首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The activity of the triacylglycerol bioassembly enzyme, diacylglycerol acyltransferase (DGAT), was characterized in microsomal fractions prepared from bovine subcutaneous (SC) adipose, intramuscular (IM) adipose, and muscle (pars costalis diaphragmatis) tissue. The activity of DGAT was generally higher from SC adipose tissue than from IM adipose or muscle tissue. The characteristics of DGAT activity from the three bovine tissues resembled the activity characteristics observed in previous studies from various other organisms and tissues; the pH optimum was near neutrality, the activity was almost completely inhibited by pre-incubation with N-ethylmaleimide (NEM), and the enzyme accepted a broad range of acyl-CoAs and sn-1,2-diacylglycerols. In some aspects, the SC adipose tissue DGAT activity was different from the DGAT activity from the other two tissues. The SC adipose tissue DGAT activity was not as susceptible to inhibition by NEM as the enzymes from the two other tissue sources, and it exhibited increased specificity for substrates containing oleoyl moieties. The differences in DGAT properties between the three bovine tissues may account to some extent for the differences in the relative fatty acid composition and the positional distribution of fatty acids in triacylglycerol between bovine tissues. The observed differences in enzymatic properties also support recent biochemical and molecular genetic observations that imply the existence of multiple DGAT genes and/or isoforms.  相似文献   

2.
Diacylglycerol acyltransferase (EC 2.3.1.20) activity was assayed during the maturation of seeds of oilseed rape (Brassica napus L.) and safflower (Carthamus tinctorius L.). Developmental studies were also conducted with microspore-derived embryos of oilseed rape (B. napus L. cv Topas) and an embryogenic microspore-derived cell-suspension culture of winter oilseed rape (B. napus L. cv Jet Neuf). In the maturing seeds, diacylglycerol acyltransferase activity increased to a maximum during rapid accumulation of lipid and declined, thereafter, with seed maturity. In microspore-derived embryos of oilseed rape (cv Topas), high levels of diacylglycerol acyltransferase activity were found throughout the early torpedo to late cotyledonary developmental stages with maximum enzyme specific activity associated with the mid-cotyledonary developmental stage. The cell-suspension culture of winter oilseed rape (cv Jet Neuf) contained 3 to 4% triacylglycerol on a dry weight basis and represented about half of the total lipid. The fatty acid profile of total lipid and triacylglycerol in the cell-suspension culture was similar in samples taken during a 1-year period. The Jet Neuf culture contained diacylglycerol acyltransferase with specific activity similar to that of Topas microspore-derived embryos. Jet Neuf diacylglycerol acyltransferase also displayed an enhanced specificity for erucoyl-CoA over oleoyl-CoA when assayed with 14 [mu]M acyl-coenzyme A in the reaction mixture. The specific activity of diacylglycerol acyltransferase in homogenates prepared from the Jet Neuf culture ranged from 5 to 15 pmol of triacylglycerol min-1 mg-1 of protein when assayed at intervals during a period of 1 year. Thus, the cell-suspension culture may represent an attractive tissue source for purification and characterization of triacyl-glycerol biosynthetic enzymes.  相似文献   

