首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene-based silver nanoparticles (Ag NPs–GE) material has been developed and demonstrated antibacterial effect against Escherichia coli and Pseudomonas aeruginosa. In this study, the antibacterial activity and mechanism on P. aeruginosa were investigated. The experiments results showed the minimum bactericidal concentration of Ag NPs–GE to P. aeruginosa is 20 μg/ml. When P. aeruginosa were exposed to 20 μg/ml Ag NPs–GE for 1 h, the cell wall was breakdown. In order to study the mechanism of antibacterial effect of Ag NPs–GE, two-dimensional electrophoresis was carried out to compare the protein expressional profiles of P. aeruginosa exposed to 5 μg/ml Ag NPs–GE or 5 μg/ml AgNO3 with the untreated bacteria. Identification of differentially expressed protein was performed by MALDI–TOF/TOF MS. The change of proteomic profile induced by Ag NPs–GE was distinct from that induced by AgNO3. Seven identified proteins were found induced and nine proteins were suppressed by Ag NPs–GE. Five identified proteins were found induced and twenty proteins were suppressed by AgNO3. In addition, either Ag NPs–GE or AgNO3 suppressed the expression of eight proteins, amidotransferase, 30S ribosomal protein S6, bifunctional proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase, arginyl-tRNA synthetase, nitroreductase, acetolactate synthase 3, methionyl-tRNA synthetase and periplasmic tail-specific protease. Furthermore, gene ontology analysis and KEGG pathway analysis were used to characterize the functions of those proteins.  相似文献   

2.
Diarrhea and edema disease in weaned piglets due to infection by Escherichia coli F18 is a leading cause of economic loss in the pig industry. Resistance to E. coli F18 depends on expression of receptors on intestinal epithelial cells, and individual immunity. This study was conducted in Sutai pig E. coli F18-resistant and -susceptible full sib-pair individuals, identified on the basis of resource populations and verification of adhesion assays. The molecular mechanism underlying E. coli F18 resistance was investigated through analysis of the expression of E. coli F18 receptor associated and innate immunity proteins, using proteomics and bioinformatics techniques. Two-dimensional electrophoresis analysis revealed a total of 20 differentially expressed proteins in E. coli F18-resistant and -susceptible groups (10 upregulated and 10 downregulated). A total of 16 differentially expressed proteins were identified by MALDI TOF/TOF mass spectral analysis. According to gene ontology and pathway analysis, differentially expressed proteins were mainly involved in cell adhesion, immune response and other biologically relevant functions. Network analysis of interactions between differentially expressed proteins indicated a likelihood of their involvement in E. coli F18 infection. The expression levels of several important proteins including actin beta (ACTB), vinculin (VCL), heat stress proteins (HSPs) and transferrin (TF) in E. coli F18-resistant and -susceptible individuals were verified by Western blotting, supporting the identification of ACTB, VCL, HSPs and TF as promising candidate proteins for association with E. coli F18 susceptibility.  相似文献   

3.
4.
5.
The use of Bacillus probiotics has been demonstrated as a promising method in the biocontrol of bacterial diseases in aquaculture. However, the molecular antibacterial mechanism of Bacillus still remains unclear. In order to explore the antibacterial mechanism of the potential antagonistic Bacillus amyloliquefaciens strain G1, comparative proteomics between B. amyloliquefaciens strain G1 and its non-antagonistic mutant strain was investigated. The 2-dimensional electrophoresis gel maps of their total extracted proteins were described and 42 different proteins were found to be highly expressed in strain G1 in comparison with those in the mutant strain. 35 of these up-regulated proteins were successfully identified using MALDI-TOF-TOF MS and databank analysis, and their biological functions were analyzed through the KEGG database. The increased expression of these proteins suggested that high levels of energy metabolism, biosynthesis and stress resistance could play important roles in strain G1’s antagonism. To our knowledge, this is the first report on the proteins involved in the antagonism mechanism of B. amyloliquefaciens using a proteomic approach and the proteomic data also contribute to a better understanding of the molecular basis for the antagonism of B. amyloliquefaciens.  相似文献   

