首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
The ING (inhibitor of growth) protein family includes a group of homologous nuclear proteins that share a highly conserved plant homeodomain (PHD) finger domain at their carboxyl termini. Members of this family are found in multiprotein complexes that posttranslationally modify histones, suggesting that these proteins serve a general role in permitting various enzymatic activities to interact with nucleosomes. There are three members of the ING family in Saccharomyces cerevisiae: Yng1p, Yng2p, and Pho23p. Yng1p is a component of the NuA3 histone acetyltransferase complex and is required for the interaction of NuA3 with chromatin. To gain insight into the function of the ING proteins, we made use of a genetic strategy to identify genes required for the binding of Yng1p to histones. Using the toxicity of YNG1 overexpression as a tool, we showed that Yng1p interacts with the amino-terminal tail of histone H3 and that this interaction can be disrupted by loss of lysine 4 methylation within this tail. Additionally, we mapped the region of Yng1p required for overexpression of toxicity to the PHD finger, showed that this region capable of binding lysine 4-methylated histone H3 in vitro, and demonstrated that mutations of the PHD finger that abolish binding in vitro are no longer toxic in vivo. These results identify a novel function for the Yng1p PHD finger in promoting stabilization of the NuA3 complex at chromatin through recognition of histone H3 lysine 4 methylation.  相似文献   

4.
Inhibitor of growth 1 (ING1) is implicated in oncogenesis, DNA damage repair, and apoptosis. Mutations within the ING1 gene and altered expression levels of ING1 are found in multiple human cancers. Here, we show that both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by the peptide microarrays. The molecular mechanism of the histone recognition is elucidated based on a 2.1 Å-resolution crystal structure of the PHD-H3K4me3 complex. The K4me3 occupies a deep hydrophobic pocket formed by the conserved Y212 and W235 residues that make cation-π contacts with the trimethylammonium group. Both aromatic residues are essential in the H3K4me3 recognition, as substitution of these residues with Ala disrupts the interaction. Unlike the wild-type ING1, the W235A mutant, overexpressed in the stable clones of melanoma cells or in HT1080 cells, was unable to stimulate DNA repair after UV irradiation or promote DNA-damage-induced apoptosis, indicating that H3K4me3 binding is necessary for these biological functions of ING1. Furthermore, N216S, V218I, and G221V mutations, found in human malignances, impair the ability of ING1 to associate with H3K4me3 or to induce nucleotide repair and cell death, linking the tumorigenic activity of ING1 with epigenetic regulation. Together, our findings reveal the critical role of the H3K4me3 interaction in mediating cellular responses to genotoxic stresses and offer new insight into the molecular mechanism underlying the tumor suppressive activity of ING1.  相似文献   

5.
6.
7.
A major challenge in chromatin biology is to understand the mechanisms by which chromatin is remodeled into active or inactive states as required during development and cell differentiation. One complex implicated in these processes is the nucleosome remodeling and histone deacetylase (NuRD) complex, which contains both histone deacetylase and nucleosome remodeling activities and has been implicated in the silencing of subsets of genes involved in various stages of cellular development. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a core component of the NuRD complex and contains a nucleosome remodeling ATPase domain along with two chromodomains and two plant homeodomain (PHD) fingers. We have previously demonstrated that the second PHD finger of CHD4 binds peptides corresponding to the N terminus of histone H3 methylated at Lys(9). Here, we determine the solution structure of PHD2 in complex with H3K9me3, revealing the molecular basis of histone recognition, including a cation-π recognition mechanism for methylated Lys(9). Additionally, we demonstrate that the first PHD finger also exhibits binding to the N terminus of H3, and we establish the histone-binding surface of this domain. This is the first instance where histone binding ability has been demonstrated for two separate PHD modules within the one protein. These findings suggest that CHD4 could bind to two H3 N-terminal tails on the same nucleosome or on two separate nucleosomes simultaneously, presenting exciting implications for the mechanism by which CHD4 and the NuRD complex could direct chromatin remodeling.  相似文献   