3.
Fatty acid metabolism and triacylglycerol synthesis are critical processes for the survival of hibernating mammals that undergo a prolonged fasting period. Fatty acid synthase, fatty-acid-CoA ligase, diacylglycerol acyltransferase, and monoacylglycerol acyltransferase activities were measured in liver and in white and brown adipose tissue, in order to determine whether enzymes of lipogenesis and triacylglycerol synthesis vary seasonally during hibernation in the yellow-bellied marmot (Marmota flaviventris). Compared with mid-winter hibernation, fatty acid synthase activity was higher in all three tissues during early spring when marmots emerged from hibernation and in mid-summer when they were feeding, consistent with the synthesis of fatty acids from the carbohydrate-rich summer diet. Fatty-acid-CoA ligase and diacylglycerol acyltransferase activities were highest in summer in white adipose tissue when triacylglycerol synthesis would be expected to be high; diacylglycerol acyltransferase activity was also high in brown adipose tissue during spring and summer. In liver, however, diacylglycerol acyltransferase specific activity was highest during hibernation, suggesting that triacylglycerol synthesis may be prominent in liver in winter. Monoacylglycerol acyltransferase activity, which may aid in the retention of essential fatty-acids, was 80-fold higher in liver than in white or brown adipose tissue, but did not vary seasonally. Its dependence on palmitoyl-CoA suggests that a divalent cation might play a role in enzyme activation. The high hepatic diacylglycerol acyltransferase activity during hibernation suggests that the metabolism of very low density lipoprotein may be important in the movement of adipose fatty acids to brown adipose tissue and muscle during the rewarming that occurs periodically during hibernation. These studies suggest that enzymes of lipid metabolism vary seasonally in the marmot, consistent with requirements of this hibernator for triacylglycerol synthesis and metabolism.Abbreviations BAT brown adipose tissue - DGAT diacylglycerol acyltransferase - FAS fatty acid synthase - K m Michaelis constant - MGAT monoacylglycerol acyltransferase - RQ respiratory quotiant - VLDL very low density lipoprotein - WAT white adipose tissue  相似文献   

4.
C M Mansbach 《Enzyme》1976,21(2):137-141
Smooth and rough microsomal fractions were prepared from hamster intestinal mucosa and assayed for RNA, diglyceride acyltransferase, cholinephosphotransferase and lysolecithin acyltransferase. The specific activity of cholinephosphotransferase was 4-fold more in the rough than in the smooth microsomal fractions, whereas diglyceride and lysolecithin acyltransferases were respectively 26 and 57% more active in the rough microsomal fraction. The two acyltransferases were similarly located in the microsomes and more closely corresponded to the location of dietary lipid than cholinephosphotransferase.  相似文献   

5.
The effect of dietary soybean phospholipid on the activities of hepatic triacylglycerol-synthesizing enzymes was compared with soybean oil in fasted-refed rats. Soybean oil at the dietary level corresponding to 20% but not at 5% fatty acid level (21.2 and 5.3% on weight bases, respectively) significantly decreased liver microsomal diacylglycerol acyltransferase activities measured with the endogenous diacylglycerol substrate. Dietary soybean phospholipid even at the dietary level corresponding to 2% fatty acids (3.4% on weight base) significantly decreased the acyltransferase activities measured with endogenous substrate. The dietary phospholipid further decreased the parameter as the dietary level increased, and at the 5% fatty acid level, it was lower than that obtained with soybean oil at 20% fatty acid level. Soybean oil and phospholipid decreased the diacylglycerol acyltransferase activities measured with the saturating concentration of exogenous dioleoylglycerol substrate only when the activities were expressed in terms of total activity (mumol/min per liver) but to much lesser extents. Dietary phospholipid compared to the oil profoundly decreased not only hepatic triacylglycerol but also microsomal diacylglycerol levels. It was indicated that the availability of microsomal diacylglycerol as the substrate for diacylglycerol transferase is the critical determinant in regulating hepatic triacylglycerol synthesis and concentration in this experimental situation. Alterations in the activities of microsomal glycerol 3-phosphate acyltransferase and of the enzymes in fatty acid synthesis could account for the phospholipid-dependent decrease in the microsomal concentration of this intermediate in triacylglycerol synthesis.  相似文献   

