首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alpine streams can exhibit naturally high levels of flow intermittency. However, how flow intermittency in alpine streams affects ecosystem functions such as food web trophic structure is virtually unknown. Here, we characterized the trophic diversity of aquatic food webs in 28 headwater streams of the Val Roseg, a glacierized alpine catchment. We compared stable isotope (δ13C and δ15N) trophic indices to high temporal resolution data on flow intermittency. Overall trophic diversity, food chain length and diversity of basal resource use did not differ to a large extent across streams. In contrast, gradient and mixing model analysis indicated that primary consumers assimilated proportionally more periphyton and less allochthonous organic matter in more intermittent streams. Higher coarse particulate organic matter (CPOM) C:N ratios were an additional driver of changes in macroinvertebrate diets. These results indicate that the trophic base of stream food webs shifts away from terrestrial organic matter to autochthonous organic matter as flow intermittency increases, most likely due to reduced CPOM conditioning in dry streams. This study highlights the significant, yet gradual shifts in ecosystem function that occur as streamflow becomes more intermittent in alpine streams. As alpine streams become more intermittent, identifying which functional changes occur via gradual as opposed to threshold responses is likely to be vitally important to their management and conservation.  相似文献   

2.
For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or ‘brownification,’ associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi‐seasonal investigation in the Adirondacks, one of the most acid‐impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid‐impacted regions and their direct use in stream restoration, for example, through stream rechanneling or wetland construction in appropriate hydrologic settings.  相似文献   

3.
1. Modification of natural landscapes and land‐use intensification are global phenomena that can result in a range of differing pressures on lotic ecosystems. We analysed national‐scale databases to quantify the relationship between three land uses (indigenous vegetation, urbanisation and agriculture) and indicators of stream ecological integrity. Boosted regression tree modelling was used to test the response of 14 indicators belonging to four groups – water quality (at 578 sites), benthic invertebrates (at 2666 sites), fish (at 6858 sites) and ecosystem processes (at 156 sites). Our aims were to characterise the ecological response curves of selected functional and structural metrics in relation to three land uses, examine the environmental moderators of these relationships and quantify the relative utility of metrics as indicators of stream ecological integrity. 2. The strongest indicators of land‐use effects were nitrate + nitrite, delta‐15 nitrogen value (δ15N) of primary consumers and the Macroinvertebrate Community Index (a biotic index of organic pollution), while the weakest overall indicators were gross primary productivity, benthic invertebrate richness and fish richness. All indicators declined in response to removal of indigenous vegetation and urbanisation, while variable responses to agricultural intensity were observed for some indicators. 3. The response curves for several indicators suggested distinct thresholds in response to urbanisation and agriculture, specifically at 10% impervious cover and at 0.1 g m?3 nitrogen concentration, respectively. 4. Water quality and ecosystem process indicators were influenced by a combination of temperature, slope and flow variables, whereas for macroinvertebrate indicators, catchment rainfall, segment slope and temperature were significant environmental predictor variables. Downstream variables (e.g. distance to the coast) were significant in explaining residual variation in fish indicators, not surprisingly given the preponderance of diadromous fish species in New Zealand waterways. The inclusion of continuous environmental variables used to develop a stream typology improved model performance more than the inclusion of stream type alone. 5. Our results reaffirm the importance of accounting for underlying spatial variation in the environment when quantifying relationships between land use and the ecological integrity of streams. Of distinctive interest, however, were the contrasting and complementary responses of different indicators of stream integrity to land use, suggesting that multiple indicators are required to identify land‐use impact thresholds, develop environmental standards and assign ecological scores for reporting purposes.  相似文献   

4.
Tens of thousands of stream kilometers worldwide are degraded by a legacy of acid loads, high metal concentrations, and altered habitat caused by acid mine drainage (AMD) from abandoned underground and surface mines. As the primary production base in streams, the condition of algal‐dominated periphyton communities is particularly important to nutrient cycling, energy flow, and higher trophic levels. Here, we synthesize current knowledge regarding how AMD‐associated stressors affect (i) algal communities and their use as ecological indicators, (ii) their functional roles in stream ecosystems, and (iii) how these findings inform management decisions and evaluation of restoration effectiveness. A growing body of research has found ecosystem simplification caused by AMD stressors. Species diversity declines, productivity decreases, and less efficient nutrient uptake and retention occur as AMD severity increases. New monitoring approaches, indices of biological condition, and attributes of algal community structure and function effectively assess AMD severity and effectiveness of management practices. Measures of ecosystem processes, such as nutrient uptake rates, extracellular enzyme activities, and metabolism, are increasingly being used as assessment tools, but remain in their infancy relative to traditional community structure‐based approaches. The continued development, testing, and implementation of functional measures and their use alongside community structure metrics will further advance assessments, inform management decisions, and foster progress toward restoration goals. Algal assessments will have important roles in making progress toward improving and sustaining the water quality, ecological condition, and ecosystem services of streams in regions affected by the legacy of unregulated coal mining.  相似文献   

