首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The running behavior and biochemical markers of oxidative and glycolytic activities associated with voluntary running activity were studied in male Sprague-Dawley rats after 6 wk of training in exercise wheel cages. Twenty-four-hour recordings of running activity were used to quantify the number of individual running bouts, their duration and running speed, and the distance run per day. We then established three categories of voluntary running activity based on the mean distance run per day during the last 3 wk of training: low-activity runners averaged 2-5 km/day, medium runners 6-9 km/day, and high runners greater than 11 km/day. Each group demonstrated an intermittent, nocturnal running pattern, at relatively high intensities, with a similar mean running speed for all groups (avg approximately 45 m/min). Differences in total distance run per day were the result of variations in both the number and duration of individual running bouts. Specifically, high runners (n = 7) had 206 +/- 30 individual running bouts per 24 h, each lasting 87 +/- 7 s; medium runners (n = 7) 221 +/- 22 running bouts, lasting 47 +/- 5 s; and low runners (n = 7) 113 +/- 7 bouts, each lasting 40 +/- 7 s. Voluntary running depressed the rate of body weight gain compared with sedentary control rats, despite an increased food and water intake for all runners. Furthermore, drinking activity was temporally associated with running periods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Evidence suggests that mitochondrial dysfunction and oxidant production, in association with an accumulation of oxidative damage, contribute to the aging process. Regular physical activity can delay the onset of morbidity, increase mean lifespan, and reduce the risk of developing several pathological states. No studies have examined age-related changes in oxidant production and oxidative stress in both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria in combination with lifelong exercise. Therefore, we investigated whether long-term voluntary wheel running in Fischer 344 rats altered hydrogen peroxide (H2O2) production, antioxidant defenses, and oxidative damage in cardiac SSM and IFM. At 10-11 wk of age, rats were randomly assigned to one of two groups: sedentary and 8% food restriction (sedentary; n = 20) or wheel running and 8% food restriction (runners; n = 20); rats were killed at 24 mo of age. After the age of 6 mo, running activity was maintained at an average of 1,145 +/- 248 m/day. Daily energy expenditure determined by doubly labeled water technique showed that runners expended on average approximately 70% more energy per day than the sedentary rats. Long-term voluntary wheel running significantly reduced H2O2 production from both SSM (-10.0%) and IFM (-9.6%) and increased daily energy expenditure (kJ/day) significantly in runners compared with sedentary controls. Additionally, MnSOD activity was significantly lowered in SSM and IFM from wheel runners, which may reflect a reduction in mitochondrial superoxide production. Activities of the other major antioxidant enzymes (glutathione peroxidase and catalase) and glutathione levels were not altered by wheel running. Despite the reduction in mitochondrial oxidant production, no significant differences in oxidative stress levels (4-hydroxy-2-nonenal-modified proteins, protein carbonyls, and malondialdehyde) were detected between the two groups. The health benefits of chronic exercise may be, at least partially, due to a reduction in mitochondrial oxidant production; however, we could not detect a significant reduction in several selected parameters of oxidative stress.  相似文献   

3.
4.
The present investigation examined the extent to which 15 wk of endurance training could influence immune function in young, middle-aged, and older animals. Forty-eight male Fischer 344 rats were divided into trained and untrained groups. Training consisted of treadmill running at 75% maximal running capacity for 1 h/day, 5 days/wk, for 15 wk. Animals were killed at 8, 17, and 27 mo, at which time splenocytes were isolated. The capacity for lymphocyte proliferation in response to mitogen (concanavalin A, ConA), interleukin-2 (IL-2) production, and cytolytic activity against YAC-1 target cells was determined. ConA-induced proliferation declined significantly with age. Training suppressed the proliferative response in the young (-41%) and middle-aged animals (-27%) compared with the age-matched controls; however, training improved this response (+58%) in the older group. IL-2 production followed a pattern similar to that for mitogen-induced proliferation, such that production declined with age and was reduced with training in young and middle-aged animals but was significantly more improved in the older animals than in age-matched controls. The ability to lyse target cells, measured as percent cytotoxicity, declined steadily with advancing age at all effector-to-target cell ratios tested: 52, 14, and -16% for 8-, 17-, and 27-mo-old rats, respectively. It was concluded that the capacity for ConA-induced splenocyte proliferation, IL-2 production, and cytolytic activity declines significantly with advancing age. Furthermore, 15 wk of endurance training suppressed proliferation and IL-2 production in young animals but improved these responses in older animals. Training had no effect on cytolytic activity.  相似文献   