6.
1. The effects of dietary modification, including starvation, and of corticotropin injection on the activities of acyl-CoA synthetase, glycerol phosphate acyltransferase, dihydroxyacetone phosphate acyltransferase, phosphatidate phosphohydrolase, diacylglycerol acyltransferase and lipoprotein lipase were measured in adipose tissue. 2. Lipoprotein lipase activities in heart were increased and those in adipose tissue were decreased when rats were fed on diets enriched with corn oil or beef tallow rather than with sucrose or starch. The lipoprotein lipase activity was lower in the adipose tissue of rats fed on the sucrose rather than on the starch diet. 3. Rats fed on the beef tallow diet had slightly higher activities of the total glycerol phosphate acyltransferase in adipose tissue than did rats fed on the sucrose or starch diet. The diacylglycerol acyltransferase and the mitochondrial glycerol phosphate acyltransferase activities were higher for the rats fed on the tallow diet than for those fed on the corn-oil diet. 4. Starvation significantly decreased the activities of lipoprotein lipase (after 24 and 48 h), acyl-CoA synthetase (after 24 h) and of the mitochondrial glycerol phosphate acyltransferase and the N-ethylmaleimide-insensitive dihydroxyacetone phosphate acyltransferase (after 48 h) in adipose tissue. The activities of the microsomal glycerol phosphate acyltransferase, diacylglycerol acyltransferase and the soluble phosphatidate phosphohydrolase were not significantly changed after 24 or 48 h of starvation. 5. The activities of lipoprotein lipase and phosphatidate phosphohydrolase in adipose tissue were decreased 15 min after corticotropin was injected into rats during November to December. No statistically significant differences were found when these experiments were performed during March to September. These differences may be related to the seasonal variation in acute lipolytic responses. 6. These results are discussed in relation to the control of triacylglycerol synthesis and lipoprotein metabolism.  相似文献   

7.
The regulation of cellular diacylglycerol levels may have important consequences for protein kinase C activity. Because monoacylglycerols were said to inhibit the committed step of glycerolipid synthesis, the sn-glycerol-3-P acyltransferase (glycerol-P acyltransferase), we determined (1) whether both the mitochondrial and the microsomal glycerol-P acyltransferase isoenzymes were inhibited by 1- and 2-mono-18:1-glycerols, and their ether and amide analogs and (2) what the mechanism of inhibition was. 1- and 2-mono-18:1-glycerols, their ether and amide analogs, and 1-mono-18:1-glycerol 3-phosphate were all competitive inhibitors of the microsomal glycerol-P acyltransferase activity. The relative Ki values suggested that inhibition was strongest with the radyl group at the sn-1 position and that an oxygen bond is important at the sn-1 position. Although the monoacyl- and monoalkylglycerols were also competitive inhibitors of the mitochondrial glycerol-P acyltransferase, neither of the amide analogs was an inhibitor, suggesting that an oxygen bond is essential at both the sn-1 and sn-2 positions. Because monoradylglycerols inhibit several enzyme activities that contribute to the biosynthesis or the metabolism of diacylglycerol, these inhibitors may function within cells in part to regulate cellular diacylglycerol levels.  相似文献   

8.
An assay procedure for diacylglycerol acyltransferase that allows rapid measurement of the activity of this enzyme in isolated hepatocytes is described. The one-step procedure involves permeabilization of the plasma membrane with digitonin and simultaneous measurement of diacylglycerol acyltransferase activity. Digitonin at a concentration of 64 microg/mg of cellular protein was found to be optimal for exposing microsomal diacylglycerol acyltransferase to the components of the assay. The enzyme assay is linear with time up to 4 min and with protein concentrations in the range 0.25-2.4 mg of cellular protein/assay. It is shown that there is a good correlation of cellular enzyme activity as determined in digitonin-permeabilized hepatocytes with the rate of triacylglycerol synthesis in intact hepatocytes.  相似文献   

9.
We have identified a cDNA from the nematode worm Caenorhabditis elegans that encodes an acyl-CoA:diacylglycerol acyltransferase (DGAT). Its expression in Saccharomyces cerevisiae resulted in an increase both in triacylglycerol content and in microsomal oleyl-CoA:diacylglycerol acyltransferase activity. Such effects were similar to those of characterized plant DGAT genes. This is the first DGAT gene isolated from an invertebrate. The phylogenetic relationships between DGATs and animal and yeast acyl-CoA:sterol acyltransferases are illustrated.  相似文献   