5.
The effect of periphyton biomass on hydraulic characteristics and nutrient cycling was studied in laboratory streams with and without snail herbivores. Hydraulic characteristics, such as average water velocity, dispersion coefficients, and relative volume of transient storage zones (zones of stationary water), were quantified by performing short-term injections of a conservative tracer and fitting an advection-dispersion model to the conservative tracer concentration profile downstream from the injection site. Nutrient cycling was quantified by measuring two indices: (1) uptake rate of phosphorus from stream water normalized to gross primary production (GPP), a surrogate measure of total P demand, and (2) turnover rate of phosphorus in the periphyton matrix. These measures indicate the importance of internal cycling (within the periphyton matrix) in meeting the P demands of periphyton. Dense growths of filamentous diatoms and blue-green algae accumulated in the streams with no snails (high-biomass streams), whereas the periphyton communities in streams with snails consisted almost entirely of a thin layer of basal cells of Stigeoclonium sp. (low-biomass streams). Dispersion coefficients were significantly greater and transient storage zones were significantly larger in the high-biomass streams compared to the low-biomass streams. Rates of GPP-normalized P uptake from water and rates of P turnover in periphyton were significantly lower in high biomass than in low biomass periphyton communities, suggesting that a greater fraction of the P demand was met by recycling in the high biomass communities. Increases in streamwater P concentration significantly increased GPP-normalized P uptake in high biomass communities, suggesting diffusion limitation of nutrient transfer from stream water to algal cells in these communities. Our results demonstrate that accumulations of periphyton biomass can alter the hydraulic characteristics of streams, particularly by increasing transient storage zones, and can increase internal nutrient cycling. They suggest a close coupling of hydraulic characteristics and nutrient cycling processes in stream ecosystems.  相似文献   

6.
Stream and river ecosystems are dependent on energetic inputs from their watersheds and thus shifts in land use from forest cover to agriculture will affect stream community composition and function. The disruption of forest-aquatic linkages alters the organic matter resources in agricultural streams. Dissolved organic matter (DOM) is the dominant form of organic matter in aquatic ecosystems, and a microbial energy source that is important for stream respiration. The concentrations and characteristics of DOM are regulated by both terrestrial (for example, terrestrial organic matter supply) and in-stream processes (for example, microbial respiration and periphyton production) that are influenced by land management. The effects of watershed land use and topographic, soil and climatic variables on DOM quantity (dissolved organic carbon concentration and load), source (terrestrial or in-stream) and quality (composition and lability) were measured in 14 streams across an agricultural land-use gradient. DOC concentration was positively correlated with watershed pasture cover and negatively correlated with watershed relief. No watershed variables were important correlates of DOC load. Stream DOM was primarily of terrestrial origin, but DOM in agricultural streams had a greater proportion of sources from in-stream sources. This may be due to reduced connection with riparian vegetation and increased in-stream primary production. We suggest that maintaining watershed tree cover greater than 52% and ensuring less than 10% of the length of riparian corridor is cleared for pasture could minimize changes to DOM composition. This is important to avoid flow-on effects for stream ecosystem processes that are mediated by DOM. Long-term DOM monitoring will be valuable for assessing the functional impacts of land-use change.  相似文献   

