首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Using Western blot techniques, the specificities of crude and purified (PAK and PAS) Anisakis simplex antigens were compared against 24 sera from patients diagnosed with Anisakis sensitization. All patients recognized a 60 kDa protein against the A. simplex crude extract, while 37.5% and 12.5% reacted with proteins of 40 and 25 kDa, respectively, when IgG was tested. In the case of IgE determination, 41.6% of sera were negative, while 12.5% and 20.8% appeared to cross-react against Toxocara canis and Ascaris suum, respectively. When the PAK antigen (A. simplex antigen purified by means of a column of IgG anti-A. simplex) was tested, immune recognition towards the 60, 40 and 25 kDa proteins increased in 83.3%, 16.7% and 4.2%, respectively, when the Ig antibodies were tested. In the case of the PAS antigen (PAK antigen purified by means of a column of IgG anti-A. suum), the reaction against the 40 and 25 kDa proteins increased to 45.8% and 25%, respectively, when Ig antibodies were used. Finally, when the EAS antigen (eluted from the anti-A. suum column after PAK purification) was tested, 83.3% of the assayed sera reacted against the 14 kDa protein, when the Ig antibodies, IgG and IgM immunoglobulins were measured. With the IgE determination, the reactions were observed in 41.7% of patients with proteins between 60 and 35 kDa against the PAS antigen. With the EAS antigen, reactive bands of 184, 84 and 14 kDa appeared. In conclusion, in the purification process of the A. simplex larval crude extract, the proteins implicated in cross-reactions with Ascaris and Toxocara were eliminated, with an important concentration of proteins responsible for the induction of specific responses.  相似文献   

2.
An evaluation of the sensitivity and the specificity of the Anisakis simplex antigens purified by affinity chromatography was performed using sera from patients diagnosed with Anisakis sensitisation and sera from patients previously diagnosed with different helminthic infections. Only the sera of the patients diagnosed with Schistosoma mansoni or Onchocerca volvulus parasitic infections were negative against the A. simplex antigen and its purified fractions (PAK antigen: A. simplex antigen purified using columns prepared with anti-A. simplex rabbit IgG and PAS antigen: PAK antigen purified using columns prepared with anti-Ascaris suum rabbit IgG). However all the sera were positive against the A. suum antigen. In all the sera from the patients diagnosed with Anisakis sensitisation, the antibody levels detected using the purified antigens (PAK and PAS antigens) were lower than the observed using the A. simplex crude extract with the highest diminution in the case of the IgG. When these same sera were tested against the A. simplex crude extract by Western blot, several bands of high molecular masses were observed as well as, intense bands at 60 and/or 40 kDa. A concentration of these last proteins was observed in the PAK and the PAS antigens. When the sensitivity and the specificity determinations were performed, only seven of the 38 patients diagnosed of Anisakis sensitisation were positive, as well as, the sera from the patients diagnosed with parasitisms by Echinococcus granulosus or Fasciola hepatica.  相似文献   

3.
In order to improve the specificity and sensitivity of the techniques for the human anisakidosis diagnosis, a method of affinity chromatography for the purification of species-specific antigens from Anisakis simplex third-stage larvae (L3) has been developed. New Zealand rabbits were immunized with A. simplex or Ascaris suum antigens or inoculated with Toxocara canis embryonated eggs. The IgG specific antibodies were isolated by means of protein A-Sepharose CL-4B beads columns. IgG anti-A. simplex and -A. suum were coupled to CNBr-activated Sepharose 4B. For the purification of the larval A. simplex antigens, these were loaded into the anti-A. simplex column and bound antigens eluted. For the elimination of the epitopes responsible for the cross-reactions, the A. simplex specific proteins were loaded into the anti-A. suum column. To prove the specificity of the isolated proteins, immunochemical analyses by polyacrylamide gel electrophoresis were carried out. Further, we studied the different responses by ELISA to the different antigenic preparations of A. simplex used, observing their capability of discriminating among the different antisera raised in rabbits (anti-A. simplex, anti-A. suum, anti-T. canis). The discriminatory capability with the anti-T. canis antisera was good using the larval A. simplex crude extract (CE) antigen. When larval A. simplex CE antigen was loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with A. simplex CE antigen, its capability for discriminate between A. simplex and A. suum was improved, increasing in the case of T. canis. The best results were obtained using larval A. simplex CE antigen loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with adult A. suum CE antigen. When we compared the different serum dilution and antigenic concentration, we selected the working serum dilution of (1/4)00 and 1 microg/ml of antigenic concentration.  相似文献   

