首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Pd(sac)(terpy)](sac)·4H2O (1), [Pt(sac)(terpy)](sac)·5H2O (2), [PdCl(terpy)](sac)·2H2O (3) and [PtCl(terpy)](sac)·2H2O (4) (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine) have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR. In 1 and 2, a tridentate terpy ligand together with an N-coordinated sac ligand form the square-planar geometry around the palladium(II) or platinum(II) ions, while one sac anion remains outside the coordination sphere as a counter-ion. X-ray single crystal studies show that the [M(sac)(terpy)]+ ions in 1 and 2 reside in the centers of a hydrogen bonded honeycomb network formed by the uncoordinated sac ions and the lattice water molecules. Complexes 3 and 4 are isostructural and consist of a [M(Cl)(terpy)]+ cation, a sac anion and two lattice water molecules. The [M(Cl)(terpy)]+ ions interact with each other via M-M and π-π stacking interactions and these π interacted units are assembled to a 2D network by water bridges involving the sac ions and lattice water molecules. Convenient synthetic paths for 1-4 are also presented, and spectral, luminescence and thermal properties were discussed.  相似文献   

2.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

3.
Four new coordination complexes, NiII(L)2 (1), [CoIII(L)2]ClO4 (2), [Zn(HL)(L)]ClO4 · H2O (3) and [Zn(L)2][Zn(L)(HL)]ClO4 · 7H2O (4) (where L is a monoanion of a Schiff base ligand, N′-[(2-pyridyl)methylene]salicyloylhydrazone (HL) with NNO tridentate donor set), have been synthesised and systematically characterised by elemental analysis, spectroscopic studies and room temperature magnetic susceptibility measurements. Single crystal X-ray diffraction analysis reveals that 1 is a neutral complex, while 2-4 are cationic complexes. Among them, 4 is a rare type of cationic complex with two molecules in the asymmetric unit. The ligand chelates the metal centre with two nitrogen atoms from the pyridine and imino moieties and one oxygen atom coming from its enolic counterpart. All the reported complexes show distorted octahedral geometry around the metal centres, with the two metal-N (imino) bonds being significantly shorter than the two metal-N (Py) bonds.  相似文献   

4.
Jing Xu 《Inorganica chimica acta》2009,362(11):4002-4008
Three new coordination polymers {[Cu(HL)(H2O)]·H2O}n (1), [Ag(H2L)]n (2), and {[Co(HL)(phen)(H2O)]·8H2O}n (3) [H3L = 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid, phen = 1,10-phenanthroline] have been synthesized under hydrothermal conditions. The results of X-ray diffraction analysis revealed that complex 1 displays (3, 3)-connected 2D network with (4, 82) topology, while complexes 2 and 3 have infinite 1D chain structure, in which one of the two carboxylic groups of H2L/HL2− is uncoordinated. The 2D layers of 1 or the 1D chains of 2 and 3 are further linked together by hydrogen bonds and π-π interactions to form 3D supramolecular frameworks. Moreover, the electrochemical properties of complexes 1 and 2 have been studied by modified glassy carbon electrodes of 1 (Cu-GCE) and 2 (Ag-GCE), and the results indicate that the Cu-GCE and Ag-GCE show one-electron redox peaks. In addition, both Cu-GCE and Ag-GCE have good electrocatalytic activities toward the reduction of H2O2 in phosphate buffer (pH 5.5) solution.  相似文献   