7.
Functional indicators of stream health have the potential to provide insights into stream condition that cannot be gained by traditional structural indices. We examined breakdown of leaves, wood, and cotton cloth strips at 18 sites along a gradient of effects of drainage from coal mines in New Zealand to determine the usefulness of these methods as functional indicators of stream health. The pH varied from 2.7 to neutral across the streams, and the more acidic streams typically had higher concentrations of aluminum, iron, zinc, and other metal ions. Precipitates of metal (mainly iron) hydroxides were present in most streams affected by mine drainage, especially in those with a pH of 4–5. Breakdown rates of all organic matter types were highest in several reference streams with neutral pH and lowest in sites with high rates of metal hydroxide deposition. Breakdown was relatively fast in the most acidic streams (pH < 3), in some cases as fast as at reference sites; these sites also had elevated nutrient concentrations. Shredding invertebrates were absent in litterbags from acidic streams and common at only 2 reference sites; their presence contributed to fast breakdown of leaves in the field and in lab microcosms. Microbial respiration was closely related to breakdown rates of leaves and wood; it was high at neutral and highly acidic streams, but lower at sites with pH 4–5, where metal hydroxides were precipitating onto solid surfaces. In these metal hydroxide-stressed streams, leaf and wood breakdown was slower, and associated biota, including microbes, were more affected than by water chemistry stressors (pH, dissolved metals) associated with mine drainage. Litter breakdown and microbial respiration provide insight into the functioning of streams, yielding different responses than traditional structural measures based on macroinvertebrates, which did not accurately distinguish impacts from acid mine drainage.  相似文献   

8.
One of the major objectives of the VALIMAR project is to determine the ecological significance of various fish biomarker studies as indicators of chronic pollution in small streams in southwest Germany. Results of these fish biomarker investigations were compared to information from complementary studies on the meiobenthos, macrobenthos, and fish community studies to assess the ecological significance of these biomarker investigations. The main objective of this study was to provide biological assessments of the biomarker sites on the basis of the macrozoobenthos communities. Since no validated framework for the assessment of the biological integrity existed in Germany, two multimetric approaches were adapted to the whole stream system by investigating benthos and fish communities of 46 sites of varying degrees of human disturbance. Assessment of the communities was conducted in accordance with the European Community Water Framework Directive. Species distribution of benthos depended upon stream type and pollution status of streams. Biological attributes and bioindices of benthos communities, however, did not correlate with typological parameters like stream size or dominant substrate but correlated better with pollution parameters like conductivity or chloride concentration. Using a set of 18 measures, such as portion of sessile individuals, Rheoindex, oxygen availability index, and portion of pool dwellers, the benthos communities were characterized and evaluated. The composition of the fish communities was mainly determined by stream type, pollution and migration barriers. The influence of chemical parameters could be assessed by developing a“fish chemistry index”, which calculatesthe similarity of the present fish community with the potential natural community, but excludes those species strongly effected by deficits in stream channel morphology. Both fish chemistry index and benthic indices strongly correlated with pollution index parameters, clearly distinguishing between the more polluted Körsch sites and the less pollutedKrähenbach and Aich sites. Most of the single bioindices as well as overall assessment by multimetric indices indicated a gradient of decreasing quality from the reference stream Krähenbach to theslightly polluted Aich and Körsch upstream site (KE, upstream of all sewage treatment plants) and finally to the most polluted Körsch site directlybelow the most upstream sewage treatment plant (KD). According to the Water Framework Directive, the classification of ecological status of the benthos communities ranges from “high” (best of 5 classes) forthe reference stream to “bad” (5th class) for KD. Assessment of the fish community tends to score somewhat worse than the benthos due to deficits in morphological quality of the stream reaches. The benthos assessment and the newlydeveloped “fish chemistry index” correlated well with chemical water quality and hence with biomarkers, whereas ecological status of fish and overall ecological status was also influenced by river morphology. In conclusion all tested assessment methods on biocoenotic level are reliable indicators for the degree of human disturbance on small streams, whereas biomarkers are more suited for risk assessment and the investigation ofcause-effect-relationships.  相似文献   

9.
1. Anthropogenic activities in prairie streams are increasing nutrient inputs and altering stream communities. Understanding the role of large consumers such as fish in regulating periphyton structure and nutritional content is necessary to predict how changing diversity will interact with nutrient enrichment to regulate stream nutrient processing and retention. 2. We characterised the importance of grazing fish on stream nutrient storage and cycling following a simulated flood under different nutrient regimes by crossing six nutrient concentrations with six densities of a grazing minnow (southern redbelly dace, Phoxinus erythrogaster) in large outdoor mesocosms. We measured the biomass and stoichiometry of overstory and understory periphyton layers, the stoichiometry of fish tissue and excretion, and compared fish diet composition with available algal assemblages in pools and riffles to evaluate whether fish were selectively foraging within or among habitats. 3. Model selection indicated nutrient loading and fish density were important to algal composition and periphyton carbon (C): nitrogen (N). Nutrient loading increased algal biomass, favoured diatom growth over green algae and decreased periphyton C : N. Increasing grazer density did not affect biomass and reduced the C : N of overstory, but not understory periphyton. Algal composition of dace diet was correlated with available algae, but there were proportionately more diatoms present in dace guts. We found no correlation between fish egestion/excretion nutrient ratios and nutrient loading or fish density despite varying N content of periphyton. 4. Large grazers and nutrient availability can have a spatially distinct influence at a microhabitat scale on the nutrient status of primary producers in streams.  相似文献   