4.
The nematode Anisakis simplex causes anisakidiasis, a disease that often mimics other gastrointestinal diseases. Patients with digestive haemorrhaging, Crohn's disease, digestive cancer and appendicitis were analysed for antibodies to A. simplex. Antibody detection was carried out by enzyme-linked immunosorbent assay (ELISA) and immunoblotting using crude extract (CE) antigen and excretory-secretory (ES) products. Total immunoglobulin (Igs), IgG, IgM, IgA and IgE were studied. The highest percentage was obtained when Igs were tested against CE antigen. A higher percentage of positivity was observed with the appendicitis group. The Crohn's disease group showed the highest levels of IgG against the ES antigen. Using immunoblotting, 24% and 48% of sera from patients with symptoms of Crohn's disease and digestive haemorrhaging, respectively, showed a positive immunorecognition pattern of CE antigen. The prevalence of detectable antibodies against A. simplex is higher in patients with digestive disorders than in the healthy population. A linear correlation was observed between prothrombin activity and Igs-CE, IgA-CE and IgA-ES but not between IgE-CE and the other immunoglobulin levels. Specific IgA is associated with a higher activity index of Crohn's disease. Specific antibodies were observed against A. simplex in patients with appendicitis and gastrointestinal cancer, indicating a higher rate of positivity for IgA.  相似文献   

5.
Anisakiasis is a human disease caused by accidental ingestion of larval nematodes belonging to the Anisakidae family. Anisakiasis is often associated with a strong allergic response. Diagnosis of A. simplex allergy is currently carried out by test based on the IgE reactivity to a complete extract of L3 Anisakis larvae although the specificity of these diagnostic tests is poor. Improving the specificity of the diagnostic test is possible using purified recombinant allergens. A new Anisakis allergen, named Ani s 10, was detected by immunoscreening an expression cDNA library constructed from L3 Anisakis simplex larvae. The new allergen was overproduced in Escherichia coli; it is a protein of 212 amino acids and it was localized as a 22 kDa protein band in an ethanol fractionated extract from the parasite. Ani s 10 has no homology with any other described protein, and its sequence is composed by seven almost identical repetitions of 29 amino acids each. A total of 30 of 77 Anisakis allergic patients (39%) were positive both to rAni s 10 and natural Ani s 10 by immunoblotting. The new allergen could be useful in a component-resolved diagnosis system for Anisakis allergy.  相似文献   

6.
A study of the cross-reactivity among somatic and excretory-secretory antigens of the third stage larvae of Anisakis simplex s.l. and somatic antigens of other ascarid nematodes (Ascaris lumbricoides, A. suum, Toxocara canis, Anisakis physeteris, Hysterothylacium aduncum and H. fabri) was carried out by immunoblotting. It was revealed a high degree of cross-reactivity among ascarids in the 30 and > 212 kDa range by using sera against somatic and excretory-secretory antigens of A. simplex s.l. It has been revealed also specific components of the Anisakis genus (< 7.2, 9, 19 and 25 kDa) that will be interesting in diagnosis.  相似文献   

7.
Previously, an in vitro effect was observed on the complement system not only of the excretory-secretory products but also of somatic antigens from L3 Anisakis simplex larvae. In the present work the effect of anti-A. simplex specific antibodies on C3 and C4 levels in human sera was investigated. Up to 309 samples of sera were tested to determine levels of C3 and C4 and anti-A. simplex antibodies, including immunoglobulins IgG, IgM, IgA and IgE. Significant differences were observed between levels of C3 and C4 and all immunoglobulins except for IgE. In the case of immunoglobulins, the probability that an anti-A. simplex positive subject has a C3 deficiency was 3.8 times higher than a subject without specific antibodies. In conclusion, an association between elevated levels of anti-A. simplex antibodies and C3 and C4 deficiency was demonstrated.  相似文献   

8.
Anisakis spp. larvae are parasitic, and potentially zoonotic, nematodes transmitted by marine fish and cephalopods, which are the main intermediate hosts of the third larval stage. The accidental consumption of infected raw or poorly cooked fish may cause gastroenteric diseases and allergies in humans. The aim of the present study was to use polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to define the occurrence, species variability, and host preferences of Anisakis spp. larvae in fish caught off the coast of Sardinia. Necropsy was used on 285 samples; 552 Anisakis spp. L3 larvae were isolated from 87 fish that tested positive for this nematode. Anisakis pegreffii was most frequently encountered (90.6%), with a primary preference for Scomber scombrus, Zeus faber, and Trachurus mediterraneus. In contrast, the prevalence of Anisakis physeteris was only 1.3%. A hybrid genotype of Anisakis simplex sensu stricto and Anisakis pegreffii was also observed, which confirms the results of previous studies carried out in the western Mediterranean. Interestingly, no Anisakis simplex s.s. larvae were recovered. These results indicate that the diversity of Anisakis species is low in Sardinia waters, probably because of its geographic position.  相似文献   