6.
Thermococcus onnurineus NA1 is a hyperthermophilic archaeon that grows optimally at >80°C. The deblocking aminopeptidase (DAP) (TNA1-DAP1) encoded in Ton_1032 of T. onnurineus NA1 is considered a major DAP. However, four genes encoding putative DAP have been identified from a genomic analysis of T. onnurineus NA1. A proteomic analysis revealed that all four DAPs were differentially induced in YPS culture medium and, particularly, two DAPs (TNA1-DAP1 and TNA1-DAP2) were dominantly expressed in T. onnurineus NA1. The biochemical properties and enzyme activity of DAPs induced in an E. coli expression system suggested that the two major DAPs play complementary roles in T. onnurineus NA1.  相似文献   

7.

Background

Helicobacter hepaticus colonizes the intestine and liver of mice causing hepatobiliary disorders such as hepatitis and hepatocellular carcinoma, and has also been associated with inflammatory bowel disease in children. In its habitat, H. hepaticus must encounter bile which has potent antibacterial properties. To elucidate virulence and host-specific adaptation mechanisms of H. hepaticus modulated by human or porcine bile, a proteomic study of its response to the two types of bile was performed employing two-dimensional gel electrophoresis (2-DE) and mass spectrometry.

Results

The 2-DE and mass spectrometry analyses of the proteome revealed that 46 proteins of H. hepaticus were differentially expressed in human bile, 18 up-regulated and 28 down-regulated. In the case of porcine bile, 32 proteins were differentially expressed of which 19 were up-regulated, and 13 were down-regulated. Functional classifications revealed that identified proteins participated in various biological functions including stress response, energy metabolism, membrane stability, motility, virulence and colonization. Selected genes were analyzed by RT-PCR to provide internal validation for the proteomic data as well as provide insight into specific expressions of motility, colonization and virulence genes of H. hepaticus in response to human or porcine bile.

Conclusions

Overall, the data suggested that bile is an important factor that determines virulence, host adaptation, localization and colonization of specific niches within host environment.  相似文献   

8.
A mouse homozygous for the spontaneous mutation uncovered (Uncv) has a hairless phenotype. A 309-bp non-frameshift deletion mutation in the N-terminal cytoplasmic domain of iRhom2 was identified in Uncv mice (iRhom2Uncv) using target region sequencing. The detailed molecular basis for how the iRhom2 mutation causes the hairless phenotype observed in the homozygous iRhom2Uncv mouse remains unknown. To identify differentially expressed proteins in the skin of wild-type and homozygous iRhom2Uncv littermates at postnatal day 5, proteomic approaches, including two-dimensional gel electrophoresis and mass spectrometry were used. Twelve proteins were differentially expressed in the skin in a comparison between wild-type and homozygous iRhom2Uncv mice. A selection of the proteomic results were tested and verified using qRT-PCR, western blot and immunohistochemistry. These data indicate that differentially expressed proteins, especially KRT73, MEMO1 and Coro-1, might participate in the mechanism by which iRhom2 regulates the development of murine skin. [BMB Reports 2015; 48(1): 19-24]  相似文献   

9.
The therapeutic mainstay against the protozoan parasite Leishmania is still based on the antiquated pentavalent antimonials, but resistance is increasing in several parts of the world. Resistance is now partly understood in laboratory promastigote isolates, but the mechanism leading to drug resistance in amastigote isolates is lagging behind. Here we describe a comparative proteomic analysis of a genetically related pair of antimonial-sensitive and -resistant Leishmania infantum axenic amastigote strains. The proteomics screen has highlighted a number of proteins differentially expressed in the resistant parasite. The expression of the protein argininosuccinate synthetase (ARGG) was increased in the drug resistant mutant while a decrease in the expression of the kinetoplastid membrane protein (KMP-11) correlated with the drug resistance phenotype. This proteomic screen highlighted several novel proteins that are putatively involved in resistance to antimonials.  相似文献   