10.
Because the onset of triacylglycerol-rich lipoprotein synthesis occurs in guinea pig liver during fetal life, we investigated the microsomal enzyme activities of triacylglycerol synthesis in fetal and postnatal guinea pig liver. Hepatic monoacylglycerol acyltransferase specific and total microsomal activities peaked by the 50th day of gestation and declined rapidly after birth to levels that were virtually unmeasurable in the adult. Peak fetal specific activity was more than 75-fold higher than observed in the adult. The specific activities of fatty acid CoA ligase and lysophosphatidic acid acyltransferase increased 2- to 3-fold before birth; lysophosphatidic acid acyltransferase increased a further 2.6-fold during the first week of life. Specific activities of phosphatidic acid phosphatase, microsomal glycerophosphate acyltransferase, and diacylglycerol acyltransferase varied minimally over the time course investigated. These data demonstrate that selective changes occur in guinea pig hepatic microsomal activities of triacylglycerol synthesis before birth. Because of an approximate 11-fold increase in hepatic microsomal protein between birth and the adult, however, major increases in total microsomal activity of all the triacylglycerol synthetic activities occurred after birth. The pattern of monoacylglycerol acyltransferase specific and total microsomal activities differs from that of the rat in occurring primarily during the last third of gestation instead of during the suckling period. This pattern provides evidence that hepatic monoacylglycerol acyltransferase activity probably does not function to acylate 2-monoacylglycerols derived from partial hydrolysis of diet-derived triacylglycerol.  相似文献   

11.
The activities of three enzymes involved in phospholipid synthesis, sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15), cholinephosphate cytidylyltransferase (EC 2.7.7.15), and cholinephosphotransferase (EC 2.7.8.2), were assayed in adult skeletal muscle. The acyltransferase and cholinephosphotransferase were concentrated in the sarcoplasmic reticulum, where their specific activities were 80 and 33%, respectively, of the specific activity in liver microsomes. Cytidylyltransferase activity was distributed throughout the cell with most of the activity in the cytosol. Its activity in muscle was only 10% of liver activity. Functional sarcoplasmic reticulum was isolated by density gradient centrifugation after calcium loading in the presence of phosphate. The specific activities of these enzymes wee undiminished in the calcium-loaded fraction, suggesting that these enzymes are intrinsic components of the sarcoplasmic reticulum. In developing muscle (2 and 6 days postnatal) acyltransferase and cholinephosphotransferase activities were also present in a calcium-loaded microsomal subfraction at the same level as in the adult. Cytidylyltransferase activity, on the other hand, was 8-fold higher in developing muscle. In addition, developing muscle had a 3-fold increase in the proportion of cytidylyltransferase associated with the microsomal fraction. These data suggest that sarcoplasmic reticulum has the capacity for phospholipid synthesis in mature and developing muscle, and that the rate of phosphatidylcholine synthesis may be regulated by the levels of cytidylyltransferase and by translocation of this enzyme between the sarcoplasmic reticulum and the cytosol.  相似文献   

12.
Developing sunflower seeds exhibit a high diacylglycerol acyltransferase (DAGAT, EC 2.3.1.20) activity. The distribution of the enzyme has been studied in subcellular fractions prepared by differential centrifugation of seed homogenate. Its activity was characterized using [1-(14)C]oleoyl-CoA and diolein dispersed in Tween 20. Some properties of the microsomal fraction of DAGAT were investigated. Hyperbolic kinetics were observed, the apparent K(m) was 60 microM and the specific activity of the reaction 15 pmol/min/mg of protein. Addition of BSA (0.1%) stimulated oleate incorporation, which was not dependent on the presence of exogenous diacylglycerol. Detergents which might solubilize DAGAT, Triton X-100 and CHAPS, were tested for enzyme inhibition, and CHAPS was found to be the least denaturing.  相似文献   