5.
Conducted vasodilation may coordinate blood flow in microvascular networks during skeletal muscle contraction. We tested the hypotheses that 1) exercise training enhances conducted vasodilation and 2) age-related changes in the capacity for conduction affect muscle perfusion during contractions. To address hypothesis 1, young (4-5 mo), adult (12-14 mo), and old (19-21 mo) C57BL6 male mice were sedentary or given access to running wheels for 8 wk. Voluntary running distances were significantly different (in km/day): young = 5.8 +/- 0.1, adult = 3.9 +/- 0.1, old = 2.2 +/- 0.1 (P < 0.05). In gluteus maximus muscles, conducted vasodilation was greater in adult than in young or old mice (P < 0.05) and greater in young sedentary than in old sedentary mice but was not affected by exercise training. Citrate synthase activity was greater with exercise training at all ages (P < 0.05). mRNA for endothelial nitric oxide synthase did not differ among ages, but endothelial nitric oxide synthase protein expression was greater in adult and old mice with exercise training (P < 0.05). Connexin 37, connexin 40, and connexin 43 mRNA were not affected by exercise training and did not differ by age. To address hypothesis 2, perfusion of the gluteus maximus muscle during light to severe workloads was assessed by Doppler microprobe at 3-26 mo of age. Maximum perfusion decreased linearly across the lifespan. Perfusion at the highest workload, absolute and relative to maximum, decreased across the lifespan, with a steeper decline beyond approximately 20 mo of age. In this model, 1) exercise training does not alter conducted vasodilation and 2) muscle perfusion is maintained up to near maximum workloads despite age-related changes in conducted vasodilation.  相似文献   

6.
Induction of voluntary prolonged running by rats   总被引:1,自引:0,他引:1  
The rat is widely used in studies of the metabolic and physiological effects of physical exercise. The most commonly used form of exercise is running on treadmills or mechanically driven running wheels. Rats will not voluntarily run significant distances, under normal circumstances. If rats are exposed to running wheels with food freely available, only very limited activity normally occurs. When rats with access to a running wheel are restricted to a fixed amount of food, presented once per day, consistent running occurs. The running is spontaneous and very sensitive to the amount of food provided. Six 6-wk-old rats of 197 g mean body wt were induced to run for 139 days. The distance run increased rapidly over a 20-day initial period on a food supply of 15 g/day (vs. 19.5 g/day consumption by sedentary controls). From day 20 to day 139 the mean distance run was described by the regression equation distance (m/day) = 10,410 - 37.9 X days. Food provided was varied according to distance run, ranging from 15 to 18 g/day, and was normally 17.5 g/day. Thus a food deprivation of 10% of normal consumption will result in mean distances run of approximately 8,000 m/day. The use of pair-fed control animals without access to a wheel allows the conduct of experiments to test the effects of chronic long-distance running. The running is spontaneous; thus the technique avoids the complications accompanying techniques that force running.  相似文献   