10.
A major consequence of climate change will be the alteration of precipitation patterns and concomitant changes in the flood frequencies in streams. Species losses or introductions will accompany these changes, which necessitates understanding the interactions between altered disturbance regimes and consumer functional identity to predict dynamics of streams. We used experimental mesocosms and field enclosures to test the interactive effects of flood frequency and two fishes from distinct consumer groups (benthic grazers and water-column minnows) on recovery of stream ecosystem properties (algal form and biomass, invertebrate densities, metabolism and nutrient uptake rates). Our results generally suggest that periphyton communities under nutrient limitation are likely to recover more quickly when grazing and water-column minnows are present and these effects can diminish or reverse with time since the disturbance. We hypothesized that increased periphyton production and biomass was the result of increased nutrient turnover, but decreased light limitation and indirect effects on other trophic levels are alternative explanations. Recovery of stream ecosystem properties after a natural flood differed from mesocosms (e.g. lower algal biomass and no long algal filaments present) and species manipulations did not explain recovery of ecosystem properties; rather, ecosystem processes varied along a downstream gradient of increasing temperature and nutrient concentrations. Different results between field enclosures and experimental mesocosms are attributable to a number of factors including differences in algal and invertebrate communities in the natural stream and relatively short enclosure lengths (mean area=35.8 m2) compared with recirculating water in the experimental mesocosms. These differences may provide insight into conditions necessary to elicit a strong interaction between consumers and ecosystem properties.  相似文献   

11.
1. We tested the hypothesis that indirect food web interactions between some common, invertivorous fishes and their prey would positively affect growth of an algivorous fish species. Specifically, we predicted that orangethroat darter (Etheostoma spectabile) would increase periphyton biomass via a top‐down pathway, indirectly enhancing growth of the algivorous central stoneroller minnow (Campostoma anomalum). Moreover, we predicted that sand shiner (Notropis stramineus) would increase periphyton biomass via a bottom‐up pathway and indirectly enhance growth of the stoneroller minnow. 2. In an 83‐day experiment in large, outdoor, stream mesocosms, we stocked two fish species per mesocosm (stoneroller and either darter or shiner), estimated the effects of the invertivorous and grazing fishes on periphyton biomass and estimated growth of the algivorous fish. 3. The darter consumed grazing invertebrates, indirectly increasing periphyton biomass. The shiner consumed terrestrial insects as predicted, but it did not affect periphyton biomass. 4. In support of our hypothesis, the darter indirectly enhanced stoneroller growth. As predicted, stonerollers consumed the increased periphyton in streams with darters, resulting in greater growth, condition and gut fullness compared to streams without darters. No indirect interaction was observed between stonerollers and shiners. 5. Our study suggests that some invertivorous fish species can positively affect growth of algivorous fishes through indirect food web interactions. Thus, in stream communities, it is possible that the loss of a single, invertivorous fish taxon could have negative consequences on algivorous fish populations via the removal of positive indirect food web interactions.  相似文献   

12.
13.
Organism growth and reproduction are often limited by nutrient availability in freshwater ecosystems where, in some cases, food webs are primarily supported by allochthonous organic matter. Therefore, we hypothesized that the composition of riparian vegetation would influence the variability of N, P, and fatty acid content of in-stream consumers. Specifically, we predicted that organisms living in alder streams would have higher levels of N, P, and polyunsaturated fatty acids than organisms in coniferous streams. To determine this, we sampled fresh and aged leaf litter, periphyton, invertebrates, and cutthroat trout (Oncorhynchus clarki) from 6 streams in western Washington state: 3 streams had high densities of nitrogen-fixing red alder (Alnus rubra) in the riparian zone, whereas 3 had high densities of conifers. We found fresh alder litter had twice the total polyunsaturated fatty acid concentrations of hemlock vegetation while there were few statistical differences among aged alder and aged hemlock vegetation. Multidimensional plots showed fatty acid profiles were unique to vegetation and fish while periphyton and invertebrates shared the same multidimensional space. We used a mixed model to determine the relative importance of vegetation type (fixed factor: conifer or alder), trophic levels (fixed factor: periphyton, primary consumer, or fish), and streams (random factor) on individual fatty acid concentrations. Total polyunsaturated fatty acids, 16:0, 20:1, 20:3n6 and total n3 were the only fatty acids influenced by stream vegetation (vegetation + stream model or full model). 67% of the fatty acids were best supported by the trophic + stream model. Nitrogen, P, Ca, Fe, C:N, N:P, and C:N:P were all best supported by the trophic level + stream model, and Zn was the only nutrient supported best by the full model. Correlations of n3 and n6 fatty acid concentrations between periphyton and primary consumers, and primary consumers with trout indicated several fatty acid metrics, such as n3:n6, showed food resources may affect relative fatty acid abundances of consumers. Although vegetation type did not influence relative fatty acids of stream organisms, the importance of trophic level likely indicates organisms have different physical requirements for fatty acids. The significance of a random factor, ‘stream,’ suggests that the relative abundances of fatty acids in periphyton, invertebrates, and trout are stream-specific and are responding to local environmental or communal variables.  相似文献   