8.
9.
The Inhibitor of Growth (ING) proteins represent a type II tumor suppressor family comprising five conserved genes, ING1 to ING5. While ING1, ING2 and ING3 proteins are stable components of the mSIN3a-HDAC complexes, the association of ING1, ING4 and ING5 with HAT protein complexes was also reported. Among these the ING1 and ING2 have been analyzed more deeply. Similar to other tumor suppressor factors the ING proteins are also involved in many cellular pathways linked to cancer and cell proliferation such as cell cycle regulation, cellular senescence, DNA repair, apoptosis, inhibition of angiogenesis and modulation of chromatin. A common structural feature of ING factors is the conserved plant homeodomain (PHD), which can bind directly to the histone mark trimethylated lysine of histone H3 (H3K4me3). PHD mutants lose the ability to undergo cellular senescence linking chromatin mark recognition with cellular senescence. ING1 and ING2 are localized in the cell nucleus and associated with chromatin modifying enzymes, linking tumor suppression directly to chromatin regulation. In line with this, the expression of ING1 in tumors is aberrant or identified point mutations are mostly localized in the PHD finger and affect histone binding. Interestingly, ING1 protein levels increase in replicative senescent cells, latter representing an efficient pathway to inhibit cancer proliferation. In association with this, suppression of p33ING1 expression prolongs replicative life span and is also sufficient to bypass oncogene-induced senescence. Recent analyses of ING1- and ING2-deficient mice confirm a tumor suppressive role of ING1 and ING2 and also indicate an essential role of ING2 in meiosis. Here we summarize the activity of ING1 and ING2 as tumor suppressors, chromatin factors and in development.  相似文献   

10.
Using peptide arrays and binding to native histone proteins, we show that the ADD domain of Dnmt3a specifically interacts with the H3 histone 1–19 tail. Binding is disrupted by di- and trimethylation of K4, phosphorylation of T3, S10 or T11 and acetylation of K4. We did not observe binding to the H4 1–19 tail. The ADD domain of Dnmt3b shows the same binding specificity, suggesting that the distinct biological functions of both enzymes are not related to their ADD domains. To establish a functional role of the ADD domain binding to unmodified H3 tails, we analyzed the DNA methylation of in vitro reconstituted chromatin with Dnmt3a2, the Dnmt3a2/Dnmt3L complex, and the catalytic domain of Dnmt3a. All Dnmt3a complexes preferentially methylated linker DNA regions. Chromatin substrates with unmodified H3 tail or with H3K9me3 modification were methylated more efficiently by full-length Dnmt3a and full-length Dnmt3a/3L complexes than chromatin trimethylated at H3K4. In contrast, the catalytic domain of Dnmt3a was not affected by the H3K4me3 modification. These results demonstrate that the binding of the ADD domain to H3 tails unmethylated at K4 leads to the preferential methylation of DNA bound to chromatin with this modification state. Our in vitro results recapitulate DNA methylation patterns observed in genome-wide DNA methylation studies.  相似文献   

11.
12.
Plant homeodomain (PHD) fingers are often present in chromatin-binding proteins and have been shown to bind histone H3 N-terminal tails. Mutations in the autoimmune regulator (AIRE) protein, which harbours two PHD fingers, cause a rare monogenic disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE activates the expression of tissue-specific antigens by directly binding through its first PHD finger (AIRE-PHD1) to histone H3 tails non-methylated at K4 (H3K4me0). Here, we present the solution structure of AIRE-PHD1 in complex with H3K4me0 peptide and show that AIRE-PHD1 is a highly specialized non-modified histone H3 tail reader, as post-translational modifications of the first 10 histone H3 residues reduce binding affinity. In particular, H3R2 dimethylation abrogates AIRE-PHD1 binding in vitro and reduces the in vivo activation of AIRE target genes in HEK293 cells. The observed antagonism by R2 methylation on AIRE-PHD1 binding is unique among the H3K4me0 histone readers and represents the first case of epigenetic negative cross-talk between non-methylated H3K4 and methylated H3R2. Collectively, our results point to a very specific histone code responsible for non-modified H3 tail recognition by AIRE-PHD1 and describe at atomic level one crucial step in the molecular mechanism responsible for antigen expression in the thymus.  相似文献   

13.
14.
Plant homeodomain (PHD) fingers are frequently present in proteins involved in chromatin remodelling, and some of them bind to histones. The family of proteins inhibitors of growth (ING) contains a PHD finger that bind to histone-3 trimethylated at lysine 4, and those of ING1 and ING2 also act as nuclear phosphoinositide receptors. We have determined the structure of ING4 PHD, and characterised its binding to phosphoinositides and histone methylated tails. In contrast to ING2, ING4 is not a phosphoinositide receptor and binds with similar affinity to the different methylation states of histone-3 at lysine 4.  相似文献   