7.
Despite the importance of randomized, dose-response studies for proper evaluation of effective clinical interventions, there have been no dose-response studies on the effects of exercise amount on abdominal obesity, a major risk factor for metabolic syndrome, diabetes, and cardiovascular disease. One hundred seventy-five sedentary, overweight men and women with mild to moderate dyslipidemia were randomly assigned to participate for 6 mo in a control group or for approximately 8 mo in one of three exercise groups: 1) low amount, moderate intensity, equivalent to walking 12 miles/wk (19.2 km) at 40-55% of peak oxygen consumption; 2) low amount, vigorous intensity, equivalent to jogging 12 miles/wk at 65-80% of peak oxygen consumption; or 3) high amount, vigorous intensity, equivalent to jogging 20 miles/wk (32.0 km). Computed tomography scans were analyzed for abdominal fat. Controls gained visceral fat (8.6 +/- 17.2%; P = 0.001). The equivalent of 11 miles of exercise per week, at either intensity, prevented significant accumulation of visceral fat. The highest amount of exercise resulted in decreased visceral (-6.9 +/- 20.8%; P = 0.038) and subcutaneous (-7.0 +/- 10.8%; P < 0.001) abdominal fat. Significant gains in visceral fat over only 6 mo emphasize the high cost of continued inactivity. A modest exercise program, consistent with recommendations from the Centers for Disease Control/American College of Sports Medicine (CDC/ACSM), prevented significant increases in visceral fat. Importantly, a modest increase over the CDC/ACSM exercise recommendations resulted in significant decreases in visceral, subcutaneous, and total abdominal fat without changes in caloric intake.  相似文献   

8.
The possibility that a forced exercise regimen might prevent the development of hypertension induced in rats both by renal encapsulation and chronic administration of deoxycorticosterone acetate (DOCA) and NaCl has been studied. In renal hypertensive rats, forced exercise at 0.4 to 1.25 miles/day, 7 days/wk for 16-22 wk failed to prevent the development of hypertension and cardiomegaly and reduced renal concentrating ability accompanying the hypertension. In DOCA-treated rats (10 mg/wk), forced exercise at 0.4 and 0.8 mile/day, 7 days/wk for 16 wk also failed to prevent both the development of hypertension and cardiomegaly. A review of data of others reveals that exercise may delay the development of hypertension in both Dahl salt-sensitive and spontaneously hypertensive (SHR) rats and may modestly reduce the maximal level of pressure attained. Of the four models of hypertension studied to date in rats, the Dahl salt-sensitive strain appears to be the one that responded best to exercise, although blood pressure eventually reached that of sedentary controls.  相似文献   

9.
Prevention of myocardial disease in JCR:LA-corpulent rats by running   总被引:2,自引:0,他引:2  
The JCR:LA-corpulent rat is a congenic strain that, if homozygous for the cp gene, is obese with a very low-density lipoprotein hyperlipidemia and is insulin resistant. The male corpulent rats develop atherosclerotic lesions of the major arteries and myocardial lesions. Corpulent and lean male rats were induced through mild food restriction to run intensively (approximately 6,000 m/day) from 6 wk to 6 mo of age. Food restriction, especially when coupled with running, lowered all classes of lipids in the whole serum of corpulent rats. The principal changes in lipid concentrations were in the very low-density lipoprotein fraction. Food restriction caused a significant drop in fasting insulin levels of corpulent rats and decreased beta-cell hyperplasia. Both effects were more marked in the running animals. There was a significant decrease in myocardial lesion frequency in the food-restricted corpulent rats and an absence of lesions in the running rats. The results indicate that intensive physical activity can largely correct the lipid abnormalities and insulin resistance of this atherosclerosis-prone strain, and these changes are associated with inhibition of the disease process. However, moderate food restriction has similar effects, and the greater effects seen with intensive running may simply reflect an effectively more severe metabolic restriction in the presence of the exercise.  相似文献   

10.
Persistence of the Hering-Breuer reflex beyond the neonatal period   总被引:1,自引:0,他引:1  
There is conflicting evidence regarding the persistence of the Hering-Breuer reflex (HBR) beyond the 1st wk of life. This study was designed to assess the influence of postnatal age on the HBR. The airway occlusion technique was used to assess changes in respiratory timing during stimulation of the HBR in healthy full-term unsedated infants measured shortly after birth and at 6-8 wk of life. The strength of the HBR was assessed from the relative change in expiratory time (TE) after end-inspiratory occlusion compared with resting TE during spontaneous breathing. Paired studies were performed in 31 infants at approximately 2 days and 6 wk of age. There was a significant increase in TE during each occlusion in every infant irrespective of age at measurement. No maturational changes were observed. The increase in TE after end-inspiratory occlusion was 91.9 +/- 31.6% (SD) (range 38-158%) at approximately 2 days and 89.8 +/- 30.7% (range 44-175%) at approximately 6 wk. We conclude that the activity of the HBR during tidal breathing persists beyond the neonatal period and that there is no statistically significant change in its strength during the first 2 mo life in healthy infants during natural sleep.  相似文献   