5.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

6.
Two novel dinuclear nickel(II) complexes [Ni2(ntb)2(μ-tp)(H2O)1.61(CH3OH)0.39](NO3)2·5.13CH3OH·2.25H2O (1) and [Ni2(ntb)2(μ-fum)(H2O)(CH3OH)](NO3)2·6CH3OH·H2O (2) (tp = terephthalate dianion, fum = fumarate dianion, ntb = tris(2-benzimidazolylmethyl)amine) containing tetradentate poly-benzimidazole ligand were synthesized and structurally characterized by IR spectra, UV-Vis, elemental analysis and X-ray crystallography. The Ni(II) ions in 1 and 2 have distorted octahedral geometry with four nitrogen atoms of ntb, one oxygen atom of water and one oxygen atom supplied by the carboxylate group of the bridged dicarboxylato ligand. Complexes 1 and 2 consist of terephthalato- and fumarato-bridged dinickel(II) centers in bis(monodentate) bonding fashion. The Ni?Ni distances are 11.333 Å for 1 and 8.966 Å for 2. The magnetic susceptibility measurements at variable temperature show that two complexes exhibit weak antiferromagnetic interactions between nickel(II) ions with J values of −0.25 cm−1 and −0.36 cm−1, respectively.  相似文献   

7.
Four novel nicotinato-copper(II) complexes containing polybenzimidazole and polyamine ligands were synthesized with formula [Cu2(bbma)2(nic)2](ClO4)2·CH3OH·0.5H2O (1), [Cu2(dien)2(nic)2](ClO4)2·2CH3OH (2), [Cu(ntb)(nic)]ClO4·H2O (3) and [Cu(tren)(nic)]BPh4·CH3OH·H2O (4), in which bbma is bis(benzimidazol-2-yl-methyl)amine, dien is diethylenetriamine, ntb is tris(2-benzimidazolylmethyl)amine, tren is tris(2-aminoethyl)amine and nic is nicotinate anion. All of the complexes were characterized by elemental analysis, IR and X-ray diffraction analysis. Complexes 1 and 2 contain centrosymmetric dinuclear entity with the two Cu(II) atoms bridged by two nicotinate anions in an anti-parallel mode. The Cu···Cu separation is 7.109 Å for 1 and 6.979 Å for 2. Complexes 3 and 4 are mononuclear with nicotinate coordinated to Cu(II) ion by the carboxylate O atom in 3 and the pyridine N atom in 4. All of the complexes exhibit abundant hydrogen bonds to form 1D chain for 1, 3, 4 and 2D network for 2. Magnetic susceptibility measurements over the 2-300 K range reveal very weak ferromagnetic interaction between the two Cu(II) ions in 1 and antiferromagnetic interaction in 2 mediated by nicotinate ligand, with J value to be 0.15 and −0.19 cm−1, respectively.  相似文献   

8.
Using the principle of crystal engineering, six metal-organic coordination polymers, [Cd(bdc)(3-pytpy)]n · 2nH2O (1), [Cd(bdc)0.5(3-pytpy)]n · n(ClO4) (2), Cd(ndc)0.5(3-pytpy)]n · n(ClO4) (3), [Zn(ndc)(3-pytpy)]n (4), [Cd(bqdc)(3-pytpy)]n (5), and [Zn(pam)(3-pytpy)]n · 2nH2O (6) (H2bdc = benzene-1,4-dicarboxylic acid, H2ndc = naphthalene-2,6-dicarboxylic acid, H2bqdc = 2,2′-biquinoline-4,4′-dicarboxylic acid, H2pam = pamoic acid), were synthesized and structurally characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction analyses. Compounds 1-6 crystallize in the presence of organic-acid linkers as well as multi-functional N-donor ligand 4′-(3-pyridyl)-2,2′:6′,2′′-terpyridine (3-pytpy). In complexes 1, 4, 5, and 6, the dicarboxylate as bridging ligand connects metal atoms to form the main body of 1D zigzag chains for 1 and 4, nearly linear chain for 5 and helical chain for 6, while 3-pytpy as tridentate chelating ligand is just like lateral arm grafting on both sides of these chains. In complexes 2 and 3, both the dicarboxylate and 3-pytpy as bridging ligands connect metal atoms into 2D polymeric structure for 2 and 1D chain of alternating loops and rods for 3. The weak interactions such as hydrogen bonding and π···π stacking were investigated on the formation of superamolecular structures and the influence of organic acid on the formation of the final structures was discussed. In addition, the photoluminescent properties of 1-6 were also determined.  相似文献   