14.
1. We investigated the effects of dissolved organic matter (DOM) and ultraviolet‐B (UVB) radiation on periphyton during a 30‐day experiment in grazer‐free, outdoor artificial streams. We established high [10–12 mg carbon (C) L−1] and low (3–5 mg C L−1) concentrations of DOM in artificial streams exposed to or shielded from ambient UVB radiation. Periphyton was sampled weekly for ash‐free dry mass (AFDM), chlorophyll (chl) a , algal biovolume, elemental composition [C, nitrogen (N) and phosphorus (P)], and algal taxonomic composition. 2. Regardless of the UVB environment, increased DOM concentration caused greater periphyton AFDM, chl a and total C content during the experiment. Increased DOM also significantly increased periphyton C : P and N : P (but not C : N) ratios throughout the experiment. Algal taxonomic composition was strongly affected by elevated stream DOM concentrations; some algal taxa increased and some decreased in biomass and prevalence in artificial streams receiving DOM additions. UVB removal, on the other hand, did not strongly affect periphyton biomass, elemental composition or algal taxonomic composition for most of the experiment. 3. Our results show strong effects of DOM concentration but few, if any, effects of UVB radiation on periphyton biomass, elemental composition and algal taxonomic composition. The effects of DOM may have resulted from its absorption of UVA radiation, or more likely, its provision of organic C and nutrients to microbial communities. The strong effects of DOM on periphyton biomass and elemental composition indicate that they potentially play a key role in food web dynamics and ecosystem processes in forested streams.  相似文献   

15.
Nitrogen (N) retention in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial suppresses the capacity of streams to retain nitrate (NO3 ?) by eliminating primary production, reducing respiration rates and organic matter availability, and increasing specific discharge. We tested these predictions by measuring whole-stream NO3 ? removal rates using 15NO3 ? isotope tracer releases in paired buried and open reaches in three streams in Cincinnati, Ohio (USA) during four seasons. Nitrate uptake lengths were 29 times greater in buried than open reaches, indicating that buried reaches were less effective at retaining NO3 ? than open reaches. Burial suppressed NO3 ? retention through a combination of hydrological and biological processes. The channel shape of two of the buried reaches increased specific discharge which enhanced NO3 ? transport from the channel, highlighting the relationship between urban infrastructure and ecosystem function. Uptake lengths in the buried reaches were further lengthened by low stream biological NO3 ? demand, as indicated by NO3 ? uptake velocities 17-fold lower than that of the open reaches. We also observed differences in the periphyton enzyme activity between reaches, indicating that the effects of burial cascade from the microbial to the ecosystem scale. Our results suggest that stream restoration practices involving “daylighting” buried streams have the potential to increase N retention. Further work is needed to elucidate the impacts of stream burial on ecosystem functions at the larger stream network scale.  相似文献   