11.
Ten rats were trained to perform approximately 30 jumps/day, 5 days/wk for at least 8 wk, from a force platform that enabled the number and height of jumps to be quantified. There was considerable variation in height jumped during an activity session both within and between rats. The two highest-jumping rats attained a displacement of center of mass of approximately 30 cm, estimated to be approximately 67% of the maximum attainable. The two lowest-jumping rats jumped to approximately 30% of the estimated maximum. The activity was described as "habitual activity" rather than "training" because there were no significant increases in the height of jumping by any rat over the period of activity. The isometric properties of medial gastrocnemius (MG) and soleus muscles were studied in terminal experiments on anesthetised rats. Five significant effects on MG were evoked by this pattern of exercise ("habituation"): 1) a 15-18% increase in force at frequencies of stimulation between 60 and 150 Hz and a 15% increase in maximum tetanic tension to 14.9 N, 2) a 3% increase in the maximum rate of rise of tetanic force to 3.4% of maximum tetanic tension per millisecond, 3) an increase in fatigability expressed as a smaller fatigue index in active rats (33%) than in controls (58%), 4) a decrease of 4% in the percentage of type IIa muscle fibers, and 5) an increase of 6% in the percentage of type II fibers that could not be classified with certainty as IIa or IIb.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Increases in aerobic capacity in both young and senescent rats consequent to endurance exercise training are now known to occur not only in locomotor skeletal muscle but also in diaphragm. In the current study the effects of aging and exercise training on the myosin heavy chain (MHC) composition were determined in both the costal and crural diaphragm regions of female Fischer 344 rats. Exercise training [treadmill running at 75% maximal oxygen consumption (1 h/day, 5 day/wk, x 10 wk)] resulted in similar increases in plantaris muscle citrate synthase activity in both young (5 mo) and old (23 mo) trained animals (P < 0.05). Computerized densitometric image analysis of fast and slow MHC bands revealed the ratio of fast to slow MHC to be significantly higher (P < 0.005) in the crural compared with costal diaphragm region in both age groups. In addition, a significant age-related increase (P < 0.05) in percentage of slow MHC was observed in both diaphragm regions. However, exercise training failed to change the relative proportion of slow MHC in either the costal or crural region.  相似文献   

13.
Aging of the female reproductive system may be regulated by changes at the hypothalamic, pituitary, and ovarian levels. Long-term ovariectomy (LT-OVX) and/or multiple pregnancies delay age-related deterioration of several parameters of reproductive potential in rodents. We tested whether long-term suppression of cyclic ovarian hormone release that is normally associated with the 4- to 5-day estrous cycle decelerates age-related decreases in the frequency of luteinizing hormone (LH) pulses to assess whether hormonal milieu influences the rate of aging of the pulse generator. We determined the percentage of rats exhibiting pulsatile LH secretion, mean LH levels, and amplitude and frequency of LH pulses in seven groups of ovariectomized (OVX) rats. Young (3-4 mo), middle-aged (8-10 mo), and old (18-22 mo) virgin rats, ovariectomized 4 wk (4WK-OVX) prior to experimentation, were used to determine the effect of age. The effect of long-term ovarian hormone deprivation was tested by ovariectomizing rats at 2-3 mo of age and using them when they were middle-aged (8-10 months) or old (18-22 mo). The effect of deprivation of cyclic increases in ovarian hormones associated with repeated estrous cycles was tested by using retired breeder (RB) rats that had been ovariectomized 4 wk prior to experimentation. Each rat was implanted with a right atrial cannula and bled the next day at 10-min intervals for 3 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
High-impact exercise is considered to be very beneficial for bones. We investigated the ability of jump exercise to restore bone mass and structure after the deterioration induced by tail suspension in growing rats and made comparisons with treadmill running exercise. Five-week-old male Wistar rats (n = 28) were randomly assigned to four body weight-matched groups: a spontaneous recovery group after tail suspension (n = 7), a jump exercise group after tail suspension (n = 7), a treadmill running group after tail suspension (n = 7), and age-matched controls without tail suspension or exercise (n = 7). Treadmill running was performed at 25 m/min, 1 h/day, 5 days/wk. The jump exercise protocol consisted of 10 jumps/day, 5 days/wk, with a jump height of 40 cm. Bone mineral density (BMD) of the total right femur was measured by dual-energy X-ray absorptiometry. Three-dimensional trabecular bone architecture at the distal femoral metaphysis was evaluated using microcomputed tomography. After 5 wk of free remobilization, right femoral BMD, right hindlimb muscle weight, and body weight returned to age-matched control levels, but trabeculae remained thinner and less connected. Although both jump and running exercises during the remobilization period increased trabecular bone mass, jump exercise increased trabecular thickness, whereas running exercise increased trabecular number. These results indicate that restoration of trabecular bone architecture induced by jump exercise during remobilization is predominantly attributable to increased trabecular thickness, whereas running adds trabecular bone mass through increasing trabecular number, and suggest that jumping and running exercises have different mechanisms of action on structural characteristics of trabecular bone.  相似文献   