10.
To understand the molecular responses of mature and immature sperm in the catfish Cranoglanis bouderius, we used the iTRAQ proteomics approach to perform proteomic profiling of spermatogenesis in C. bouderius. As a result, 1,941 proteins were identified, including 361 differentially expressed proteins, 157 upregulated proteins and 204 downregulated proteins in mature sperm relative to immature sperm. All of the identified proteins were categorized into seven types of subcellular localizations and three molecular functions and were found to be involved in nine biological processes. All of the differential proteins were involved in 235 different pathways. Moreover, we found that the tricarboxylic acid (TCA) pathway played an important role in the energy metabolism of sperm and that the EABB pathway was involved in the mechanism of spermatogenesis. Our study is the first to use the iTRAQ-based proteomic approach to analyze the catfish sperm proteome, and the results we obtained using this approach are valuable for understanding the molecular mechanisms of fish spermatogenesis.  相似文献   

11.
Protein polyubiquitination is a significant regulator of diverse physiological functions, including sexual reproduction, in plants. Chemical hybridizing agents (CHA) SQ-1 has been shown to induce male sterility in wheat (Triticum aestivum L.) through inhibition of pollen development. This mechanism by which CHA induces male sterility in wheat is unclear. In this study, differential proteomic analysis of polyubiquitinated proteins associated with wheat male sterility was investigated. Wheat plants of the same genetic background were treated with or without CHA. Ubiquitinated proteins were then extracted and enriched for proteomic analysis. Differentially expressed polyubiquitinated proteins in trinuclear stage anther were identified by nanospray liquid chromatography/tandem mass spectrometry. A total of 127 and 131 differentially expressed polyubiquitinated proteins, including heat shock protein 70, ATPase subunit, glycosyltransferase, ubiquitin-related enzyme, and 20S proteasome subunit, were successfully identified by searching against wheat protein database and NCBInr database, respectively. Most of these proteins are related to photosynthesis, carbohydrate and energy metabolism, and multiple metabolic processes. These findings show that alteration of polyubiquitinated proteins is associated with male sterility in wheat.  相似文献   

12.
Peroxynitrite is a highly reactive chemical species with antibacterial properties that are synthesized in immune cells. In a proteomic approach, we identified specific target proteins of peroxynitrite-induced modifications in Escherichia coli. Although peroxynitrite caused a fairly indiscriminate nitration of tyrosine residues, reversible modifications of protein thiols were highly specific. We used a quantitative redox proteomic method based on isotope-coded affinity tag chemistry and identified four proteins consistently thiol-modified in cells treated with peroxynitrite as follows: AsnB, FrmA, MaeB, and RidA. All four were required for peroxynitrite stress tolerance in vivo. Three of the identified proteins were modified at highly conserved cysteines, and MaeB and FrmA are known to be directly involved in the oxidative and nitrosative stress response in E. coli. In in vitro studies, we could show that the activity of RidA, a recently discovered enamine/imine deaminase, is regulated in a specific manner by the modification of its single conserved cysteine. Mutation of this cysteine 107 to serine generated a constitutively active protein that was not susceptible to peroxynitrite.  相似文献   

13.
Late leaf spot is a serious disease of peanut caused by the imperfect fungus, Phaeoisariopsis personata. Wild diploid species, Arachis diogoi. is reported to be highly resistant to this disease and asymptomatic. The objective of this study is to investigate the molecular responses of the wild peanut challenged with the late leaf spot pathogen using cDNA-AFLP and 2D proteomic study. A total of 233 reliable, differentially expressed genes were identified in Arachis diogoi. About one third of the TDFs exhibit no significant similarity with the known sequences in the data bases. Expressed sequence tag data showed that the characterized genes are involved in conferring resistance in the wild peanut to the pathogen challenge. Several genes for proteins involved in cell wall strengthening, hypersensitive cell death and resistance related proteins have been identified. Genes identified for other proteins appear to function in metabolism, signal transduction and defence. Nineteen TDFs based on the homology analysis of genes associated with defence, signal transduction and metabolism were further validated by quantitative real time PCR (qRT-PCR) analyses in resistant wild species in comparison with a susceptible peanut genotype in time course experiments. The proteins corresponding to six TDFs were differentially expressed at protein level also. Differentially expressed TDFs and proteins in wild peanut indicate its defence mechanism upon pathogen challenge and provide initial breakthrough of genes possibly involved in recognition events and early signalling responses to combat the pathogen through subsequent development of resistivity. This is the first attempt to elucidate the molecular basis of the response of the resistant genotype to the late leaf spot pathogen, and its defence mechanism.  相似文献   

14.