9.
Two Cd(II) and Zn(II) coordination polymers based on 3,3′,5,5′-azobenzenetetracarboxylic acid (H4abtc): [Cd2(abtc)(H2O)6]·DMF·0.5H2O (1) and [Zn2(abtc)(bpy)(H2O)2]·DMF·H2O (2) are synthesized and structurally characterized. Both 1 and 2 are 2D polymers but interconnected by solvent molecules to generate 3D suprastructures. Solvent expulsion leads to rupture of both structures, but upon re-exposure to the solvent mixture they exhibit remarkable ability to regain the original structure reversibly from the almost amorphous solvent-expelled form. Compounds with such structural flexibility and reversibility are expected to have some useful functionality.  相似文献   

10.
Three novel coordination complexes [Mn(tpha)(phen)]n (1); [Mn(na)2(H2O)2]n (2); {[Mn(phen)2(OH)Cl] · Cl · (OH) · (C9H11NO2) · 2H2O} (3) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction (H2tpha = terephthalic acid, Hna = nicotinic acid, phen = 1,10-phenanthroline). The tpha groups in complex 1 bridge the Mn(II) ions to an infinite 3D framework. Complex 2 exhibits a 2D network structure in which the Mn(II) ions are linked by nicotinic groups. Complex 3 is connected to a 2D coordination supramolecule by hydrogen bonds. The results of surface photovoltage spectra (SPS) of complexes 1-3 indicate that they all exhibit positive surface photovoltage (SPV) responses in the range of 300-800 nm. However, the intensity, position and numbers of SPV responses are obviously different. The distinctions can be mainly attributed to their structures, valences and coordination environments of the manganese ions in the three complexes. Moreover the external field induced surface photovoltage spectra (FISPS) of the three complexes have been measured.  相似文献   

11.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   

12.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

13.
Three one-dimensional zinc complexes, namely, [Zn(pzdc) · 3H2O] · H2O (1), [Zn2(pzdc)· 4H2O] · 2.5H2O (2), and [Zn(pzdc)(phen) · 4H2O]n (3) (H2pzdc, pyrazine-2,3-dicarboxylic acid, phen = 1,10-phenanthroline), have been synthesized successfully under hydrothermal condition. X-ray diffraction analyses reveal that complex 1 is a square-wave-like chain and complex 2 shows a 1D ladder-like infinite chain, while complex 3 has 1D zigzag chain structure. In all cases, the Zn(II) centers have octahedral coordination geometries. Through hydrogen bonding (such as O-H···O, O-H···N and C-H···O) and/or π-π stacking interactions, three-dimensional supramolecular networks are constructed in three complexes. Furthermore, the IR, TGA and luminescent properties are also investigated in this work.  相似文献   

14.
Two new coordination polymers [Cd(dps)2Cl2] (1) and [Co(dps)2(H2O)2]·(abs)2(H2O)2 (2) (dps = 4, 4′-dipyridylsulfide, Habs = 4-amino benzenesulfonic acid) have been synthesized under similar conditions and characterized by elemental analysis, fluorescence spectra and single crystal X-ray diffraction. Compound 1 displays a dps-bridged 2D puckered, grid-like layer, which is further linked by C-H?Cl hydrogen bonds to form a 3D supramolecular architecture. Compound 2 shows a dps-bridged double-stranded chain structure, which is extended by N-H?O and O-H?O hydrogen bonds generating a 3D network. Solid-state fluorescence results reveal that both complexes can emit strong emission bands, at 467 nm and 518 nm for 1 and 344 nm for 2, respectively. Magnetic measurements show that there are weak antiferromagnetic interactions between the adjacent Co(II) ions in 2.  相似文献   