15.
This study investigated the effect of physical training on muscle blood flow (BF) in rats with peripheral arterial insufficiency during treadmill running. Bilateral stenosis of the femoral artery of adult rats (300-350 g) was performed to reduce exercise hyperemia in the hindlimb but not limit resting muscle BF. Rats were divided into normal sedentary, acute stenosed (stenosed 3 days before the experiment), stenosed sedentary (limited to cage activity), and stenosed trained (run on a treadmill by a progressively intense program, up to 50-60 min/day, 5 days/wk for 6-8 wk). Hindlimb BF was determined with 85Sr- and 141Ce-labeled microspheres at a low (20 m/min) and high treadmill speed (30-40 m/min depending on ability). Maximal hindlimb BF was reduced to approximately 50% normal in the acute stenosed group. Total hindlimb BF (81 +/- 5 ml.min-1.100 g-1) did not change in stenosed sedentary animals with 6-8 wk of cage activity, but a redistribution of BF occurred within the hindlimb. Two factors contributed to a higher BF to the distal limb muscle of the trained animals. A redistribution BF within the hindlimb occurred in stenosed trained animals; distal limb BF increased to approximately 80% (P less than 0.001) of the proximal tissue. In addition, an increase in total hindlimb BF with training indicates that collateral BF has been enhanced (P less than 0.025). The associated increase in oxygen delivery to the relatively ischemic muscle probably contributed to the markedly improved exercise tolerance evident in the trained animals.  相似文献   

16.
The purpose of the present study was to investigate whether genetic differences in muscle histochemical characteristics were related to the voluntary wheel-running activity level by using genetically fast-twitch fiber-dominant rats (FFDR) and control rats (CR). The rats were divided into four groups; sedentary CR (Sed-CR), wheel-running CR (WR-CR), sedentary FFDR (Sed-FFDR), and wheel-running FFDR (WR-FFDR). Wheel access was started at age 9 wk and lasted for 7 days. The FFDR showed a lower percentage of type I fibers of the deep portion of gastrocnemius and soleus muscles and a higher percentage of both type IIX fibers of the gastrocnemius muscle and type IIA fibers of the soleus muscle compared with CR. A higher capillary density and smaller fiber cross-sectional area were also observed in FFDR. The daily running distance in WR-FFDR was higher than in WR-CR for each 7 days. The total running distance for 7 days in WR-FFDR was 3.2-fold higher than in WR-CR. On day 7 of the 7-day test, the total number of active 1-min intervals for 24 h, the average rpm when they were active, and the maximum rpm for any single 1-min period in the WR-FFDR were significantly higher than in the WR-CR (1.5-, 2.9-, and 2.0-fold, respectively). These results suggest that mechanical or physiological muscle characteristics may thus affect the wheel-running activity level.  相似文献   