13.
A high cholesterol diet induced a fatty liver and an increase in cholesterol oleate in spontaneously hypertensive rats. The activity of microsomal glycerophosphate acyltransferase in liver increased 2-3-fold to meet the increased supply of oleate, the synthesis of which was stimulated by a 10-fold increase in microsomal delta 9-desaturase activity. Hepatic fatty acid synthetase and diacylglycerol acyltransferase activities were decreased somewhat. These results, together with the fact that the large increases in hepatic cholesterol ester and triacylglycerol were not correspondingly reflected in plasma, indicated that the fatty liver resulted from decreased secretion of lipoprotein rather than increased lipogenesis. Endogenous cholesterol in liver microsomes increased 2-fold and hepatic acyl-CoA:cholesterol acyltransferase activity increased 3-fold, whereas plasma lecithin:cholesterol acyltransferase activity was unchanged. Thus, the increase in cholesterol oleate seen in spontaneously hypertensive rats fed a high cholesterol diet is due mainly to increases in acyl-CoA:cholesterol acyltransferase and delta 9-desaturase activities.  相似文献   

14.
The placenta plays a major role in transporting lipid to the developing foetus. Since previous studies have suggested that placental lipid transport involves intermediate esterification steps, we investigated selected microsomal and lysosomal enzymes of triacylglycerol metabolism in rat placenta. Between gestational days 10 and 14, microsomal phosphatidic acid phosphatase specific activity was 6-fold greater than the activity in adult rat liver. Phosphatidic acid phosphatase activity decreased 50% on day 15. Studies employing several different phosphorylated substrates indicated a high degree of substrate specificity. Lysosomal triacylglycerol lipase and cholesterol esterase activities decreased about 50% between days 15 and 18, then rose late in gestation. No changes were observed in the specific activities of fatty acid: CoA ligase, glycerolphosphate acyltransferase, lysophosphatidate acyltransferase, diacylglycerol acyltransferase or diacylglycerol cholinephosphotransferase during the final 12 days of gestation. Kinetic observations (competitive inhibition by alternative substrates, pH-dependence and thermal inactivation) were consistent with the hypothesis that glycerol phosphate and dihydroxyacetone phosphate can be acylated by a single microsomal enzyme in placenta. Except for fatty acid: CoA ligase, the activities of microsomal and lysosomal enzymes of triacylglycerol metabolism were comparable with those in adult rat liver. These observations are consistent with physiological studies suggesting that triacylglycerol synthetic and degradative pathways are very active in rat placenta.  相似文献   

15.
The last step in triacylglycerols (TAG) biosynthesis in oil seeds, the acylation of diacylglycerols (DAG), is catalysed by two types of enzymes: the acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). The relative contribution of these enzymes in the synthesis of TAG has not yet been defined in any plant tissue. In the presented work, microsomal preparations were obtained from sunflower and safflower seeds at different stages of development and used in DGAT and PDAT enzyme assays. The ratio between PDAT and DGAT activity differed dramatically between the two different species. DGAT activities were measured with two different acyl acceptors and assay methods using two different acyl-CoAs, and in all cases the ratio of PDAT to DGAT activity was significantly higher in safflower than sunflower. The sunflower DGAT, measured by both methods, showed significant higher activity with 18:2-CoA than with 18:1-CoA, whereas the opposite specificity was seen with the safflower enzyme. The specificities of PDAT on the other hand, were similar in both species with 18:2-phosphatidylcholine being a better acyl donor than 18:1-PC and with acyl groups at the sn-2 position utilised about fourfold the rate of the sn-1 position. No DAG:DAG transacylase activity could be detected in the microsomal preparations.  相似文献   