15.
A series of Ni(II) and Cu(II) complexes of the hexaaza macrocycles, 3,6,9,17,20,23-hexaazatricyclo[23.3.1.111,15]triaconta-1(29),11(30),12,14,25,27-hexaene (L1) and 3,6,9,16,19,22-hexaazatricyclo[22.2.2.211,14]triaconta-1(26),11(29),12,14(30),24(28),25-hexaene (L2), have been prepared and the crystal structures determined for [Ni2L1(O2CCH3)2(H2O)2](ClO4)2 (1), [Ni2L2(DMF)6](ClO4)4 · 2H2O (2), {[Cu2L2Br(O2CCH3)](ClO4)2}n (3), [Cu2L2(μ-CO3)(H2O)2]2(ClO4)4 · 8H2O (4), [Cu2L2(O2CCH3)2](BF4)2 (5), and [Cu2L1(μ-imidazolate)Br]2Br4 · 6H2O (6). In these complexes, two metal centers are bound per ligand; in 1 and 3-6, the N3 subunits of L1 or L2 coordinate meridionally to the metal centers, whilst in 2, each N3 subunit in L2 adopts a facial mode of coordination. The binuclear cations in 1 and 2 have chair-like conformations, with the distorted octahedral Ni(II) coordination spheres completed by terminal water and a bidentate acetate ligand in 1 and three DMF ligands in 2. The Cu(II) centers in 3-6 generally reside in square planar environments, although a weakly binding ligand enters the coordination sphere in some cases, generating a distorted square pyramidal geometry. The binuclear [Cu2L2]4+ units in 3, 4 and 5 adopt similar bowl-shaped conformations, stabilized by H-bonding interactions between pairs of amine groups from L2 and a perchlorate or tetrafluoroborate anion. In 3, the binuclear units are linked through acetate groups, bridging in a syn-anti fashion, to produce a zig-zag polymeric chain structure, whilst 4 incorporates a tetrameric cation consisting of two binuclear units linked via a pair of carbonate bridges. Compound 6 features an imidazolate bridge between the two Cu(II) centers bound by L1. Pairs of [Cu2L1(μ-imidazolate)]3+ units are then weakly linked through a pair of bromide anions.  相似文献   

16.
Three palladium(II) complexes have been synthesized, using 3,4-bis(cyanamido) cyclobutane-1,2-dione dianion (3,4-bis(cyanamido)squarate or 3,4-NCNsq2−): [Pd(en)(3,4-NCNsq)] · 1.5H2O (1) (en=1,2-diaminoethane), [Pd(en)(3,4-(NC(O)NH2)sq)] · 0.5H2O (2) and K3Na[Pd2(3,4-(NCN)2sq)4] · 5H2O (3). Complex 1 has been characterized by elemental analysis, IR and 13C NMR spectroscopies. Complexes 2 and 3 have been characterized by single-crystal X-ray diffraction. In complex 2, the unusual hydration of the cyanamido ligand was observed, it proceeds in the coordination sphere of the palladium and leads to a chelating urea squarate ligand. Complex 3 is an anionic dinuclear complex containing four bridging cyanamido squarate ligands. In complexes 2 and 3, the 3,4-NCNsq2− ligand (hydrated or not) is, for the first time, coordinated to the metal atom by the two amido nitrogen atoms, either in a chelating mode (complex 2) or in a bridging mode giving a short Pd ? Pd distance of 2.8866(15) Å (complex 3). Electrochemical studies in acetonitrile and dmf solutions have been performed on complexes 1 and 3.  相似文献   

17.
Two adamantane-1,3-dicarboxylato bridged cobalt(II) phenanthroline complexes [Co2(H2O)2(phen)2(adc)2]·(C2H7N)·2H2O (1) and [Co(H2O)(phen)(adc)]·H2O (2) were synthesized in a mixed solvent under 45 °C (H2adc = adamantane-1,3-dicarboxylic acid). Compound 1 consists of dinuclear [Co2(H2O)2(phen)2(adc)2] complex molecules, dimethylamine (C2H7N) molecules and hydrogen-bonded water molecules. The dinuclear molecules, via intermolecular hydrogen bonds, are interconnected into hydrogen-bonded chains along [1 0 0] and interdigitation of phen ligands due to interchain π?π stacking interactions assembles the hydrogen-bonded chains into 2D supramolecular layers parallel to (0 0 1). In compound 2, the Co(II) ions are bridged by adamantane-1,3-dicarboxylate anions to form 1D chains along [0 0 1], and the resulting chains are assembled into double-chains based on interchain π?π interactions. The double-chains are further held together via hydrogen bonds into 2D supramolecular layers parallel to (1 0 0). The variable temperature magnetic measurements show an overall weak antiferromagnetic behavior for 1, and an weak ferromagnetic behavior over 300-75 K followed by antiferromagnetic behavior below 75 K for 2.  相似文献   

