首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
During the Pleistocene, Australia and New Guinea supported a rich assemblage of large vertebrates. Why these animals disappeared has been debated for more than a century and remains controversial. Previous synthetic reviews of this problem have typically focused heavily on particular types of evidence, such as the dating of extinction and human arrival, and have frequently ignored uncertainties and biases that can lead to misinterpretation of this evidence. Here, we review diverse evidence bearing on this issue and conclude that, although many knowledge gaps remain, multiple independent lines of evidence point to direct human impact as the most likely cause of extinction.  相似文献   

2.
First human-caused extinction of a cetacean species?   总被引:3,自引:0,他引:3  
The Yangtze River dolphin or baiji (Lipotes vexillifer), an obligate freshwater odontocete known only from the middle-lower Yangtze River system and neighbouring Qiantang River in eastern China, has long been recognized as one of the world's rarest and most threatened mammal species. The status of the baiji has not been investigated since the late 1990s, when the surviving population was estimated to be as low as 13 individuals. An intensive six-week multi-vessel visual and acoustic survey carried out in November-December 2006, covering the entire historical range of the baiji in the main Yangtze channel, failed to find any evidence that the species survives. We are forced to conclude that the baiji is now likely to be extinct, probably due to unsustainable by-catch in local fisheries. This represents the first global extinction of a large vertebrate for over 50 years, only the fourth disappearance of an entire mammal family since AD 1500, and the first cetacean species to be driven to extinction by human activity. Immediate and extreme measures may be necessary to prevent the extinction of other endangered cetaceans, including the sympatric Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis).  相似文献   

3.
According to the fossil record, 99.9% of all species that have ever lived on Earth have disappeared. However, only about 4% died out during the five mass extinction events, whereas it seems that the majority of species vanished without any signs of significant earthbound or extraterrestrial physical threats. Clearly, biological extinction mechanisms are by far the most important, but they are subject to serious limitations concerning the worldwide disappearance of species. In view of that, species-inherent mechanisms, which could lead to the worldwide destabilization of a population, might be worth reconsideration. Telomeres, the protective caps of chromosome ends, and the enzyme telomerase have been well preserved in plants and animals during evolution. In the absence of telomerase activity, telomeric DNA has been shown to shorten every time a cell divides. The concept of a mitotic clock based on the gradual erosion of telomeres is now generally accepted and has been confirmed in numerous plants and animals. Chromosomal rearrangements are the hallmarks of two completely different biological phenomena, cancer and speciation. In premalignant cells, gradual telomere erosion beyond a critical threshold is a well-known inducer of chromosomal instability. The species clock hypothesis, as presented here, is based on the idea of a tiny loss of mean telomere length per generation. This mechanism would not rapidly endanger the survival of a particular species. Yet, after many thousands of generations, critically short telomeres could lead to the weakening and even the extinction of old species and would simultaneously create the unstable chromosomal environment that might result in the origination of new species.  相似文献   

4.
Large-scale, comparative studies of species extinction risk have become common in conservation science, but their influence on conservation practice appears limited. The link between such studies and the practice of conservation breaks down in two key places. First, results of comparative studies are often ambiguous, inconsistent and difficult to translate into policy. Second, conservation as currently practiced emphasizes the rescue and protection of currently threatened biodiversity, whereas comparative studies are often better suited to a proactive approach that anticipates and prevents future species declines. Scientists should make their research more accessible by addressing the first issue. Policymakers and managers, in turn, could make better use of comparative studies by moving towards more preventative approaches to conservation planning.  相似文献   

5.

Identifying the correlates of extinction can help prioritize species for conservation effort, an important step when developing effective conservation policies. Most previous studies on extinction vulnerability have been restricted to a single predictor within a specific region. To understand the mechanism underlying predictors of extinction risk, an examination of the contribution of various factors at different scales is an important step. We investigated the contribution of phylogeny, ploidy level, habitat breadth, and life form on both provincial and national conservation ranks of Alberta’s prairie ecoregion plant species. We collected data on conservation status, chromosome number, habitat breadth, and life form for 1274 species. We used phylogenetic comparative models to assess (1) the relative contribution, significance, and possible interaction of predictor variables in determining extinction vulnerability, and (2) the possible underlying mechanisms governing observed patterns of extinction vulnerability at the provincial and national level. We find that the contribution, significance, and predictive power of variables were often scale-dependent. While the impact of habitat breadth was significant at both provincial and national scales, ploidy and life form was only significant at the national and provincial level, respectively. We also found a significant negative interaction between ploidy and habitat breadth at both geographical scales, such that among widespread species (species with a higher habitat breadth), diploids are less likely to be at risk than polyploids. Our study reveals the importance of the study scale on the accuracy of extinction prediction. We also suggest that discriminating between regionally restricted and non-restricted species could improve the predictability of sub-global extinction patterns.