Aim

In this study, the effects of the addition of salt to treatment with acids (one of several organic acids and salt in various solutions including rich or minimal broth, buffer, or distilled water) on the reduction of Escherichia coli O157:H7 were investigated. The protein expression profiles corresponding to acid stress (acetic acid) with or without salt addition were studied using a comparative proteomic analysis of E. coli O157:H7.

Methods and Results

When acetic, lactic, or propionic acid was combined with 3% NaCl, mutually antagonistic effects of acid and salt on viability of E. coli O157:H7 were observed only in tryptone and yeast extract broth. After exposure to acetic acid alone or in combination with salt, approximately 851 and 916 protein spots were detected, respectively. Analysis of 10 statistically significant differentially expressed proteins revealed that these proteins are mainly related to energy metabolism.

Conclusions

When we compared protein expression of E. coli O157:H7 treated with acetic acid and the combination of the acid and salt, the differentially expressed proteins were not related to acid stress‐ and salt stress‐inducible proteins such as stress shock proteins.

Significance and Impact of the Study

According to these results, the increased resistance of E. coli O157:H7 to acetic acid after the addition of salt may not be the result of synthesis of proteins related to these phenomena; therefore, further research needs to be conducted to identify the mechanism of the mutually antagonistic effect of some organic acids and salt.  相似文献   

15.

Background

The rising drug resistance in pathogenic bacteria and inefficiency of current antibiotics to meet clinical requirements has augmented the need to establish new and innovative approaches for antibacterial drug discovery involving identification of novel antibacterial targets and inhibitors. Being obligatory for bacterial growth, essential gene products are considered vital as drug targets. The bacterial protein YidC is highly conserved among pathogens and is essential for membrane protein insertion due to which it holds immense potential as a promising target for antibacterial therapy.

Methods/Principal Findings

The aim of this study was to explore the feasibility and efficacy of expressed antisense-mediated gene silencing for specific downregulation of yidC in Escherichia coli. We induced RNA silencing of yidC which resulted in impaired growth of the host cells. This was followed by a search for antibacterial compounds sensitizing the YidC depleted cells as they may act as inhibitors of the essential protein or its products. The present findings affirm that reduction of YidC synthesis results in bacterial growth retardation, which warrants the use of this enzyme as a viable target in search of novel antibacterial agents. Moreover, yidC antisense expression in E. coli resulted in sensitization to antibacterial essential oils eugenol and carvacrol. Fractional Inhibitory Concentration Indices (FICIs) point towards high level of synergy between yidC silencing and eugenol/carvacrol treatment. Finally, as there are no known YidC inhibitors, the RNA silencing approach applied in this study put forward rapid means to screen novel potential YidC inhibitors.

Conclusions/Significance

The present results suggest that YidC is a promising candidate target for screening antibacterial agents. High level of synergy reported here between yidC silencing and eugenol/carvacrol treatment is indicative of a potential antibacterial therapy. This is the first report indicating that the essential gene yidC is a therapeutic target of the antibacterial essential oils eugenol and carvacrol in E. coli.  相似文献   

16.
Proteomics of Chlamydomonas reinhardtii light-harvesting proteins   总被引:1,自引:0,他引:1  
With the recent development of techniques for analyzing transmembrane thylakoid proteins by two-dimensional gel electrophoresis, systematic approaches for proteomic analyses of membrane proteins became feasible. In this study, we established detailed two-dimensional protein maps of Chlamydomonas reinhardtii light-harvesting proteins (Lhca and Lhcb) by extensive tandem mass spectrometric analysis. We predicted eight distinct Lhcb proteins. Although the major Lhcb proteins were highly similar, we identified peptides which were unique for specific lhcbm gene products. Interestingly, lhcbm6 gene products were resolved as multiple spots with different masses and isoelectric points. Gene tagging experiments confirmed the presence of differentially N-terminally processed Lhcbm6 proteins. The mass spectrometric data also revealed differentially N-terminally processed forms of Lhcbm3 and phosphorylation of a threonine residue in the N terminus. The N-terminal processing of Lhcbm3 leads to the removal of the phosphorylation site, indicating a potential novel regulatory mechanism. At least nine different lhca-related gene products were predicted by comparison of the mass spectrometric data against Chlamydomonas expressed sequence tag and genomic databases, demonstrating the extensive variability of the C. reinhardtii Lhca antenna system. Out of these nine, three were identified for the first time at the protein level. This proteomic study demonstrates the complexity of the light-harvesting proteins at the protein level in C. reinhardtii and will be an important basis of future functional studies addressing this diversity.  相似文献   

17.
18.