18.
Three new coordination complexes [Mn(L)(H2O)2](1,4-BDC)·2H2O (1), [Mn(L)0.5(1,4-BDC)]CH3OH·H2O (2) and [Mn(L)(H2O)2](1,2-HBDC)2·2H2O (3) were synthesized by solvothermal reactions of 1,2,4,5-tetrakis(imidazol-1-ylmethyl)benzene (L) and 1,4-benzenedicarboxylic acid (1,4-H2BDC) or 1,2-benzenedicarboxylic acid (1,2-H2BDC) with Mn(II) salt, and characterized by single crystal X-ray diffraction, IR, thermogravimetric and elemental analyses. In complexes 1 and 3, each ligand L links four Mn(II) atoms to form two-dimensional (2D) cationic network with non-coordinated 1,4-BDC2− and 1,2-HBDC anions lying in the voids between the two adjacent layers, respectively. The 2D layers are further connected together by hydrogen bonds to give three-dimensional (3D) supramolecular structures. However, the 1,4-BDC2− in 2 acts not only as counteranion, but also as bridging ligand leading to the formation of 2-fold interpenetrated 3D framework with pcu (primitive cubic unit) topology. The Mn(II) atoms bridged by carboxylate groups in 2 show antiferromagnetic interactions.  相似文献   

19.
A series of bifunctional chelates of the type dipicolylamino-alkylcarboxylate (NC5H4CH2)2N(CH2)nCO2H (n = 1-4; HL1-HL4, respectively) has been prepared. Reactions of the ligands in aqueous methanol/N,N-dimethylformamide with the appropriate Cu(II) salts yielded the compounds [CuL1](NO3)·H2O (1·H2O), [CuL2(H2O)]BF4·H2O (2·H2O), [Cu(HL3)(SO4)]2 (3) and [CuL4(NO3)]·MeOH (4·MeOH). While compounds 1, 2 and 4 are one-dimensional, the detailed connectivities within the chains are quite distinct, depending on factors such as alkyl chain length and ligation of aqua ligands or anionic components. In contrast to 1, 2 and 4, the structure of 3 is molecular, a binuclear assembly of edge-sharing Cu(II) ‘4+2’ distorted octahedra. The Cd(II) species, [{CdL2}2(SO4)]·4H2O (5·4H2O), prepared from HL2 and CdSO4·nH2O in aqueous methanol/N,N-dimethylformamide, is two-dimensional, with a network constructed from binuclear units of seven coordinate Cd(II), , linked through bridging SO42− groups to produce an assembly of linked hexagonal rings [{CdL2}2(SO4)]6.  相似文献   

20.
The ligand benzil bis(4-methyl-3-thiosemicarbazone) LH2 reacts with K2PtCl4, both in the presence or in the absence of LiOH·H2O, to yield simultaneously the cyclometallated mesocate [Pt2(μ-L)2] 1 and the coordination monomeric compound [PtL] 2, which can be easily separated by their different solubility. By contrast, reaction of Li2PdCl4 without base leads exclusively to the formation of the coordination compound [PdL] 3, while the use of LiOH·H2O permits the selective synthesis of the cyclometallated mesocate [Pd2(μ-L)2] 4. All the complexes have been characterized by the usual techniques, including X-ray single crystal diffraction that show all the metals to be four-coordinate in a square-planar arrangement, but 2 and 3 with a N2S2 environment while in 1 and 4 it is CNS2. The cytotoxic activity has been evaluated against the human lung carcinoma cell line NCI-H460, but the results show that the complexes are not active in this cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号