  相似文献   

6.
Selective logging of valuable tropical timber trees is a conservation concern because it threatens the long-term sustainability of forests. However, there is insufficient information regarding the postlogging recovery of harvested species. Here, I assessed the seed dispersal patterns, recruitment and abundance of Cordia millenii , a valuable timber tree in two Ugandan tropical rain forests that have been subjected to varying disturbance regimes. The aim was to determine the vulnerability of Cordia in these forests. The rate of seed dispersal was lower in the heavily disturbed Mabira Forest compared with the less disturbed Budongo Forest. Frugivores in Mabira were small-bodied individuals that spat seeds beneath fruiting trees, whereas 90% of the fruit in Budongo was consumed by large-bodied chimpanzees that disperse seeds over long distances. Juveniles of Cordia were not found in the closed forest, although they were found in forest gaps in Budongo but not Mabira. Mature tree density was higher in Budongo compared with Mabira. Lack of effective seed dispersal coupled with the inability of seedlings of Cordia to establish under closed canopy account for the arrested recruitment in Mabira. Enrichment planting in felling gaps is necessary to avoid local extinction of Cordia in forests without large vertebrates.  相似文献   

7.
The phase diagrams survival-extinction for the Penna model with parameters: (mutations rate)-(birth rate), (mutation rate)-(harmful mutations threshold), (harmful mutation threshold)-(minimal reproduction age) are presented. The extinction phase may be caused by either mutational meltdown or overpopulation. When the Verhulst factor is responsible for removing only newly born babies and does not act on adults the overpopulation is avoided and only genetic factors may lead to species extinction.  相似文献   

8.
9.
10.
It is well known that for an isolated population, the probability of extinction is positively related to population size variation: more variation is associated with more extinction. What, then, is the relation of extinction to population size variation for a population embedded in a metapopulation and subjected to repeated extinction and recolonization? In this case, the extinction risk can be measured by the extinction rate, the frequency at which local extinction occurs. Using several population dynamics models with immigration, we find, in general, a negative correlation between extinction and variation. More precisely, with increasing length of the time series, an initially negative regression coefficient first becomes more negative, then becomes less negative, and eventually attains positive values before decreasing again to 0. This pattern holds under substantial variation in values of parameters representing species and environmental properties. It is also rather robust to census interval length and the fraction of missed individuals but fails to hold for high thresholds (population size values below which extinction is deemed to occur) when quasi extinction rather than true extinction is represented. The few departures from the initial negative correlation correspond to populations at risk: low growth rate or frequent catastrophes.  相似文献   

11.
12.
The organization of neutral genetic variation has long been used as a diagnostic tool to infer demographic properties of populations, and recently it has been shown that this information can also be used to estimate the magnitude of genetic deterioration in small or fragmented populations. A further step of this research is to assess whether neutral genetic indicators can serve to predict and compare the viabilities of endangered species. I use modeling to explore how ecological metapopulation settings are related to neutral genetic indicators (such as the fixation index [F(ST)]), changes in genetic load, and metapopulation viability. The analysis indicates that genetic indicators are generally strongly and consistently correlated with the genetic load, population size and structure, and time of extinction but identifies two potential limitations for their use in viability assessments. First, the regime of environmental perturbations is not accurately reflected by neutral indicators, so that their predictive power may be reduced in variable environments. Second, many species are threatened by recent human-induced changes of their habitat configuration. In most cases, genetic indicators may not have reached their equilibrium value in the altered habitat, which limits their ability to compare species with heterogeneous histories and life-history traits.  相似文献   

13.
14.
Briggs JC 《Bioscience》1991,41(9):619-624
For the past decade, the scientific and popular press have carried frequent articles about a catastrophic mass extinction that supposedly destroyed the majority of the earth's species, including the dinosaurs, approximately 65 million years ago. Since 1980, more than 2000 papers and books have dealt with some aspect of a mass extinction at the Cretaceous-Tertiary (K/T) boundary. One authoritative estimate of the severity of the extinctions is that 60-80% of all the living species became extinct at this boundary (Raup 1988). There appears to be a general acceptance of the fact that such a great catastrophe did occur. Most of the argument among scientists now is devoted to the determination of the cause. In this article, I argue that the species changes at the K/T boundary were neither sudden nor catastrophic. They were most likely caused by a regression of sea level that led to a decrease in primary production.  相似文献   