16.
17.
The topography of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol biosynthetic enzymes within the transverse plane of rat liver microsomes was investigated using two impermeant inhibitors, mercury-dextran and dextran-maleimide. Between 70 and 98% of the activities of fatty acid : CoA ligase (EC 6.2.1.3), sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15), phosphatidic acid phosphatase (EC 3.1.3.4), diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) were inactivated by mercury-dextran. Dextran-maleimide caused 52% inactivation of the sn-glycerol-3-phosphate acyltransferase. Inactivation of each of these activities except fatty acid : CoA ligase occurred in microsomal vesicles which remained intact as evidenced by the maintenance of highly latent mannose-6-phosphatase activity (EC 3.1.3.9). These glycerolipid biosynthetic activities were not latent, indicating that substrates have free access to the active sites. Moreover, ATP, CDP-choline and CMP appeared unable to penetrate the microsome membrane. These data indicate that the active sites of thease enzymes are located on the external surface of microsomal vesicles. It is concluded that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum.  相似文献   

18.
Diacylglycerol esterification provides an excellent target for the pharmacological reduction of triglyceride accumulation in several human disease states. We have used Saccharomyces cerevisiae as a model system to study this critical component of triglyceride synthesis. Recent studies of an oleaginous fungus, Mortierella ramanniana, identified a new family of enzymes with in vitro acyl-CoA:diacylglycerol acyltransferase activity. We show here that DGA1, the sole member of this gene family in yeast, has a physiological role in triglyceride synthesis. Metabolic labeling of DGA1 deletion strains with triglyceride precursors detected significant reductions in triglyceride synthesis. Triglyceride synthesis was virtually abolished in four different growth conditions when DGA1 was deleted in concert with LRO1, an enzyme that esterifies diacylglycerol from a phospholipid acyl donor. The relative contributions of the two enzymes depended on growth conditions. The residual synthesis was lost when ARE2, encoding an acyl-CoA:sterol acyltransferase, was deleted. In vitro microsomal assays verified that DGA1 and ARE2 mediate acyl-CoA:diacylglycerol acyltransferase reactions. Three enzymes can thus account for diacylglycerol esterification in yeast. Yeast strains deficient in both diacylglycerol and sterol esterification showed only a slight growth defect indicating that neutral lipid synthesis is dispensable under common laboratory conditions.  相似文献   

19.
Isolated rat hepatocytes were used to investigate the possibility of a short-term effect of glucagon on the synthesis of triacylglycerols in the liver. Incubation of hepatocytes in the presence of glucagon, followed by homogenization in a buffer containing F- (50 mM) and EDTA (2.5 mM), resulted in a 53% decrease in activity of microsomal diacylglycerol acyltransferase (EC 2.3.1.20), the only enzyme that is exclusively involved in the synthesis of triacylglycerols. The activity of cholinephosphotransferase (EC 2.7.8.2), which also uses diacylglycerols as substrate, was not decreased after exposure of the hepatocytes to glucagon. This may imply that triacylglycerol synthesis can be regulated independently of phosphatidylcholine synthesis. The activity of diacylglycerol acyltransferase in microsomes isolated from a homogenate of whole liver could be reduced by preincubating the microsomes with Mg2+ (5 mM), ATP (1 mM) and 105 000 X g supernatant. The enzyme could be reactivated by incubation of the washed microsomes with a 105 000 X g supernatant in the presence of dithiothreitol (5 mM). Fluoride (50 mM) inhibited this reactivation. It is concluded that the activity of diacylglycerol acyltransferase is subject to hormonal short-term control, possibly via a phosphorylation-dephosphorylation mechanism.  相似文献   

20.
Investigations were performed on the influence of membrane lipids on arachidonoyl-CoA:lysophosphatidylcholine acyltransferase in microsomal membranes from control and ras-transformed NIH 3T3 fibroblasts. Of all the tested phospholipids only sphingomyelin induced activation of acyltransferase in membranes from ras-transformed cells. No specific phospholipid effect on the acyltransferase was observed in microsomal membranes from control fibroblasts. Diacylglycerol was found to inhibit acyltransferase in both cell lines, whereas ceramide accumulation induced inhibition only in membranes from the transformed cells. The effects of diacylglycerol, ceramide, sphingomyelin and sphingomyelinase are discussed with respect to their putative roles in the signal transduction pathways in oncogene-expressing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号