Background

Toxoplasma encephalitis is caused by the opportunistic protozoan parasite Toxoplasma gondii. Primary infection with T. gondii in immunocompetent individuals remains largely asymptomatic. In contrast, in immunocompromised individuals, reactivation of the parasite results in severe complications and mortality. Molecular changes at the protein level in the host central nervous system and proteins associated with pathogenesis of toxoplasma encephalitis are largely unexplored. We used a global quantitative proteomic strategy to identify differentially regulated proteins and affected molecular networks in the human host during T. gondii infection with HIV co-infection.

Results

We identified 3,496 proteins out of which 607 proteins were differentially expressed (≥1.5-fold) when frontal lobe of the brain from patients diagnosed with toxoplasma encephalitis was compared to control brain tissues. We validated differential expression of 3 proteins through immunohistochemistry, which was confirmed to be consistent with mass spectrometry analysis. Pathway analysis of differentially expressed proteins indicated deregulation of several pathways involved in antigen processing, immune response, neuronal growth, neurotransmitter transport and energy metabolism.

Conclusions

Global quantitative proteomic approach adopted in this study generated a comparative proteome profile of brain tissues from toxoplasma encephalitis patients co-infected with HIV. Differentially expressed proteins include previously reported and several new proteins in the context of T. gondii and HIV infection, which can be further investigated. Molecular pathways identified to be associated with the disease should enhance our understanding of pathogenesis in toxoplasma encephalitis.

Electronic supplementary material

The online version of this article (doi:10.1186/1559-0275-11-39) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07 aqueous leachates.

Methods

We used scanning and transmission electron microscopy to evaluate E. coli and MRSA ultrastructure and morphology following exposure to antibacterial leachates. Additionally, we employed Bac light LIVE/DEAD staining and flow cytometry to investigate the cellular membrane as a possible target for antibacterial activity.

Results

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging of E. coli and MRSA revealed intact cells following exposure to antibacterial mineral leachates. TEM images of MRSA showed disruption of the cytoplasmic contents, distorted cell shape, irregular membranes, and distorted septa of dividing cells. TEM images of E. coli exposed to leachates exhibited different patterns of cytoplasmic condensation with respect to the controls and no apparent change in cell envelope structure. Although bactericidal activity of the leachates occurs more rapidly in E. coli than in MRSA, LIVE/DEAD staining demonstrated that the membrane of E. coli remains intact, while the MRSA membrane is permeabilized following exposure to the leachates.

Conclusions

These data suggest that the leachate antibacterial mechanism of action differs for Gram-positive and Gram-negative organisms. Upon antibacterial mineral leachate exposure, structural integrity is retained, however, compromised membrane integrity accounts for bactericidal activity in Gram-positive, but not in Gram-negative cells.  相似文献   

20.
The 4kD scorpion defensin (SD) is a potent disulfide-linked peptide. In this study, we expressed it in methylotrophic yeast Pichia pastoris and purified it using Ni–NTA His Bind Resin. We investigated its in vitro antibacterial activity and effect in combination with several conventional antibiotics. We first examined its antibacterial activity towards several Gram-positive and Gram-negative bacteria. Then we used the broth microdilution method to test drugs alone and in combination and used the fractional inhibitory concentration (FIC index) to classify the drug interactions. Our study showed the expressed SD peptide has antibacterial activity against Salmonella typhimurium, E. coli and S. aureus etc. Synergy or additive interaction was observed between SD and Norfloxacin, Polymyxin B and Ampicillin. Cell growth tests showed that combination of SD and Norfloxacin can improve their activity against bacteria. This result maybe permit lower using of the conventional antibiotic agents more effectively and safely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号