15.
Demographic stochasticity is important in determining extinction risks of small populations, but it is largely unknown how its effect depends on the life histories of species. We modeled effects of demographic stochasticity on extinction risk in a broad range of generalized life histories, using matrix models and branching processes. Extinction risks of life histories varied greatly in their sensitivity to demographic stochasticity. Comparing life histories, extinction risk generally increased with increasing fecundity and decreased with higher ages of maturation. Effects of adult survival depended on age of maturation. At lower ages of maturation, extinction risk peaked at intermediate levels of adult survival, but it increased along with adult survival at higher ages of maturation. These differences were largely explained by differences in sensitivities of population growth to perturbations of life-history traits. Juvenile survival rate contributed most to total demographic variance in the majority of life histories. Our general results confirmed earlier findings, suggesting that empirical patterns can be explained by a relatively simple model. Thus, basic life-history information can be used to assign life-history-specific sensitivity to demographic stochasticity. This is of great value when assessing the vulnerability of small populations.  相似文献   

16.
17.
The loss of a species from an ecological community can trigger a cascade of additional extinctions; the complex interactions that comprise ecological communities make the dynamics and impacts of such a cascade challenging to predict. Previous studies have typically considered global extinctions, where a species cannot re-enter a community once it is lost. However, in some cases a species only becomes locally extinct, and may be able to reinvade from surrounding communities. Here, we use a dynamic, Boolean network model of plant–pollinator community assembly to analyze the differences between global and local extinction events in mutualistic communities. As expected, we find that compared to global extinctions, communities respond to local extinctions with lower biodiversity loss, and less variation in topological network properties. We demonstrate that in the face of global extinctions, larger communities suffer greater biodiversity loss than smaller communities when similar proportions of species are lost. Conversely, smaller communities suffer greater loss in the face of local extinctions. We show that targeting species with the most interacting partners causes more biodiversity loss than random extinctions in the case of global, but not local, extinctions. These results extend our understanding of how mutualistic communities respond to species loss, with implications for community management and conservation efforts.  相似文献   

18.
Using a successive discrimination procedure with rats, three experiments investigated the contribution of reinforcement rate and amount of S(Delta) exposure on the acquisition of an operant discrimination. S(D) components and were always 2 min in length, while S(Delta) (extinction) components were either 1 min or 4 min in length; responses in S(D) were reinforced on one of four schedules. In Experiment 1, each of eight groups were exposed to one possible combination of rate of reinforcement and S(Delta) component length. At every level of reinforcement, the 4 min S(Delta) groups acquired the discrimination more quickly. However, within each level of reinforcement, the proportions of responding in S(D) as a function cumulative S(Delta) exposure were equivalent, regardless of the number of reinforcers earned in S(D), suggesting that extinction is the "hallmark" of discrimination. Experiment 2 sought to replicate these results in a within-subjects design, and although the 4 min S(Delta) conditions always produced superior discriminations, the lack of discriminated responding in some conditions suggested that stimulus disparity was reduced. Experiment 3 clarified those results and extended the finding that the acquisition of operant discrimination closely parallels extinction of responding in S(Delta). In sum, it appears that higher reinforcement rates and longer S(Delta) exposure facilitate the acquisition of discriminated operant responding.  相似文献   

19.
Yang CH  Liu XM  Si JJ  Shi HS  Xue YX  Liu JF  Luo YX  Chen C  Li P  Yang JL  Wu P  Lu L 《PloS one》2012,7(6):e39696
The inhibitor κB protein kinase/nuclear factor κB (IKK/NF-κB) signaling pathway is critical for synaptic plasticity. However, the role of IKK/NF-κB in drug withdrawal-associated conditioned place aversion (CPA) memory is unknown. Here, we showed that inhibition of IKK/NF-κB by sulphasalazine (SSZ; 10 mM, i.c.v.) selectively blocked the extinction but not acquisition or expression of morphine-induced CPA in rats. The blockade of CPA extinction induced by SSZ was abolished by sodium butyrate, an inhibitor of histone deacetylase. Thus, the IKK/NF-κB signaling pathway might play a critical role in the extinction of morphine-induced CPA in rats and might be a potential pharmacotherapy target for opiate addiction.  相似文献   

20.
Figs (Ficus spp.) and their species-specific pollinators, the fig wasps (Agaonidae), have coevolved one of the most intricate interactions found in nature, in which the fig wasps, in return for pollination services, raise their offspring in the fig inflorescence. Fig wasps, however, have very short adult lives and hence are dependent on the near-continuous production of inflorescences to maintain their populations. From January to March 1998 northern Borneo suffered a very severe drought linked to the El Niño-Southern Oscillation event of 1997-1998. This caused a substantial break in the production of inflorescences on dioecious figs and led to the local extinction of their pollinators at Lambir Hills National Park, Sarawak, Malaysia. Most pollinators had not recolonized six months after the drought and, given the high level of endemism and wide extent of the drought, some species may be totally extinct. Cascading effects on vertebrate seed dispersers, for which figs are often regarded as keystone resources, and the tree species dependent on their services are also likely. This has considerable implications for the maintenance of biodiversity under a scenario of climate change and greater climatic extremes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号