9.
Anisakis simplex larvae were cultured in vitro in medium containing 35S-methionine for ten days. The medium and the larval tissues were analysed for biosynthetically labelled polypeptide by sodium dodecyl sulphate polyacrylamide gel electrophoresis and autoradiography. Immunoprecipitates with positive and negative human antisera were similarly analysed, using Staphylococcus aureus to absorb immuno-complexes. ES products of Anisakis larvae contained many polypeptides with molecular weights of less than 200 K. 180 KDa and 40 KDa polypeptides in ES products reacted with IgG in Anisakis-infected human sera. Somatic extracts also contained many polypeptides with molecular weights of less than 200 K. One of these polypeptides with a molecular weight of 130 K reacted with IgG in Anisakis-infected human sera. These polypeptides did not react with other nematode-infected human sera.  相似文献   

10.
The present study was performed to estimate the seroprevalence of larval Anisakis simplex infection among the residents health-examined in 3 hospitals in southern parts of Korea. A total of 498 serum samples (1 serum per person) were collected in 3 hospitals in Busan Metropolitan city, Masan city, and Geoje city in Gyeongsangnam-do (Province) and were examined by IgE-ELISA and IgE-western blotting with larval A. simplex crude extract and excretory-secretory products (ESP). The prevalence of antibody positivity was 5.0% and 6.6% with ELISA against crude extracts and ESP, respectively. It was also revealed that infection occurred throughout all age groups and higher in females than in males. A specific protein band of 130 kDa was detected from 10 patients with western blot analysis against crude extract and ESP among those who showed positive results by ELISA. Our study showed for the first time the seroprevalence of anisakiasis in Korea. The allergen of 130 kDa can be a candidate for serologic diagnosis of anisakiasis.  相似文献   

11.
The aim of this study was to verify whether cross-reactivity appeared between Toxocara canis and Anisakis simplex in an experimental rodent model. No cross-reactions were detected using sera from mice infected with T. canis eggs. When responses obtained against T. canis ES antigen using sera from BALB/c and C57BL/10 mice infected with T. canis eggs were compared with those obtained by testing sera from mice infected with one A. simplex L3, an increase in cross-reactions was observed using the C57BL/10 strain.  相似文献   

12.
To increase our understanding of the immune response to Anisakis infection, antigen specific IgG, IgA and IgE responses were identified using an immunoblot technique after polyacrylamide gel electrophoresis of excretory-secretory products from the larval stage of Anisakis simplex. Nine sera were drawn from proven cases of gastric anisakiasis within 3 days after symptoms had developed. The molecular weight of the major antigenic bands were distributed between 50 kDa and 120 kDa of the antigens. In nine cases of gastric anisakiasis, three of them were positive for IgG response, five for IgE, and six for IgA, respectively. None of control sera recognized the antigenic bands in IgA and IgE responses. In contrast, two controls had IgG antibodies against 1-2 proteins in the 65-95 kDa region. The antigenicity of the excretory-secretory products was lost following treatment by 0.2% trypsin, but not by 0.2 M periodic acid. Based on the results of reactivity to lectins, antigenic bands of the ES products possessed mucin type glycoconjugate residues in their protein portion. This indicates that the humoral responses of IgA and IgE antibodies to the larval ES antigens are a more reliable index of infection than that of the IgG response.  相似文献   

13.
Polymerase-chain-reaction-based restriction fragment length polymorphism analysis was performed to establish genetic markers in rDNA, for the identification of the three sibling species of the Anisakis simplex complex and morphologically differentiated Anisakis species, i.e. Anisakis physeteris, Anisakis schupakovi, Anisakis typica and Anisakis ziphidarum. Different restriction patterns were found between A. simplex sensu stricto and Anisakis pegreffii with two of the restriction endonucleases used (HinfI and TaqI), between A. simplex sensu stricto and A. simplex C with one endonuclease (HhaI), and between A. simplex C and Aniskis pegreffii with three endonucleases (HhaI, HinfI and TaqI), while no variation in patterns was detected among individuals within each species. The species A. physeteris, A. schupakovi, A. typica and A. ziphidarum were found to be different from each other and different from the three sibling species of the A. simplex complex by distinct fragments using 10-12 of the endonucleases tested. The polymorphisms obtained by restriction fragment length polymorphisms have provided a new set of genetic markers for the accurate identification of sibling species and morphospecies.  相似文献   

