailing hydrological conditions influenced by climate, were all needed to reproduce the inter-annual changes in these food-web indicators combined, although individual relationships differed between the indicators. We conclude that our innovative indicator-testing framework can therefore be used to identify responses of food-web indicators to manageable pressures while accounting for the biotic interactions in food-webs linking such indicators.  相似文献   

19.
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator’s variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.  相似文献   

20.
An indicator framework was designed as an operational science-based tool for the evaluation of the environmental aspects of sustainable forest management at stand level in Flanders (Belgium). The framework aims to assess the effects of forest management on forest composition, structure and functioning. It consists of seven principles and 19 criteria, to which 157 potential indicators, selected from literature, were assigned; 40 of these were considered as suitable by an expert panel, based on 10 operational selection criteria. All indicators were quantitative variables measurable in the field.After elaboration of a measurement protocol, the indicator framework was validated in 115 forest stands, distributed over the three main forest types of Flanders. The new indicator framework exhibited greater sensitivity to forest management practices and demonstrated better discriminating power than the method that is currently used by the Flemish forest administration to estimate the naturalness and environmental quality of a forest stand. Following a detailed cost calculation of each indicator and based on the sensitivity of each indicator to forest management practices, the indicator framework was further reduced to a final set of 29 indicators. This framework can also be applied in other regions, provided that local threshold values are defined to convert indicator values to indicator scores.The selection procedure and the possible contribution of this set to the forest management in Flanders are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号