15.
Human multi-domain-containing protein UHRF1 has recently been extensively characterized as a key epigenetic regulator for maintaining DNA methylation patterns. UHRF1 SRA domain preferentially binds to hemimethylated CpG sites, and double Tudor domain has been implicated in recognizing H3K9me3 mark, but the role of the adjacent PHD finger remains unclear. Here, we report the high-resolution crystal structure of UHRF1 PHD finger in complex with N-terminal tail of histone H3. We found that the preceding zinc-Cys4 knuckle is indispensable for the PHD finger of UHRF1 to recognize the first four unmodified residues of histone H3 N-terminal tail. Quantitative binding studies indicated that UHRF1 PHD finger (including the preceding zinc-Cys4 knuckle) acts together with the adjacent double Tudor domain to specifically recognize the H3K9me3 mark. Combinatorial recognition of H3K9me3-containing histone H3 tail by UHRF1 PHD finger and double Tudor domain may play a role in establishing and maintaining histone H3K9 methylation patterns during the cell cycle.  相似文献   

16.
Recognition of histone post-translational modifications is pivotal for directing chromatin-modifying enzymes to specific genomic regions and regulating their activities. Emerging evidence suggests that other structural features of nucleosomes also contribute to precise targeting of downstream chromatin complexes, such as linker DNA, the histone globular domain, and nucleosome spacing. However, how chromatin complexes coordinate individual interactions to achieve high affinity and specificity remains unclear. The Rpd3S histone deacetylase utilizes the chromodomain-containing Eaf3 subunit and the PHD domain-containing Rco1 subunit to recognize nucleosomes that are methylated at lysine 36 of histone H3 (H3K36me). We showed previously that the binding of Eaf3 to H3K36me can be allosterically activated by Rco1. To investigate how this chromatin recognition module is regulated in the context of the Rpd3S complex, we first determined the subunit interaction network of Rpd3S. Interestingly, we found that Rpd3S contains two copies of the essential subunit Rco1, and both copies of Rco1 are required for full functionality of Rpd3S. Our functional dissection of Rco1 revealed that besides its known chromatin-recognition interfaces, other regions of Rco1 are also critical for Rpd3S to recognize its nucleosomal substrates and functionin vivo. This unexpected result uncovered an important and understudied aspect of chromatin recognition. It suggests that precisely reading modified chromatin may not only need the combined actions of reader domains but also require an internal signaling circuit that coordinates the individual actions in a productive way.  相似文献   

17.
We determined the three-dimensional structure of the PHD finger of the rice Siz/PIAS-type SUMO ligase, OsSiz1, by NMR spectroscopy and investigated binding ability for a variety of methylated histone H3 tails, showing that OsSiz1-PHD primarily recognizes dimethylated Arg2 of the histone H3 and that methylations at Arg2 and Lys4 reveal synergy effect on binding to OsSiz1-PHD. The K4 cage of OsSiz1-PHD for trimethylated Lys4 of H3K4me3 was similar to that of the BPTF-PHD finger, while the R2 pocket for Arg2 was different. It is intriguing that the PHD module of Siz/PIAS plays an important role, with collaboration with the DNA binding domain SAP, in gene regulation through SUMOylation of a variety of effectors associated with the methylated arginine-riched chromatin domains.  相似文献   

18.
19.
20.
Qin S  Jin L  Zhang J  Liu L  Ji P  Wu M  Wu J  Shi Y 《The Journal of biological chemistry》2011,286(42):36944-36955
MOZ (monocytic leukemic zinc-finger protein) and MORF (MOZ-related factor) are histone acetyltransferases important for HOX gene expression as well as embryo and postnatal development. They form complexes with other regulatory subunits through the scaffold proteins BRPF1/2/3 (bromodomain-PHD (plant homeodomain) finger proteins 1, 2, or 3). BRPF proteins have multiple domains, including two PHD fingers, for potential interactions with histones. Here we show that the first PHD finger of BRPF2 specifically recognizes the N-terminal tail of unmodified histone H3 (unH3) and report the solution structures of this PHD finger both free and in complex with the unH3 peptide. Structural analysis revealed that the unH3 peptide forms a third antiparallel β-strand that pairs with the PHD1 two-stranded antiparallel β-sheet. The binding specificity was determined primarily through the recognition of arginine 2 and lysine 4 of the unH3 by conserved aspartic acids of PHD1 and of threonine 6 of the unH3 by a conserved asparagine. Isothermal titration calorimetry and NMR assays showed that post-translational modifications such as H3R2me2as, H3T3ph, H3K4me, H3K4ac, and H3T6ph antagonized the interaction between histone H3 and PHD1. Furthermore, histone binding by PHD1 was important for BRPF2 to localize to the HOXA9 locus in vivo. PHD1 is highly conserved in yeast NuA3 and other histone acetyltransferase complexes, so the results reported here also shed light on the function and regulation of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号