14.
Distribution of Anisakis species larvae from fishes of the Japanese waters   总被引:1,自引:0,他引:1  
Human anisakiasis is caused by the consumption of raw, marinated or undercooked fish and squid infected with nematodes of the genus Anisakis Dujardin, 1845. In view of food safety, this study was carried out to examine the distribution of Anisakis species in marine fishes within Japanese waters. Seven fish species from six localities were collected and examined for Anisakis infection. Morphological and molecular (ITS region and mtDNA cox2 gene) characterization revealed the presence of two, among the three sibling species of Anisakis simplex, viz. A. simplex sensu stricto (s.s.) and A. pegreffii. Distribution data were collated with the results from the previous researches to better understand Anisakis distribution in Japanese waters. Distributions of Anisakis species were found to be locality-specific rather than host-specific, particularly between the two major species, A. simplex s.s. and A. pegreffii. Anisakis simplex s.s. is mainly found in fishes from northern Japan to Pacific sides, whereas A. pegreffii is in fishes from the Sea of Japan to East China Sea sides.  相似文献   

15.
In previous studies, we have reported that the larval products (crude extract [CE] and excretory-secretory [ES]) of Anisakis simplex showed a dose-dependent inhibition of the lysis mediated by classical (CP) and alternative pathways (AP) of the human complement system, with the major inhibition on the CP rather than on AP. This inhibition of hemolysis is due to the consumption of complement factors because the assays performed shortening the preincubation period result in a significant decrease of the inhibitory effect on the lysis of the larval products compared with the standard time. Likewise, we found that the larval products reduce the inhibitory percentages in the CP using C3-deficient sera, but not in the AP, which could indicate that other complement components are implicated in the inhibitory effect in the CP. Hence, we have studied the activity of the larval products of A. simplex on individual components in the CP, using different complement-deficient sera. The investigated complement molecules were C1q, C2, C4, C5, C6, C7, C8, and C9. The larval products showed activity at the C2 level but failed to have a significant effect on the other components. Therefore, CE and ES products from A. simplex interact with C3 and C2 complement proteins, which are early components of the complement system, but not with the late complement components.  相似文献   

16.
Anisakis simplex is a nematode parasite that can infect humans who have eaten raw or undercooked seafood. Larvae invading the gastrointestinal mucosa excrete/secrete proteins that are implicated in the pathogenesis of anisakiasis and can induce IgE-mediated symptoms. Since Ani s 1 is a potent secreted allergen with important clinical relevance, its measurement could assess the quality of allergenic products used in diagnosis/immunotherapy of Anisakis allergy and track the presence of A. simplex parasites in fish foodstuffs. An antibody-based ELISA for quantification of Ani s 1 has been developed based on monoclonal antibody 4F2 as capture antibody and biotin-labelled polyclonal antibodies against Ani s 1 as detection reagent. The dose-response standard curves, obtained with natural and recombinant antigens, ranged from 4 to 2000 ng/ml and were identical and parallel to that of the A. simplex extract. The linear portion of the dose-response curve with nAni s 1 was between 15 and 250 ng/ml with inter-assay and intra-assays coefficients of variation less than 20% and 10%, respectively. The assay was specific since there was no cross-reaction with other extracts (except Ascaris extracts) and was highly sensitive (detection limit of 1.8 ng/ml), being able to detect Ani s 1 in fish extracts from codfish and monkfish.  相似文献   

17.
The third-stage larvae of Anisakis simplex sensu lato (s.l.) are found in many marine fishes. To ensure food safety, it is important to determine whether these larvae are present in the body muscle of commercial fish species. However, there is little information regarding the tissue specificity of Anisakis and two of its sibling species, A. simplex sensu stricto (s.s.) and Anisakis pegreffii, that are common in marine fish in Japanese waters. We orally challenged rainbow trout (Oncorhynchus mykiss (Walbaum)), and olive flounder (Paralichthys olivaceus (Temminck and Schlegel)) with L3 larvae of these two sibling species and monitored infection for 5weeks. In rainbow trout, A. simplex s.s., but not A. pegreffii larvae, migrated into the body muscle. A small number of freely moving A. pegreffii larvae were recovered within the body cavity. In olive flounder, A. simplex s.s. larvae were found in both the body cavity and body muscle. A. pegreffii larvae were found only in the body cavity and primarily encapsulated in lumps. Our results indicate that there are differences in the sites of infection and host specificity between the two sibling species of A. simplex s.l.  相似文献   