16.
In the past decades, afforestation of grassland landscapes has gained importance both as an economic activity and a mechanism to mitigate anthropogenic carbon emissions. This study evaluates the effect of pine afforestation on grassland streams analyzing changes in two integrative ecological indicators: leaf litter breakdown and primary production. We compare those results with changes in structural attributes of benthic biota (primary producers and invertebrates). Six contiguous first-order streams were selected in the upper basin of the Ctalamochita river (Córdoba, Argentina): three reference streams draining grasslands and three streams draining Pinus elliottii afforestations. Two in situ experiments were performed to compare leaf litter breakdown and primary production between grassland and afforested streams. Additionally, invertebrate assemblages in leaf litter and riffles, and periphyton standing stock were sampled and assessed. Nine out of 26 structural indicators showed differences between stream types but indicators measuring changes at the basal level of the food web (i.e. detritus and primary producers) were less sensitive than those recording changes in consumers. Our attempt to measure direction and magnitude of changes on stream functioning following afforestation was halted by our simple implemented methodology (i.e. leaf pack method for leaf litter decay and biofilm accrual on natural stone substrates for primary production assessments); only 1 out of 4 indicators differed. We argue that the lack of strong differences in elemental measurements of primary production and needle decay between afforested and grassland streams resulted from compensating opposing forces controlling such processes, i.e. higher grazing vs. higher sunlight in grassland streams and higher shredding vs. lower microbial decomposition mediated by lower temperature in afforested streams. Attributes related to the invertebrate compartment showed the highest sensitivity to afforestation, emphasizing their value as biological indicators of stream ecological integrity.  相似文献   

17.
18.
1. We measured responses in macroinvertebrate secondary production after large wood additions to three forested headwater streams in the Upper Peninsula of Michigan. These streams had fine‐grained sediments and low retention capacity due to low amounts of in‐channel wood from a legacy of past logging. We predicted that wood addition would increase macroinvertebrate secondary production by increasing exposed coarse substrate and retention of organic matter. 2. Large wood (25 logs) was added haphazardly to a 100‐m reach in each stream, and a 100‐m upstream reach served as control; each reach was sampled monthly, 1 year before and 2 years after wood addition (i.e. BACI design). Macroinvertebrate secondary production was measured 1 year after wood addition in two habitat types: inorganic sediments of the main channel and debris accumulations of leaf litter and small wood. 3. Overall macroinvertebrate production did not change significantly because each stream responded differently to wood addition. Production increased by 22% in the main‐channel of one stream, and showed insignificant changes in the other two streams compared to values before wood addition. Changes in main‐channel macroinvertebrate production were related to small changes in substrate composition, which probably affected habitat and periphyton abundance. Macroinvertebrate production was much greater in debris accumulations than in the main‐channel, indicating the potential for increased retention of leaf litter to increase overall macroinvertebrate production, especially in autumn. 4. Surrounding land use, substrate composition, temperature and method of log placement are variables that interact to influence the response of stream biota to wood additions. In most studies, wood additions occur in altered catchments, are rarely monitored, and secondary production is not a common metric. Our results suggest that the time required for measurable changes in geomorphology, organic matter retention, or invertebrate production is likely to take years to achieve, so monitoring should span more than 5 years, and ecosystem metrics, such as macroinvertebrate secondary production, should be incorporated into restoration monitoring programs.  相似文献   

19.
20.
汉江是南水北调中线工程和引汉济渭等跨流域调水工程重要的水源区, 了解其鱼类多样性的现状及变化对于水生态保护尤为重要。作者于2016-2017年间对汉江洋县段干流与6条主要支流的鱼类多样性组成进行了两次调查, 以Margalef丰富度指数、Shannon-Wiener多样性指数、Pielou均匀度指数和Jaccard相似性系数对洋县境内7条河流进行评估, 同时通过相对重要性指数(index of relative importance,IRI)判定优势种, 利用鱼类丰度生物量(abundance biomass comparison, ABC)曲线分析鱼类受干扰情况。结合历史记录, 调查区域内共分布有土著鱼类76种, 隶属于6目14科57属, 以鲤形目鲤科和鲇形目鲿科鱼类为主, 分别占土著鱼类总数的57.89%和11.84%; 珍稀濒危鱼类共计5种, 包括3种国家级保护水生野生动物。鱼类多样性分析结果显示汉江干流的丰富度指数和多样性指数显著高于6条支流。7条河流的IRI指数显示优势种为宽鳍鱲(Zacco platypus)。ABC曲线显示目前调查区域内鱼类小型化现象明显、鱼类受到较严重干扰。水利水电工程建设对于调查区域鱼类多样性影响最大, 干流大型水库(大坝)通过改变原有流水生境、阻断河流纵向连通性、淹没重要鱼类产卵场等对鱼类多样性和群落组成产生不利影响; 支流引水式的中小型电站造成下游河段减、脱水而使河道发生断流以及生境破碎化, 从而威胁土著鱼类的生存。在跨流域调水过程中, 应重视不同水系鱼类引入的潜在生态风险。对引汉济渭工程的水源区鱼类多样性现状的调查, 有助于未来跨流域调水过程中鱼类变化的动态监测和外来物种的预警。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号