17.
Effects of strenuous exercise on immature bone were examined in two clinically important regions, femoral neck (FN) and lumbar vertebra (L6). Female Sprague-Dawley rats (n = 20, 8 wk of age, 150-170 g) were exercised progressively 5 days/wk for approximately 1 h/day for 10 wk at 75-80% of maximum oxygen capacity on a motor-driven treadmill. Caged age-matched rats served as controls (n = 20). Rat FNs were tested in cantilever bending, and vertebral bodies were compressed to 50% of their initial height at a fast strain rate. In response to the strenuous exercise, the relative area of the FN trabecular core increased significantly at the expense of the cortical shell. With that structural change, the exercised FN had significantly less energy to proportional limit than controls. The FN material properties (normal stresses at proportional limit and maximum) were significantly diminished after 10 wk of strenuous exercise. At the same time, no differences were found in vertebral geometry or structural and material properties. In the immature rate, the differential responses of the FN vs. L6 may relate to load history rather than a general systemic response to the strenuous exercise.  相似文献   

18.
The current study sought to examine the effects of chronic endurance treadmill running on oxidative capacity and capillary density in specific diaphragm muscle fiber types in young (5 mo) and senescent (greater than or equal to 23 mo) female Fischer 344 rats. Both young and senescent animals trained at approximately 75% of maximal O2 consumption for 1 h/day 5 days/wk for 10 wk. Plantaris citrate synthase activity was significantly increased (P less than 0.01) in both young and old trained groups. Densitometric analysis of succinate dehydrogenase (SDH) activity in diaphragm type I, IIa, and IIb muscle fibers was done using a computerized image-processing system. There were no age-related differences in SDH activity between the young and old groups for any of the fiber types. In addition, SDH activity was found to be significantly increased (P less than 0.05) in all three fiber types in both the young and senescent trained animals compared with their sedentary counterparts. Fiber size and capillary density did not differ between young and senescent rats, nor did exercise affect this measure. Each fiber, irrespective of type, had an average of approximately four capillaries in contact with it. However, type IIb fibers had a significantly lower capillary density per unit area than type I or IIa muscle fibers. The results indicate that the senescent costal diaphragm maintains its ability to adapt to an increased metabolic demand brought about by locomotor exercise. Of further interest is the finding that training adaptations occurred in all three fiber types, suggesting that increased work of breathing from moderate exercise leads to recruitment of all three fiber types.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Before the start and after 4, 8, and 12 wk of a treadmill training program male rats were randomly selected and tested for running performance, maximum O2 consumption (VO2 max), running economy (VO2 submax), and skeletal muscle oxidative capacity (QO2). Data were compared with values from untrained weight-matched control rats. Maximum running time to exhaustion increased significantly (P less than 0.01) by 4 wk and again at 12 wk (P less than 0.01). Submaximal running endurance increased by 120 (4 wk), 320 (8 wk), and 372% (12 wk) (P less than 0.01). VO2 max was increased only at 12 wk (86.0 +/- 2.7 vs. 75.5 +/- 1.9 ml O2.kg-1.min-1); VO2 submax was decreased at 4 and 8 wk but not at 12 wk. Soleus QO2 was unchanged after 4 wk of training and increased by 50% at 8 wk and by 77% at 12 wk. This study is the first to show a dissociation in both the time course and the magnitude of longitudinal changes in VO2 max, VO2 submax, QO2, and maximal and submaximal running performance. We conclude that factors other than those measured explain the improvement in running performance that resulted from endurance training in these rats.  相似文献   

20.
Observations were made before and 3-5 days after prolonged endurance jogging an average of 42 miles/day, 6 days/wk for 2.5 mo by a young male adult who voluntarily initiated a run across the United States. Both arterial PO2 and lactic acid increased. In each instance, the first limitation in circulatory delivery of oxygen was a plateau in stroke volume and cardiac output. Afterward, pulse deficit and systemic arterial pressure fell with exercise and heart rate accelerated. Although there was no change in oxygen transport (Q X CAO2), a reduction in stroke volume was exactly balanced by a rise in arterial oxygen content. Vital capacity, residual volume, and total lung capacity and diffusion capacity for carbon monoxide, hematocrit, and red cell mass increased, while plasma volume diminished and heart size and total blood volume were unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号