18.
The third-stage (L3) larvae of Anisakis, which are the etiological agents of human anisakiasis, have been categorized morphologically into Anisakis Type I larvae and Anisakis Type II larvae. Genetic analysis has allowed easy identification of these larvae: Anisakis Type I larvae include the species Anisakis simplex sensu stricto, Anisakis pegreffii, Anisakis simplex C, Anisakis typica, Anisakis ziphidarum, and Anisakis nascettii, whereas Anisakis Type II larvae include the species Anisakis physeteris, Anisakis brevispiculata, and Anisakis paggiae. Since human consumption of raw fish and squid is common in Japan, we investigated Anisakis L3 larvae in 44 specimens of Beryx splendens from Japanese waters. A total of 730 Anisakis L3 larvae collected from B. splendens were divided morphologically into 4 types: Type I, Type II, and 2 other types that were similar to Anisakis Type III and Type IV described by Shiraki (1974). Anisakis Type II, Type III, and Type IV larvae all had a short ventriculus, but their tails were morphologically different. In addition, data from genetic analysis indicated that Anisakis Type II, Type III, and Type IV larvae could be identified as A. physeteris, A. brevispiculata, and A. paggiae, respectively. Therefore, A. physeteris, A. brevispiculata, and A. paggiae can be readily differentiated not only by genetic analysis but also by morphological characteristics of L3 larvae.  相似文献   

19.
The genetic relationships among 9 taxa of Anisakis Dujardin, 1845 (A. simplex (sensu stricto), A. pegreffii, A. simplex C., A. typica, A. ziphidarum, A. physeteris, A. brevispiculata, A. paggiae, and Anisakis sp.) were inferred from sequence analysis (629 bp) of the mitochondrial cox2 gene. Genetic divergence among the considered taxa, estimated by p-distance, ranged from p = 0.055, between sibling species of the A. simplex complex, to p = 0.12, between morphologically differentiated species, i.e., A. ziphidarum and A. typica. The highest level was detected when comparing A. physeteris, A. brevispiculata, and A. paggiae versus A. simplex complex (on average p = 0.13) or versus A. typica (on average p = 0.14). Sequence data from the newly identified Anisakis sp. poorly aligned with other Anisakis species but was most similar to A. ziphidarum (p = 0.08). Phylogenetic analyses based upon Parsimony and Bayesian Inference, as well as phenetic analysis based upon Neighbor-Joining p-distance values, generated similar tree topologies, each well supported at major nodes. All analyses delineated two main claides, the first encompassing A. physeteris, A. brevispiculata, and A. paggiae as a sister group to all the remaining species, and the second comprising the species of the A. simplex complex (A. simplex (s.s.), A. pegreffii and A. simplex C), A. typica, A. ziphidarum, and Anisakis sp. In general, mtDNA-based tree topologies showed high congruence with those generated from nuclear data sets (19 enzyme-loci) and with morphological data delineating adult and larval stages of the Anisakis spp.; however, precise positioning of A. typica and A. ziphidarum remain poorly resolved, though they consistently clustered in the same clade as Anisakis sp. and the A. simplex complex. Comparison of anisakid data with those currently available for their cetacean-definitive hosts suggests parallelism between host and parasite phylogenetic tree topologies.  相似文献   

20.
We determined the nucleotide sequence of the complete mitochondrial genome of the nematode species Anisakis simplex. The genome is circular, 13,916 bp in size and conforms to the general characteristics of nematode mitochondrial DNAs. The gene arrangement of A. simplex is the same as that of Ascaris suum and almost identical to those of rhabditid species with a minor exception concerning the relative position of the AT-rich and non-coding regions and radically different from those of spirurid species. Along with comparisons of gene arrangement, phylogenetic analyses (maximum parsimony, neighbour joining and maximum likelihood methods) based on concatenated amino acid sequences of 12 protein-coding genes from 13 nematode species provided strong support for the sister-group relationship between Ascaridida and Rhabditida. The Shimodaira-Hasegawa and Templeton's tests both rejected the alternative hypothesis of a closer relationship between Ascaridida and Spirurida. These results contradicted the traditional view of nematode classification and a recent molecular phylogenetic study of 18S rDNA data that assigned Ascaridida and Spirurida as being a sister-group. Mapping of gene arrangement across the phylogenetic tree lead to the assumption that the conserved gene arrangement found in Ascaridida-Rhabditida members might have been acquired after the most recent common ancestor of ascaridid/rhabditid members branched off from the basal stock of the rhabditid lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号